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Abstract

Massive vector fields can be described in a gauge invariant way with the introduction of compensating fields. In the
gauge one recovers the original formulation. Although this gauging mechanism can be extended to noncommutative s
straightforward way, nontrivial aspects show up when we consider the Seiberg–Witten map. As we show here, only a particu
class of its solutions leads to an action that admits the unitary gauge fixing.
 2004 Elsevier B.V.
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1. Introduction

The idea that space–time may be noncommuta
at very small length scales is not new[1]. Originally
this has been thought just as a mechanism for
viding space with a natural cut off that would co
trol ultraviolet divergences. However, the interest
this topic increased a lot in the last years motiva
mainly by important results coming from string th
ory that indicate a possible noncommutative struct
for space–time (see[2,3] for a review and a wide list o
important references). The presence of an antisym
ric tensor background along the D-brane[4] world vol-
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umes (space–time region where the string endpo
are located) is an important source for noncomm
tivity in string theory[5,6].

In noncommutative space–time of dimensionD the
coordinatesxµ are replaced by Hermitian generato
x̂µ of a noncommutativeC∗-algebra over space–tim
functions satisfying

(1.1)
[
x̂µ, x̂ν

] = iθµν,

whereθµν is usually taken as a constant antisymme
matrix of dimensionD.

In order to define noncommutative quantum fie
theories one can rather than working with noncomm
ing functions of the operatorŝxµ, replace the ordinar
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(1.2)

φ1(x) � φ2(x) = exp

(
i

2
θµν∂x

µ∂y
ν

)
φ1(x)φ2(y)

∣∣∣∣
x=y

and then consider usual functions ofxµ. Since the
space–time integral of the Moyal product of two fiel
is equal to the usual product (when boundary terms
not contribute), the noncommutativity does not aff
the free part of the action but the vertices. This impl
many interesting features of noncommutative quan
field theories as discussed in[2,3].

Gauge theories can be extended to noncommuta
spaces by considering actions that are invariant un
gauge transformations defined in terms of the Mo
structure. However, the form of these gauge trans
mations imply that the algebra of the generators m
be closed not only under commutation but also
der anticommutation. SoU(N) is usually chosen a
the symmetry group for noncommutative extension
Yang–Mills theories in place ofSU(N), although other
symmetry structures can also be considered[7–9].

Once one has a noncommutative gauge theory
the sense that the field polinomia in the action a
their gauge structure are constructed by using Mo
products, it is possible to generate a map from
noncommutative theory to an ordinary one, as sho
by Seiberg and Witten[2]. Interesting aspects of th
general form of this map can be found in[10]. The
mapped Lagrangian is usually written as a nonlo
infinite series of ordinaryfields and their space–tim
derivatives but the noncommutative Noether identi
are however kept by the Seiberg–Witten map.

It is sometimes useful to transform global sy
metries in gauge symmetries by the introduction
pure gauge “compensating fields”[11]. This proce-
dure can be used, for example, as a tool for ca
lating anomalous divergencies associated with glo
currents[12]. Another use of compensating fields is
allow a gauge invariant formulation for a massive v
tor field. In this Letter we will investigate the exte
sion to noncommutative spaces of this kind of ga
ing process. We will see that it is possible to defin
noncommutative version of a gauged vector field w
mass and also that a Seiberg–Witten map can be
structed. When we introduce a gauge invariance
was not originally present it is in general possible
return to the original theory by a particular gauge fi
-

ing of this new symmetry. This condition, expect
to hold also at noncommutative level, will represen
criterion for choosing the appropriate Seiberg–Wit
map among the general solutions.

This Letter is organized as follows: inSection 2
we discuss the noncommutative massive vector fi
theory. InSection 3we present the general structu
of the Seiberg–Witten map, that means: we derive
general set of equations ithas to satisfy. Differen
solutions for the map are then presented inSection 4.
We reserveSection 5for some concluding remarks.

2. Gauging the noncommutative U(N) Proca field

The action for the ordinaryU(N) Proca (massive
vector) field is given by

(2.1)S[a] = tr
∫

d4x

(
−1

2
fµνf

µν + m2aµaµ

)
,

where the curvature tensor is defined by

(2.2)fµν = ∂µaν − ∂νaµ − i[aµ, aν]
and the vector fieldaµ take values in theU(N) alge-
bra, with generatorsT A, assumed to be normalized

(2.3)tr
(
T AT B

) = 1

2
δAB

and satisfying the (anti)commutation relations
[
T A,T B

] = if ABCT C,

(2.4)
{
T A,T B

} = dABCT C.

We takef ABC anddABC as completely antisym
metric and completely symmetric, respectively.

