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Abstract

Massive vector fields can be described in a gauge invariant way with the introduction of compensating fields. In the unitary
gauge one recovers the original formulation. Although this gauging mechanism can be extended to noncommutative spaces in a
straightforward way, nontrial aspects show up when we consider the Sgibéfitten map. As we show here, only a particular
class of its solutions leads to an action that admits the unitary gauge fixing.
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1. Introduction umes (space—time region where the string endpoints
are located) is an important source for noncommuta-

The idea that space—time may be noncommutative tVity in string theory[S,6]. _ _
at very small length scales is not ngj. Originally In noncommutative space-time of dimensiorthe
this has been thought just as a mechanism for pro- Eoordmatesﬂ are rep_laced by Hermitian genera_ltors
viding space with a natural cut off that would con- *" Of @ noncommutative™-algebra over space-time
trol ultraviolet divergences. However, the interest on functions satisfying
this topic increased a lot in the last years motivated
mainly by important results coming from string the-
ory that indicate a possible noncommutative structure [x#, ;2”] =ig", (1.2)
for space—time (sd@,3]for a review and a wide list of
important references). The presence of an antisymmet-

. Y i i
ric tensor background along the D-brgakworld vol- whereg#” is usually taken as a constant antisymmetric

matrix of dimensionD.

In order to define noncommutative quantum field
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products everywhere by the Moyal star product ing of this new symmetry. This condition, expected
to hold also at noncommutative level, will represent a
criterion for choosing the appropriate Seiberg—Witten
x=y map among the general solutions.

(1.2) This Letter is organized as follows: iBection 2
and then consider usual functions of. Since the we discuss the noncommutative massive vector field
space—time integral of the Moyal product of two fields theory. InSection 3we present the general structure
is equal to the usual product (when boundary terms do of the Seiberg—Witten map, that means: we derive the
not contribute), the noncommutativity does not affect general set of equations ftas to satisfy. Different
the free part of the action but the vertices. This implies solutions for the map are then presente&etction 4
many interesting features of noncommutative quantum We reserveéSection 5for some concluding remarks.
field theories as discussed[i3].

Gauge theories can be extended to noncommutative
spaces by considering actions that are invariant under2. Gauging the noncommutative U (N) Procafield
gauge transformations defined in terms of the Moyal
structure. However, the form of these gauge transfor-  The action for the ordinary/(N) Proca (massive
mations imply that the algebra of the generators must vector) field is given by
be closed not only under commutation but also un- 1
der anticommutation. S& (N) is usually chosen as  S[a] =trfd4x (——fwf“” +m2aﬂa“), (2.1)
the symmetry group for noncommutative extensions of 2
Yang—Mills theories in place @U(N), although other ~ where the curvature tensor is defined by
symmetry structures can also be considgred].

Once one has a noncommutative gauge theory, in fuv = 9@y — dvay —ilay, ay] (2.2)
the sense that the field polinomia in the action and gznd the vector field,, take values in thé/(N) alge-

their gauge structure are constructed by using Moyal pra with generatorg4, assumed to be normalized as
products, it is possible to generate a map from this

noncommutative theory to an ordinary one, as shown tr(TATB) _ }SAB (2.3)
by Seiberg and Wittef2]. Interesting aspects of the
general form of this map can be found[ih0]. The and satisfying the (anti)commutation relations
mapped Lagrangian is usually written as a nonlocal . . = ABCC
infinite series of ordinaryields and their space—time [T T ] =if re,
derivatives but the noncommutative Noether identities {TA, TB} — JABCTC. (2.4)
are however kept by the Seiberg—Witten map. ]

