Criteria for uniform distribution

by Józef Horbowicz

Numerical Analysis Department. M. Curie-Sklodowska University, 20-031 Lublin, Poland

Communicated by Prof. N.G. de Bruijn at the meeting of September 27, 1980

ABSTRACT

Let f be a complex-valued Riemann-integrable function defined on the interval $[0,1]$ and vanishing on a set of Lebesgue measure zero. It is proved that a sequence $\left(x_{n}\right), n=1,2, \ldots$, of points in $[0,1)$ is uniformly distributed if and only if for every subinterval $[a, b)$ of $[0,1]$ we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right) \chi_{[a, b)}\left(x_{n}\right)=\int_{a}^{b} f(x) d x
$$

where $\chi_{[a, b]}$ is the characteristic function of $[a, b]$. The assumptions on f cannot be relaxed. Related notions of discrepancy of a sequence are defined and appropriate criteria for uniform distribution are given.

1. INTRODUCTION

A sequence $\left(x_{n}\right), n=1,2, \ldots$, of points in $I=[0,1)$ is said to be uniformly distributed (u.d.) if for every subinterval $[a, b) \subset I$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{[a, b)}\left(x_{n}\right)=b-a, \tag{1}
\end{equation*}
$$

where $\chi_{[a, b)}$ denotes the characteristic function of $[a, b)$. It is the well-known fact showed by Weyl [5] that the sequence (x_{n}) is u.d. if and only if for every complex-valued Riemann-integrable function f defined on the closed interval $I=[0,1]$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right)=\int_{0}^{1} f(x) d x . \tag{2}
\end{equation*}
$$

Let a Riemann-integrable function $f: I \rightarrow \mathbf{C}$ be fixed. It follows from (2) that for every subinterval $[a, b) \subset I$

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right) \chi_{[a, b)}\left(x_{n}\right)=\int_{a}^{b} f(x) d x \tag{3}
\end{equation*}
$$

whenever the sequence $\left(x_{n}\right)$ is u.d. However, the converse need not be true as can easily be seen by considering the function $f(x) \equiv 0$ in I. Clearly, the converse holds for $f(x) \equiv 1$ in I. Another example is $f(x) \equiv x$ in \bar{I} (see [4], II Abschn., Aufg. 163).

It is the aim of the present note to give a condition on f under which any sequence (x_{n}) satisfying ${ }^{\dot{\prime}}(3)$ for all subintervals $[a, b) \subset I$ is u.d. Additionally, related notions of discrepancy of a sequence are discussed in some aspects. In our considerations we shall confine ourselves to the case of Riemann-integrable functions. If f is not Riemann-integrable, then there exists, by the theorem of de Bruijn and Post [1], a u.d. sequence (x_{n}) for which the limit on the left-hand side of (3) does not exist for $a=0$ and $b=1$, and so in this case our results need not be true.

2. A CONVERSE TO (3)

Let μ be the Lebesgue measure on \bar{I}. For every function $f: \bar{I} \rightarrow \mathbf{C}$, we denote $Z(f)=\{x \in \bar{I} ; f(x)=0\}$. First we shall consider the case of a real-valued function f.

Lemma 1. Let $f: \bar{I} \rightarrow \mathbf{R}$ be Riemann-integrable and

$$
\begin{equation*}
\mu(Z(f))=0 \tag{4}
\end{equation*}
$$

The sequence $\left(x_{n}\right), n=1,2, \ldots$, of points in I is u.d. if and only if for every subinterval $[a, b) \subset I$ condition (3) is satisfied.

PROOF. The necessity follows immediately from (2), so we need only show the sufficiency.

Let D be the set of all discontinuity points of f and let $Z=Z(f)$. For every integer $m \geq 1$, we denote

$$
\begin{equation*}
Z_{m}=\left\{x \in \bar{I}:|f(x)| \leq \frac{1}{m}\right\} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{m}=\left\{x \in \bar{I}: \omega(f ; x) \geq \frac{1}{m^{2}}\right\}, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
Z=\bigcap_{m=1}^{\infty} Z_{m} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
D=\bigcup_{m=1}^{\infty} D_{m} . \tag{8}
\end{equation*}
$$

Next, for every $m \geq 1$, we put

$$
\begin{equation*}
F_{m}=\bar{Z}_{m} \cup D_{m}, \tag{9}
\end{equation*}
$$

where for any set $A \subset \bar{I}, \bar{A}$ is the closure of A. Since f is Riemann-integrable, it is continuous almost everywhere, and so $\mu(D)=0$. Moreover, $Z_{m} \subset \bar{Z}_{m} \subset Z_{m} \cup D$. These facts together with (4), (7), (8), and (9) yield