The theory described by(2.1)is not gauge invarian
because of the presence of the mass term. As
well known, it is possible to gauge the above the
with the introduction of compensating fields. In t
Lagrangian formalism, this can be directly done w
the introduction of scalar fieldsg which transform as
U(N) group elements. The procedure is very sim
and consists in replacing the fieldaµ by a kind of
invariant collective fieldãµ = ãµ(a, g) defined as
[11,12]

ãµ = g−1aµg + ig−1∂µg

(2.5)= g−1(aµ − bµ)g,
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(2.6)bµ = −i∂µgg−1

is a “pure gauge” compensating vector field since
curvature, constructed as in(2.2), vanishes identically
As aµ, bµ also takes values in theU(N) algebra.

If we write ãµ instead ofaµ in action(2.1), we get
directly

S[a,g] = tr
∫

d4x

(
−1

2
fµνf

µν

(2.7)

+ m2(aµ − bµ)
(
aµ − bµ

))

which is now invariant under the gauge transform
tions

δ̄aµ = ∂µα − i[aµ,α] ≡ Dµα,

(2.8)δ̄g = iαg

as can be verified. We are denoting the gauge varia
by δ̄ since we will reserve the symbolδ for the gauge
variation of the noncommutative case, which will
shortly introduced. For completeness, we note that
above definitions imply that

(2.9)δ̄bµ = ∂µα − i[bµ,α] ≡ D̄µα.

The gauge algebra of all of these fields closes as

(2.10)[δ̄1, δ̄2]y = δ̄3y,

y representingaµ, g or bµ. The parameter compos
tion rule then is given by

(2.11)α3 = i[α2, α1].
As expected, the originaltheory is recovered in

the unitary gaugeg = 1. There is no obstruction t
implement this model also at the quantum level, e
if there are arbitrary couplings with fermions[11],
since candidates to anomalies are compensate
appropriate Wess–Zumino terms constructed with
fieldsaµ andg.

The gauge invariant action given by(2.7) can be
extended to a noncommutative space. Let us repre
the corresponding noncommutative fields by cap
letters and introduce Moyal products whenever us
ordinary products appear in the original ordina
theory. We get the noncommutative version for
t

action(2.7)

S = tr
∫

d4x

(
−1

2
FµνF

µν

(2.12)+ m2(Aµ − Bµ)
(
Aµ − Bµ

))
,

where now the curvature is given by

(2.13)Fµν = ∂µAν − ∂νAµ − i[Aµ
�, Aν]

and the infinitesimal gauge transformations(2.8) are
replaced by

δAµ = Dµε = ∂µε − i[Aµ
�, ε],

δFµν = −i[Fµν
�, ε],

(2.14)δG = iε � G.

Note that we are using the same symbol to den
ordinary and noncommutative covariant derivativ
but we believe that there will be no misunderstandi
The compensating fieldBµ is now

(2.15)Bµ ≡ −i∂µG � G−1

and transforms accordingly

(2.16)δBµ = D̄µε = ∂µε − i[Bµ
�, ε].

Its noncommutative curvature, defined in analogy w
(2.13), vanishes identically as in the ordinary ca
As expect, the noncommutative gauge transformat
listed above also close in an algebra

(2.17)[δ1, δ2]Y = δ3Y,

Y representingAµ, G or Bµ. The composition rule fo
the parameters now is given by

(2.18)ε3 = i[ε2
�, ε1]

and belongs to the algebra due to(2.4). In the above
expressionsG is an element of the noncommutati
U(N) group. This means that the composition ru
is also to be operated with the Moyal product. F
instance the inverse toG is defined byG−1 � G = 1
which implies different features when compared wi
the usual (commutative)U(N) group. If one writes
down explicitly expressions like(2.15), (2.16) or
(2.18), it is easy to see that they will involve bo
the structure functionsf ABC and dABC present in
Eq. (2.4). With these remarks in mind, we see th
there is also no problem for implementing the unita
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gaugeG = 1. This can be seen by using directly t
finite form of the gauge transformations(2.14):

A′
µ = U−1 � Aµ � U + iU−1 � ∂µU,

(2.19)G′ = iU−1 � G.

This guarantees that the physical content of the P
model is not affected by the introduction of th
compensating fields. We observe that the Hamiltonian
treatment of these points has been done for the sim
noncommutativeU(1) case [13], along the BFFT
procedure[14].