It is sometimes useful to transform global sym- ~ We takef4#¢ anda“?¢ as completely antisym-
metries in gauge symmetries by the introduction of Metric and completely symmetric, respectively.
pure gauge “compensating fieldiZ1]. This proce- The theory described H2.1)is notgaugemvanan'_[ _
dure can be used, for example, as a tool for calcu- Pecause of the presence of the mass term. As it is
lating anomalous divergencies associated with global Well known, it is possible to gauge the above theory
currentg12]. Another use of compensating fields isto  With the introduction of compensating fields. In the
allow a gauge invariant formulation for a massive vec- Lagrangian formalism, this can be directly done with
tor field. In this Letter we will investigate the exten- the introduction of scalar fieldg which transform as
sion to noncommutative spaces of this kind of gaug- U(/V) group elements. The procedure is very simple
ing process. We will see that it is possible to define a @nd consists in replacing the fielq, by a kind of
noncommutative version of a gauged vector field with invariant collective fielda, = a,(a, ¢) defined as
mass and also that a Seiberg—Witten map can be con{11,12]
structed. When we introduce a gauge invariance that& —oly o tio 1y
was not originally present it is in general possible to “* ~ & & T8 s
return to the original theory by a particular gauge fix- = g M au —byg. (2.5)

i

$1(x) * p2(x) = exp(ze“”aiavy)asl(xwz(y)
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where action(2.7)
is a “pure gauge” compensating vector field since its
curvature, constructed as(2.2), vanishes identically. +m2(Au - Bﬂ)(A“ — BH)>, (2.12)

Asa,, b, also takes values in thg(N) algebra.
If we write @, instead ofz, in action(2.1), we get where now the curvature is given by
directly

L Fuy=0,A, —0,A, —i[A, T A)] (2.13)
Sla, gl :tr/d4x (—Eflwf”” and the infinitesimal gauge transformatid@s8) are
replaced by
2 _ W it
+m (all“ bll“)(a b )> 3AIL=DIL6 =8/L€ —i[AMtG]’
(2.7) SFuy = —i[Fyuy 7 €l,
which is now invariant under the gauge transforma- §G =ie xG. (2.14)

tions )
Note that we are using the same symbol to denote

Saﬂ =, —ilay, o] = Dya, ordinary and noncommutative covariant derivatives
s . but we believe that there will be no misunderstanding.
Sg=iag (2.8) L .

The compensating fiel@,, is now
as can be verified. We are denoting the gauge variation . 4
by § since we will reserve the symbélifor the gauge ~ Br = —i9,G G (2.15)
variation of the noncommutative case, which will be  and transforms accordingly
shortly introduced. For completeness, we note that the

above definitions imply that 8B, = Dye=0,€ —i[B, *el. (2.16)
§b, =, — i[by, o] = Dya. (2.9) Its noncom_mutati_ve culrvature, d_efined in a.nalogy with
. (2.13) vanishes identically as in the ordinary case.
The gauge algebra of all of these fields closes as As expect, the noncommutative gauge transformations
_ - listed above also close in an algebra

[51. 5aly = B, (2.10) ?
y representingy,, g or b,. The parameter composi- 81, 62]¥ = d3Y, (2.17)
tion rule then is given by Y representing!,,, G or B,.. The composition rule for

) the parameters now is given by
a3 =ilag, o1]. (2.11)

As expected, the originaheory is recovered in €3~ ‘€27 €l (2.18)

the unitary gauge = 1. There is no obstruction to  and belongs to the algebra due(®4). In the above
implement this model also at the quantum level, even expressionss is an element of the noncommutative
if there are arbitrary couplings with fermiorj&1], U(N) group. This means that the composition rule
since candidates to anomalies are compensated byis also to be operated with the Moyal product. For
appropriate Wess—Zumino terms constructed with the instance the inverse tG is defined byGt«G =1
fieldsa, andg. which implies different €atures when compared with
The gauge invariant action given ifg.7) can be the usual (commutatively (N) group. If one writes
extended to a noncommutative space. Let us representdown explicitly expressions likg2.15) (2.16) or
the corresponding noncommutative fields by capital (2.18) it is easy to see that they will involve both
letters and introduce Moyal products whenever usual the structure functiong42¢ and d42¢ present in
ordinary products appear in the original ordinary Eg. (2.4) With these remarks in mind, we see that
theory. We get the noncommutative version for the there is also no problem for implementing the unitary
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gaugeG = 1. This can be seen by using directly the [81,52]G[y]
finite form of the gauge transformatio( 14} =i(81€2[y] — S2ealy] +i[e2ly] * e1ly1])Gly]