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \mu\left(F_{m}\right)=\lim _{m \rightarrow \infty} \mu\left(Z_{m}\right)=0 \tag{10}
\end{equation*}
$$

Now let $[a, b$) be an arbitrary subinterval of I. It follows from (10) that given any $\varepsilon, 0<\varepsilon<(b-a) / 4$, there exists an integer m_{0} such that for every $m \geq m_{0}$ we have
(11) $\mu\left(F_{m}\right)<\varepsilon$.

Let $m \geq \max \left(m_{0}, 1 / \varepsilon\right)$ be fixed. The set D_{m} is known to be closed (see e.g. [2], p. 75). Therefore F_{m} is a compact set. It follows that there exists a finite open cover $\left(c_{i}, d_{i}\right), i=1,2, \ldots, l$, of F_{m} such that

$$
\sum_{i=1}^{\prime}\left(d_{i}-c_{i}\right)<2 \varepsilon
$$

If we denote

$$
\begin{equation*}
R_{m}=I \backslash \bigcup_{i=1}^{\prime}\left[c_{i}, d_{i}\right) \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
\mu\left(R_{m}\right)>1-2 \varepsilon \tag{13}
\end{equation*}
$$

By (6) and (9), R_{m} can be divided into pairwise disjoint intervals [a_{i}, b_{i}), $i=1,2, \ldots, k$, each of length at most ε, such that

$$
\begin{equation*}
M_{i}-m_{i}<1 / m^{2} \tag{14}
\end{equation*}
$$

where

$$
m_{i}=\inf _{x \in\left[a_{i}, b_{i}\right)} f(x), M_{i}=\sup _{x \in\left[a_{i}, b_{i}\right]} f(x)
$$

for $i=1,2, \ldots, k$. Besides, we may assume that $a_{i}<a_{i+1}$, for $i=1,2, \ldots, k-1$. It follows that there exist indices p and $q, 1 \leq p<q \leq k$, such that

$$
\begin{equation*}
\bigcup_{i=p}^{q}\left[a_{i}, b_{i}\right) \subset[a, b) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=p}^{q}\left(b_{i}-a_{i}\right)>b-a-4 \varepsilon . \tag{16}
\end{equation*}
$$

Let $i, p \leq i \leq q$, be fixed. It follows from (5), (9), and (12) that $\left|m_{i}\right| \geq 1 / m$ and $\left|M_{i}\right| \geq 1 / m$. Thus, in view of (14), f is of constant sign on $\left[a_{i}, b_{i}\right)$. First suppose that f is positive on $\left[a_{i}, b_{i}\right.$). Since $M_{i} \geq 1 / m$ and $m \geq 1 / \varepsilon$, by (14) we have

$$
\begin{equation*}
\frac{m_{i}}{M_{i}}>1-\frac{1}{M_{i} m^{2}} \geq 1-\frac{1}{m} \geq 1-\varepsilon \tag{17}
\end{equation*}
$$

Now, for every integer $N \geq 1$, we have

$$
\sum_{n=1}^{N} \chi_{\left[a_{i}, b_{i}\right.}\left(x_{n}\right) \geq \frac{1}{M_{i}} \sum_{n=1}^{N} f\left(x_{n}\right) \chi_{\left[a_{i}, b_{i}\right)}\left(x_{n}\right) .
$$

Dividing both sides of the above inequality by N, letting $N \rightarrow \infty$, and using (3) and (17), we get

$$
\left\{\begin{align*}
\frac{\lim }{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{\left(a_{i} b_{i}\right)}\left(x_{n}\right) & \geq \frac{1}{M_{i}} \int_{a_{i}}^{b_{i}} f(x) d x \tag{18}\\
& \geq \frac{m_{i}}{M_{i}}\left(b_{i}-a_{i}\right) \\
& \geq(1-\varepsilon)\left(b_{i}-a_{i}\right) .
\end{align*}\right.
$$

In the same way it can be shown that (18) is true also when f is negative on [a_{i}, b_{i}). One needs only interchange m_{i} and M_{i} in the above consideration and use the inequality $m_{i} \leq-1 / m$ in order to get (17).