3. General structure of the Seiberg–Witten map

Let us consider now the Seiberg–Witten map lin
ing the massive noncommutativeU(N) gauge theory
described in the previous section and a correspo
ing higher derivative theory defined in terms of us
commutative products and ordinary fields. Followi
the same notation employed in the last section,
noncommutative variables will be represented by c
ital letters, here generically denoted byY . The cor-
responding ordinary ones, represented by small
ters, will be generically denoted byy. We assume
that the gauge transformationsδY of the noncommu-
tative variables listed in the last section can be
tained through the underlying gauge structure of
corresponding ordinary theory. The construction of
Seiberg–Witten map starts by imposing for all fie
that

(3.1)δY = δ̄Y [y].
The explicit form of this map comes solving th

above equations when one assumes that the non
mutative parametersε are functions of the commuta
tive parametersα and ordinary fieldsy. Although we
are taking the same form of the gauge transformat
displayed in(2.8)and(2.14), the form of the mappe
action will be different from(2.7) if the map is non-
trivial. Now, the transformations above also close
an algebra:

[δ̄1, δ̄2]Aµ[y]
= Dµ

(
δ̄1ε2[y] − δ̄2ε1[y] + i

[
ε2[y] �, ε1[y]])

= Dµε3[y],
-

[δ̄1, δ̄2]G[y]
= i

(
δ̄1ε2[y] − δ̄2ε1[y] + i

[
ε2[y] �, ε1[y]])G[y]

(3.2)= iε3[y]G[y],
where the indices 1, 2 and 3 represent the depend
of ε in α1, α2 andα3. For instance,ε3[y] ≡ ε[α3, y].
From the equations above we find the composition
for the noncommutative parameterε[y] given by

(3.3)ε3[y] = δ̄1ε2[y] − δ̄2ε1[y] + i
[
ε2[y] �, ε1[y]]

in place of(2.18). Eq. (3.2)is not new in the literature
[2,8] but will be crucial for the results that we wi
derive.

Now let us obtain the general equations that m
be satisfied by the Seiberg–Witten map. Assuming
usual, that the gauge transformation parameter ca
expanded to first order inθµν asε[y] = α + ε(1)[y],
we get from(3.3)that

δ̄1ε
(1)
2 − δ̄2ε

(1)
1 − i

[
α1, ε

(1)
2

] + i
[
α2, ε

(1)
1

] − ε
(1)
3

(3.4)= −1

2
θµν{∂µα1, ∂να2}.

This relation will be important in finding the Seiberg
Witten map for the gauge parameter. We will see
the next section that it allows more than one solut
for ε(1). Assuming as well that to first order inθ the
field is expanded asAµ = aµ +A

(1)
µ , the field strength

Fµν = fµν + F
(1)
µν and thatG = g + G(1), it is not

difficult to deduce from(2.8),(2.14)and(3.1)that

δ̄A(1)
µ + i

[
A(1)

µ ,α
]

(3.5)= ∂µε(1) + i
[
ε(1), aµ

] − 1

2
θαβ {∂αα, ∂βaµ}

and as a consequence, the field strength transform
satisfy

δ̄F (1)
µν + i

[
F (1)

µν ,α
]

(3.6)= i
[
ε(1), fµν

] − 1

2
θαβ{∂αα, ∂βfµν }.

Also from the same equations we get

(3.7)δ̄G(1) − iαG(1) = −1

2
θµν∂µα∂νg + iε(1)g

for the compensating fieldG. The corresponding
vector field, writing in first order inθ that Bµ =
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bµ + B
(1)
µ , satisfies

δ̄B(1)
µ + i

[
B(1)

µ α
]

(3.8)= ∂µε(1) + i
[
ε(1), bµ

] − 1

2
θαβ{∂αα, ∂βbµ}.

Instead of solving the above equation, we obse
that the map forG induces directly a map forBµ.
From(2.15)one can show that

B(1)
µ = −i∂µg

(
G−1)(1) − i∂µG(1)

(
g−1)

(3.9)+ 1

2
θαβ∂α∂µg∂β

(
g−1)

solves(3.8). Now, by using the equations for the gau
transformations defined above, it is not difficult
verify that action(2.12)written as

S = tr
∫

d4x

(
−1

2
fµνf

µν + m2(aµ − bµ)
(
aµ − bµ

)

− f µνF (1)
µν

(3.10)+ m2{aµ − bµ,A(1)
µ − B(1)

µ

})

up toO(θ2), is indeed gauge invariant. This result is
course independent of the particular maps one obt
from (3.5),(3.7)or (3.8).

4. Different solutions of Seiberg–Witten map

Let us now look for the solutions of the Seiber
Witten map. The general solution of(3.4) when the
compensating field sector is not present is[10]

(4.1)ε(1) = 1

4
θµν{∂µα,aν} + λ1θ

µν[∂µα,aν],
where λ1 is an arbitrary constant. The first ter
corresponds to the particular solution ofEq. (3.4)and
the second term is the solution of the homogene
part of the same equation. It is possible from(3.5)
and(4.1) to find an explicit form for the map of th
connection as[10]

Aµ[a] = aµ − 1

4
θαβ{aα, ∂βaµ + fβµ} + σθαβDµfαβ

(4.2)+ λ1

2
θαβDµ[aα, aβ ] + O

(
θ2),

where σ is also an arbitrary constant associa
with the homogeneous solution of(3.5) when one
uses(4.1). We observe that if we consider only t
particular solution (λ1 = 0) for the gauge paramete
Eqs. (3.7) and (4.1)give us

