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ABSTRACT 
Let f be a complex-valued Riemann-integrable function defined on the interval [0, l] and vanish- 

ing on a set of Lebesgue measure zero. It is proved that a sequence (x”), n = I, 2, . . . , of points in [O, 1) 
is uniformly distributed if and only if for every subintervaI [a, 6) of [0,1) we have 

where ~[~,b) is the characteristic function of [a, b). The assumptions onfcannot be relaxed. Related 
notions of discrepancy of a sequence are defined and appropriate criteria for uniform distribution 
are given. 

1. INTRODUCTION 
A sequence (xn), n= 1,2, . . . . of points in I= [0, 1) is said to be uniformly 

distributed (u.d.) if for every subinterval [a, b) CI we have 

where xlu,b) denotes the characteristic function of [a, b). It is the well-known fact 
showed by Weyl [5] that the sequence (x,J is u.d. if and only if for every 
complex-valued Riemann-integrable function f defined on the closed interval 
T= [0, l] we have 
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Let a Riemann-integrable functionJ$+C be fixed. It follows from (2) that 
for every subinterval [a, b) c 1 

(3) 

whenever the sequence (xn) is u.d. However, the converse need not be true as 
can easily be seen by considering the functionf(x) =O in 1. Clearly, the converse 
holds for f(x) = 1 in 7. Another example is f(x) =x in f (see 141, II Abschn., 
Aufg. 163). 

It is the aim of the present note to give a condition on f under which any 
sequence (xn) satisfying’ (3) for all subintervals [o, b) c I is u.d. Additionally, 
related notions of discrepancy of a sequence are discussed in some aspects. In 
our considerations we shall confine ourselves to the case of Riemann-integrable 
functions, Iffis not Riemann-integrable, then there exists, by the theorem of de 
Bruijn and Post [l], a u.d. sequence (xn) for which the limit on the left-hand 
side of (3) does not exist for a = 0 and b = 1, and so in this case our results need 
not be true. 

2. A CONVERSE TO (3) 

Let p be the Lebesgue measure on 1 For every function Jr-C, we denote 
Z(J) = {XE fif(x) = 0). First we shall consider the case of a real-valued 
function f. 

LEMMA 1. Let f:r+ R be Riemann-integrable and 

(4) PC(W)) = 0. 

The sequence (xn), n = 1,2, . . . , of points in Iis u.d. if and only if for every sub- 
interval [a, 6) c I condition (3) is satisfied. 

PROOF. The necessity follows immediately from (2), so we need only show 
the sufficiency . 

Let D be the set of all discontinuity points off and let Z= Z(J). For every 
integer m 11, we denote 

and 

where wdf;x) = i&f(v) - lim fi) 
Y-+X Y-X 

. Clearly, 

(7) z= fjzm 
t?l=l 
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and 

(8) D= (Jo,. 
WI=1 

Next, for every m 2 1, we put 

(9) F,,,=&,UDm, 

where for any set A ~1, A is the closure of A. Sincefis Riemann-integrable, it is 
continuous almost everywhere, and so p(D) = 0, Moreover, Zm c 2, c Zm UD. 
These facts together with (4), (7), (8), and (9) yield 

(10) lim p(F,,,) = lim ~(2,) = 0. 
vl-OD m-oa 

Now let [a, b) be an arbitrary subinterval of I, It follows from (10) that given 
any E, 0 <E< (b - a)/4, there exists an integer mo such that for every m 2 mo we 
have 

(11) M’m) -=c E. 
Let m 2 max (mo, l/e) be fixed, The set D, is known to be closed (see e.g. [Z], 

p. 75). Therefore F,,, is a compact set. It follows that there exists a finite open 
cover (ci, di), i= 1,2, . . ., I, of F, such that 

i (d; - Ci) < 2E. 
i=l 

If we denote 

(12) &=I\ (J [c;,di), 
i=l 

then 

(13) ,u(Rm) > 1 - 2~. 

By (6) and (9), Rm can be divided into pairwise disjoint intervals [ui, bi), 
i= 42, . . . . k, each of length at most E, such that 

(14) Mi-l?Zi<l/f?Z2, 

where 

mj = i;fb,, f(X), Mi = sup f(X), 
x E bi, b,) 

for i= 1,2, . .., k. Besides, we may assume that ai<ai+ 1, for i= 1,2, . . . . k- 1. It 
follows that there exist indices p and q, 1 sp< q s k, such that 

(15) (.J [ai, bi) c [a, b) 
i=p 

and 

(16) ZE (bi-ai)>b-a-J&. 
i=p 
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Let i,psisq, be fixed. It follows from (5), (9), and (12) that \miI 1 l/m and 
IiWi 1 L l/m. Thus, in view of (14),fis of constant sign on [ai, bi). First suppose 
that f is positive on [ai, bi). Since Mi L 1 /m and m ~1 /E, by (14) we have 

(17) ZP- 
1 

-21 
1 

----11-E. 
i A4i??12 m 

Now, for every integer Nz 1, we have 

Dividing both sides of the above inequality by N, letting N+m, and using (3) 
and (17), we get 

(18) 22 (6i-@) I 
1(1 -E)(bi-QQi). 