Summing (18) from $i=p$ to $i=q$, and using (15) and (16), we obtain

$$
\begin{aligned}
\frac{l_{N}}{} \frac{1}{N} \sum_{n=1}^{N} \chi_{[a, b)}\left(x_{n}\right) & \geq \sum_{i=p}^{q} \varliminf_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{\left[a_{i}, b_{i}\right)}\left(x_{n}\right) \\
& \geq \sum_{i=p}^{q}(1-\varepsilon)\left(b_{i}-a_{i}\right) \\
& \geq(1-\varepsilon)(b-a-4 \varepsilon) .
\end{aligned}
$$

Since ε can be taken arbitrarily small, we arrive at

$$
\begin{equation*}
\varliminf_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \quad \chi_{[a, b)}\left(x_{n}\right) \geq b-a . \tag{19}
\end{equation*}
$$

Applying (19) to the intervals $[0, a)$ and $[b, 1)$, we obtain (1). The proof of the lemma is finished.

THEOREM 1. Let $f: I \rightarrow \mathbf{C}$ be Riemann-integrable and
(20) $\mu(Z(f))=0$.

The sequence $\left(x_{n}\right)$ is u.d. if and only if for every subinterval $[a, b) \subset I$ the condition (3) is satisfied.

PROOF. As in Lemma 1, we need only show the sufficiency.
Let f_{1} and f_{2} be the real and imaginary parts of f, respectively. For any real number α we denote

$$
\begin{equation*}
g_{\alpha}=f_{1}+\alpha f_{2} \tag{21}
\end{equation*}
$$

We observe that

$$
\begin{equation*}
Z\left(g_{\alpha}\right)=Z(f) \cup\left\{x \in \bar{I} \backslash Z\left(f_{2}\right): f_{1}(x) / f_{2}(x)=-\alpha\right\} \tag{22}
\end{equation*}
$$

The second set on the right-hand side of (22) can be of positive measure for at most countably many α. Therefore, in view of (20) and (22), there exists an α^{\prime} such that $\mu\left(Z\left(g_{\alpha^{\prime}}\right)\right)=0$. By (21), $g_{\alpha^{\prime}}$ satisfies (3) whenever f does. An application of Lemma 1 to the function $g_{\alpha^{\prime}}$ completes the proof.

We remark that the assumptions concerning f cannot be relaxed neither in Lemma 1 nor in Theorem 1. In fact, if f were not Riemann-integrable, we could follow de Bruijn and Post [1] and construct a u.d. sequence $\left(x_{n}\right)$ for which there would not be convergence on the left-hand side of (3) for $a=0$ and $b=1$. Assumptions (4) and (20) cannot be relaxed, either. This is shown in Example 1 below.

EXAMPLE 1. Suppose that $f: \bar{T} \rightarrow \mathbf{C}$ is Riemann-integrable and $\mu(Z(f))>0$. For $k=1,2, \ldots$, and $i=1, \ldots, k$, we denote

$$
\begin{equation*}
Z_{k, i}=\left[\frac{i-1}{k}, \frac{i}{k}\right) \cap Z(f) \tag{23}
\end{equation*}
$$

and put

$$
y_{(k-1) k / 2+i}= \begin{cases}\frac{i-1}{k} & \text { if } Z_{k, i}=\emptyset \tag{24}\\ \text { an element of } Z_{k, i} \text { if } Z_{k, i} \neq \emptyset\end{cases}
$$

It is easy to show that $\left(y_{n}\right), n=1,2, \ldots$, is u.d., and so $\left(y_{n}\right)$ satisfies (3).
Now let $z<1$ be an arbitrarily fixed element of $Z(f)$. For $n \geq 1$, we define

$$
x_{n}=\left\{\begin{array}{l}
z \text { if } y_{n} \in Z(f) \tag{25}\\
y_{n} \text { if } y_{n} \in I \backslash Z(f) .
\end{array}\right.
$$

By (23), (24), and (25), for every $n \geq 1$, we have $f\left(x_{n}\right)=f\left(y_{n}\right)$. Thus, the sequence $\left(x_{n}\right)$ satisfies (3) for every subinterval $[a, b) \subset I$. However, $\left(x_{n}\right)$ is not u.d. To see this, we choose a positive number $\varepsilon<\min (\mu(Z(f)), 1-z)$. Since (24) implies

$$
\varliminf_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{Z(n)}\left(y_{n}\right) \geq \mu(Z(f))
$$

it follows that

$$
\left\{\begin{align*}
\frac{\lim }{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \chi_{[z, z+\varepsilon)}\left(x_{n}\right) & \geq \frac{\lim _{N \rightarrow \infty}}{} \frac{1}{N} \sum_{n=1}^{N} \chi_{Z(f)}\left(y_{n}\right) \tag{26}\\
& \geq \mu(Z(f))>\varepsilon .
\end{align*}\right.
$$

Now (26) is contradictory with (1), and therefore $\left(x_{n}\right)$ is not u.d.