G[a,g] = g − 1

2
θαβaα

(
∂βg − i

2
aβg

)

(4.3)+ γ θαβfαβg + O
(
θ2),

where γ is arbitrary. At this point we note tha
it if we choose the ordinary unitary gaugeg = 1
the corresponding noncommutative mapped gr
element keeps a dependence onaµ and cannot be
suppressed from the theory as can be seen f
the above expression. However by considering
complete solution(4.1) and takingλ1 = −1/4 it is
possible to eliminate one of the problematic terms
(4.3)to obtain

(4.4)

G[a,g] = g − 1

2
θαβaα∂βg + γ θαβfαβg + O

(
θ2).

If we now chooseγ = 0, G goes tog in the unitary
gauge. Also, from(3.9),

(4.5)B(1)
µ = 1

2
θαβ

(
(D̄µbα)bβ − D̄µ(aαbβ)

)

when one uses(4.4) with γ = 0. Observe, howeve
that the expression forA(1)

µ coming from(4.2), with
λ1 = −1/4 does not vanish for anyσ . We will show
in what follows that when we consider theg sector,
it is possible to construct a Seiberg–Witten map t
can be completely suppressed in the unitary ga
We are considering a theory involving the pure gau
field bµ besides the usual gauge fieldaµ. So, the space

of solutions forε(1),G(1),A
(1)
µ ,B

(1)
µ representing the

noncommutative field extensions is actually grea
than the one studied in detail in[10]. One can check
that now instead of(4.1)we get

ε(1) = 1

4
(1− ρ)θµν{∂µα,aν} + λ1θ

µν[∂µα,aν]

(4.6)+ 1

4
ρθµν{∂µα,bν} + λ2θ

µν[∂µα,bν]
when one also considers the compensating field
tor. Observe that the first and third terms play a co
plementary role as a particular solution ofEq. (3.4).
The other terms represent homogeneous solution
Eq. (4.6)ρ,λ1 andλ2 are arbitrary.
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From(3.7)and(4.6)we get now

G[a,g] = g − 1

2
(1− ρ)θαβaα

(
∂βg − i

2
aβg

)

+ iλ1θ
αβaαaβg + γ θαβfαβg

(4.7)+ i

(
λ2 − ρ

4

)
θαβbαbβg + O

(
θ2).

Since bα vanishes identically wheng goes to 1, it
is possible to implement an unitary gauge forG(g)

if we chooseλ1 = 1
4(ρ − 1) and γ = 0, leavingλ2

free. This choice, however, does not makeA(1) → 0
when g → 1, as can be observed from(3.5) and
(4.6). Additionally imposing thatρ = 1 and λ= 0,
we verify that A(1) → 0 when g → 1. In this last
case

(4.8)B(1)
µ = 1

4
θαβ{D̄µbα, bβ} = 1

4
θαβ{∂αbµ, bβ}

and

(4.9)A(1)
µ = 1

4
θαβ{bα,Dµbβ − 2∂βaµ}

and indeed both expressions vanish in the uni
gauge. This is in accordance with the fact that the o
inal Proca model is not a gauge theory.

Now that the structure of this map has been fou
it is only algebraic work the construction of th
corresponding mapped action. From(2.13)

Fµν = fµν + DµA(1)
ν − DνA

(1)
µ + 1

2
θαβ{∂αaµ, ∂βaν}

(4.10)≡ fµν + F (1)
µν

up to O(θ2), and discarding terms that come fro
the homogeneous part of(3.6) [10] that do not van-
ish if g = 1. Now, the mapped action can be wr
ten as in(3.10) with B

(1)
µ ,A

(1)
µ and F

(1)
µν given by

(4.8)–(4.10).
This action is invariant under the transformatio

(2.8) and (2.9) since condition(3.1) defining the
Seiberg–Witten map is satisfied by construction. T
guarantees that the Noether identities are kept
the map. Also, the unitary gauge:g = 1, bµ = 0 can
be implemented in a consistent way recovering
noncommutative Proca model action given by(2.12),
with Bµ = 0 andAµ = aµ, in O(θ2).
5. Conclusion

We discussed here how to build up a noncomm
tative extension for a gauged massive vectorU(N)

field theory. The ordinary (commutative) theory c
be gauge fixed to the so-called unitary gauge wh
the standard massive vector field theory is recove
Although the same mechanism can be easily exten
to the noncommutative theory, nontrivial aspects
pear when one considers the Seiberg–Witten ma
that theory. Taking into account the compensating fi
sector as well as the terms that come from the homo
neous equations that define the Seiberg–Witten m
we have found several nonequivalent solutions. O
of them consistently admits the implementation of
unitary gauge fixing for all the fields.
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