A, =U"tx Ay U+iU 8,0, =ieg[yIGIyl, 3.2)

G'=iU"+G. (2.19) where the indices 1, 2 and 3 represent the dependence

This guarantees that the physical content of the Proca®f € in @1, @2 andas. For instancess[y] = e[as, yl.
model is not affected by the introduction of the From the equations above we find the composition rule
compensating fields. We otxwe that the Hamiltonian ~ fOF the noncommutative parametey | given by
treatment of these points has been done for the simpler

noncommutativelU (1) case [13], along the BFFT eslyl=dieolyl = S2aalyl +ilealylraalyl] - (33)

procedurg14]. in place of(2.18) Eq. (3.2)is not new in the literature
[2,8] but will be crucial for the results that we will
derive.

3. General structure of the Seiberg-Witten map Now let us obtain the general equations that must

be satisfied by the Seiberg—Witten map. Assuming, as

Let us consider now the Seiberg—Witten map link- usual, that the gauge transformation parameter can be
ing the massive noncommutatiZ&N) gauge theory  expanded to first order i6*” ase[y] = « + ¢ D[y],
described in the previous section and a correspond-we get from(3.3)that
ing higher derivative theory defined in terms of usual
commutative products and ordinary fields. Following 1e5” — 5pei” —i[a1, 5" ] + i[wz, €] — €5”
the same notation employed in the last section, the
noncommutative variables will be represented by cap- = —50“”{%0{1, dvaz}. (3.4)
ital letters, here generically denoted by The cor-
responding ordinary ones, represented by small let-
ters, will be generically denoted by. We assume

This relation will be important in finding the Seiberg—
Witten map for the gauge parameter. We will see in
that the gauge transformatiod¥ of the noncommu- the next section that it allows more than one solution

. . . . . D i i i
tative variables listed in the last section can be ob- for €. Assuming as well that to first order ithe

tained through the underlying gauge structure of the field is expande? ad, =a,+ Ay, the field strength
corresponding ordinary theory. The construction of the Fj . = fuv + Fﬁv) and thatG = g + G@, it is not
Seiberg-Witten map starts by imposing for all fields difficult to deduce fron(2.8),(2.14)and(3.1)that
that _
) SAY +i[AD, o]
8Y =58Y[yl. (3.1) " " 1.,
- . . =9 ] , — =0%{9,, 0 3.5

The explicit form of this map comes solving the pe? il a] 2 (O, Jpa}  (3.5)
above equations when one assumes that the noncomyng as a consequence, the field strength transformation
mutative parameters are functions of the commuta- satisfy
tive parameters and ordinary fields. Although we
are taking the same form of the gauge transformations SF&? + i[F/S,:ILJ)’ a]
displayed in(2.8) and(2.14) the form of the mapped

. . . . . 1
action will be different from(2.7) if the map is non- =i[e?, fun] - EO“ﬁ{aaa, 3 fuv)- (3.6)
trivial. Now, the transformations above also close in
an algebra: Also from the same equations we get
_ _ 1
[81,8214,.1y] 5GW —iaGW =S dadvg +icVg  (B7)

= D, (81€2[y] — S2e1ly] + i[ealy] * exly]
M( [ ]) for the compensating fields. The corresponding
= Dyeslyl, vector field, writing in first order ind that B, =
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by + B, satisfies
5B +i[BLa]
1
:@ﬁﬂﬁ+ﬂébim]—éywwwn%hm. (3.8)

Instead of solving the above equation, we observe
that the map forG induces directly a map foB,,.
From(2.15)one can show that

B/(Ll) = _iaug(G_l)(l) - iaMG(l) (g_l)
1
+ E0""38(,,amga,g (g71) (3.9)

solveg(3.8). Now, by using the equations for the gauge
transformations defined above, it is not difficult to
verify that action(2.12)written as

1
S= tr/ d*x <_§flwflw +m?(a, — by)(ak — bH)
1
_ flw F/(LV)
+mﬂaﬂ—b%Af%—Bﬁq>(31m

upto0(#?), is indeed gauge invariant. This result is of

course independent of the particular maps one obtainsBlgl) - %Gaﬁ((Duba)bﬂ — Dy (agbp))

from (3.5),(3.7)or (3.8).