3. GENERALIZED DISCREPANCY

Theorem 1 allows us to generalize the classical notion of discrepancy of a sequence.

Given any Riemann-integrable function $f: I \rightarrow \mathbf{C}$ and any sequence $\omega=\left(x_{n}\right)$, $n=1,2, \ldots$, of points in I, we denote

$$
\begin{equation*}
R_{N}(a, b ; f)=\frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right) \chi_{[a, b)}\left(x_{n}\right)-\int_{a}^{b} f(x) d x \tag{27}
\end{equation*}
$$

for all a and b with $0 \leq a<b \leq 1$.
Let

$$
\begin{equation*}
D_{N}(\omega ; f)=\sup _{0 \leq a<b \leq 1}\left|R_{N}(a, b ; f)\right| \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{N}^{*}(\omega ; f)=\sup _{0 \leq b \leq 1}\left|R_{N}(0, b ; f)\right| \tag{29}
\end{equation*}
$$

When $f(x) \equiv 1$ in I, the quantities (28) and (29) are the classical discrepancies $D_{N}(\omega)$ and $D_{N}^{*}(\omega)$, respectively (cf. [3], pp. 88-90). It is a well-known fact that the sequence ω is u.d. if and only if $\lim _{N \rightarrow \infty} D_{N}(\omega)=0$ (or $\lim _{N \rightarrow \infty} D_{N}^{*}(\omega)=0$). It appears that $D_{N}(\omega ; f)$ and $D_{N}^{*}(\omega ; f)$ with f satisfying $\mu(Z(f))=0$ possess the same property, and so these quantities may be called f-discrepancies of the sequence ω. Using similar arguments as in [3], p. 89, the following theorem can be proved.

THEOREM 2. Let $f: \bar{I} \rightarrow \mathbf{C}$ be a Riemann-integrable function such that $\mu(Z(f))=0$. The sequence $\omega=\left(x_{n}\right), n=1,2, \ldots$, of numbers in I is u.d. if and only if $\lim _{N \rightarrow \infty} D_{N}(\omega ; f)=0$.
corollary 1. Theorem 2 is true if one replaces $D_{N}(\omega ; f)$ by $D_{N}^{*}(\omega ; f)$.
PROOF. This is an immediate consequence of the following inequality:

$$
D_{N}^{*}(\omega ; f) \leq D_{N}(\omega ; f) \leq 2 D_{N}^{*}(\omega ; f)
$$

As an example of application of f-discrepancy $D_{N}^{*}(\omega ; f)$ we give a version of the well-known Koksma inequality (see e.g. [3], p. 143).

THEOREM 3. Let $f, g: I \rightarrow \mathbf{R}$ be Riemann-integrable and g be of bounded variation $V(g)$. If $\omega=\left(x_{n}\right), n=1,2, \ldots, N$, is a finite sequence of N points in I, then

$$
\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x_{n}\right) g\left(x_{n}\right)-\int_{0}^{1} f(x) g(x) d x\right| \leq(V(g)+|g(1)|) D_{N}^{*}(\omega ; f)
$$

This inequality can be proved along the same lines as Koksma's.

REFERENCES

1. Bruijn, N.G. de and K.A. Post - A remark on uniformly distributed sequences and Riemannintegrability, Ned. Akad. Wetensch. Proc. Ser. A 71 (=Indag. Math. 30), 149-150 (1968).
2. Klambauer, G. - Real Analysis, Amer. Elsevier Publ. Co., 1973.
3. Kuipers, L. and H. Niederreiter - Uniform Distribution of Sequences, Wiley, New York, 1974.
4. Pólya, G. and G. Szegö - Aufgaben und Lehrsätze aus der Analysis I, II, 3. Aufl. Grundlehren d. math. Wiss., Band 19, Springer-Verlag, 1964.
5. Weyl, H. - Über die Gleichverteilung von Zahlen mod. Eirs, Math. Ann. 77, 313-352 (1916).