4. Different solutions of Seiberg—Witten map

Let us now look for the solutions of the Seiberg—
Witten map. The general solution ¢3.4) when the
compensating field sector is not presentlia]

1
E(l) = Zeﬂv{a/ﬁav av} + )\419;“}[8[1,0[, av]v (41)

where A1 is an arbitrary constant. The first term
corresponds to the particular solutionkx. (3.4)and

the second term is the solution of the homogeneous

part of the same equation. It is possible fr@gg5)
and(4.1) to find an explicit form for the map of the
connection a§l0]

1
Aylal=a, — 2190"3{%, dpau + fou) +00%P Dy fup
Al
+ EGWﬁDH[aa,aﬁ] +0(6?), (4.2)

where o is also an arbitrary constant associated
with the homogeneous solution ¢8.5) when one

185

uses(4.1). We observe that if we consider only the
particular solution X1 = 0) for the gauge parameter,

Egs. (3.7) and (4.19ive us
‘
2°P8

+y0° fupg + 0(6?),

where y is arbitrary. At this point we note that

it if we choose the ordinary unitary gauge=1

the corresponding noncommutative mapped group
element keeps a dependence gn and cannot be
suppressed from the theory as can be seen from
the above expression. However by considering the
complete solution(4.1) and takingry = —1/4 it is
possible to eliminate one of the problematic terms in
(4.3)to obtain

1
Gla,gl=g — EG“ﬂaa (3ﬁg -

(4.3)

1
Gla, gl=¢ — 50 audpg +v0°" fapg + 0(0%).
(4.4)

If we now chooser = 0, G goes tog in the unitary
gauge. Also, fron{3.9),

(4.5)

when one use$4.4) with y = 0. Observe, however,
that the expression foAf}) coming from(4.2), with

A1 = —1/4 does not vanish for any. We will show

in what follows that when we consider thesector,

it is possible to construct a Seiberg—Witten map that
can be completely suppressed in the unitary gauge.
We are considering a theory involving the pure gauge
field b, besides the usual gauge field. So, the space

of solutions fore®, GW, AP, BY representing the
noncommutative field extensions is actually greater
than the one studied in detail [@0]. One can check
that now instead of4.1)we get

1
@ = 2= PO B, @) + 310" [0 ]

+ %p@‘“’{aﬂa, by} + A20"[3,, by (4.6)
when one also considers the compensating field sec-
tor. Observe that the first and third terms play a com-
plementary role as a particular solution f). (3.4)

The other terms represent homogeneous solutions. In
Eq. (4.6)p, A1 anda; are arbitrary.
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From(3.7)and(4.6)we get now

i

2°h8

+ir0%aqapg +y0°P fupg

+i@e—§>wﬁm%g+0@%. 4.7)

e _
Gla,gl=g 2(1 p)0Taq| dpg

Since b, vanishes identically wheg goes to 1, it
is possible to implement an unitary gauge fG(g)
if we choosers = 3(p — 1) andy = 0, leaving,
free. This choice, however, does not mak&’ — 0
when g — 1, as can be observed fro(3.5) and
(4.6). Additionally imposing thatp =1 and A=0,
we verify that A® — 0 when g — 1. In this last
case

1 _ 1
B = 20" {(Dyuba, bg} = 30" (0ubyu, bg}  (4.8)
and

1
Myzzyw%mDﬂw—z%%J (4.9)
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5. Conclusion

We discussed here how to build up a noncommu-
tative extension for a gauged massive vediamV)
field theory. The ordinary (commutative) theory can
be gauge fixed to the so-called unitary gauge where
the standard massive vector field theory is recovered.
Although the same mechanism can be easily extended
to the noncommutative theory, nontrivial aspects ap-
pear when one considers the Seiberg—Witten map of
that theory. Taking into account the compensating field
sector as well as the terms that come from the homoge-
neous equations that define the Seiberg—Witten map,
we have found several nonequivalent solutions. One
of them consistently admits the implementation of the
unitary gauge fixing for all the fields.
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