In the same way it can be shown that (18) is true also when f is negative on 
[Qi,bi). One needs only interchange mi and Mi in the above consideration and 
use the inequality mis - l/m in order to get (17). 

Summing (18) from i=p to i=q, and using (15) and (16), we obtain 

2 2 (1 - &)(bi-QQi) 
i=p 

2 (1 -&)(b-P--4&). 

Since E can be taken arbitrarily small, we arrive at 

(19) N-.m N i, itb,b)(xd~b - a. lim -!- 

Applying (19) to the intervals [0, a) and [b, l), we obtain (1). The proof of the 
lemma is finished. 

THEOREM 1. Let fiT+C be Riemann-integrable and 

(20) PGW)~ = 0. 

The sequence (xn) is u.d. if and only if for every subinterval [a, @cI the 
condition (3) is satisfied. 
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PROOF. As in Lemma 1, we need only show the sufficiency. 
Let fl and f2 be the real and imaginary parts off, respectively. For any real 

number a we denote 

(21) ga =fi + af2. 

We observe that 

(22) z(g*)=ZCf)U{xEJ\ZVi):fi(X)/~(X)= -a]. 

The second set on the right-hand side of (22) can be of positive measure for at 
most countably many a. Therefore, in view of (20) and (22), there exists an a’ 
such that y(Z(gaf)) =O. By (21), ga’ satisfies (3) wheneverfdoes. An application 
of Lemma 1 to the function g,t completes the proof. 

We remark that the assumptions concerning f cannot be relaxed neither in 
Lemma 1 nor in Theorem 1. In fact, iffwere not Riemann-integrable, we could 
follow de Bruijn and Post [l] and construct a u.d. sequence (xn) for which there 
would not be convergence on the left-hand side of (3) for a = 0 and b = 1. 
Assumptions (4) and (20) cannot be relaxed, either. This is shown in Example 1 
below. 

EXAMPLE 1. Suppose that fi1-X is Riemann-integrable and ~(Zdf)) >O. 
For k= 1,2, . . . . and i= 1, . . . . k, we denote 

(23) zk,i= [ > 
Y,$ f-lZ(f) 

and put 

i- 1 

(24) Y(k- l)k/2+i = 
k 

if Zk,i=& 

1 an element of Zk, i if zk, i # 0. 

It is easy to show that @,J, n = 1,2, , .,, is u.d., and so tj@ satisfies (3). 
Now let z < 1 be an arbitrarily fixed element of Z(J). For n r 1, we define 

(25) XII = I 
z if yn E Z(j), 
ytf if yn EI\ Z(f). 

By (23), (24), and (29, for every n L 1, we havef(Xn) =f&). Thus, the sequence 
(G) satisfies (3) for every subinterval [a, b) CL However, (xn) is not u.d. To see 
this, we choose a positive number E c min (p(Zcf)), 1 -z). Since (24) implies 
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it follows that 

lim -!- 
N 

C x[z,z+E)(xn)L lim A- 
(26) 

N~oo N n=l ? xa!-on) N~m N n=l 

Now (26) is contradictory with (l), and therefore (x,J is not u.d. 

3. GENERALIZED DISCREPANCY 

Theorem 1 allows us to generalize the classical notion of discrepancy of a 
sequence. 

Given any Riemann-integrable function 31-C and any sequence m = (xn), 
n= 1,2, . . . . of points in I, we denote 

(27) h@, b;f) = + .;, f(xd&b)(xd - i f(x)& a 

for all Q and b with O<a<b~ 1. 
Let 

(28) DN(cu;f) = SUP I h@, w-1 I 
OSQ<bll 

and 

(29) qyfD;f) = 051111 I MO* W) I* 

When f(x)3 1 in 1, the quantities (28) and (29) are the classical discrepancies 
DN(co) and D$(u), respectively (cf. [3], pp. 88-90). It is a well-known fact that 
the sequence u) is u-d. if and only if limN+,, DN(w) = 0 (or limN-+, D$m) = 0). 
It appears that DN(m;f) and Daw;f) with f satisfying ,u(Zcf)) = 0 possess the 
same property, and so these quantities may be called f-discrepancies of the 
sequence a. Using similar arguments as in [3], p. 89, the following theorem can 
be proved. 

THEOREM 2. Let f:f-+C be a Riemann-integrable function such that 
p(Z(f)) = 0. The sequence cc) = (xn), n = 1,2, . . ., of numbers in I is u.d. if and 
only if limhr-+, DN(w;f) = 0. 

COROLLARY 1. Theorem 2 is true if one replaces DN(ti;;f) by D$(a;f). 

PROOF. This is an immediate consequence of the following inequality: 

qqw;f) I DN(Cr);f) I 2q(w;f). 

As an example of application of f-discrepancy D$w;f) we give a version of 
the well-known Koksma inequality (see e.g. [3], p. 143). 
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THEOREM 3. Let f,g:I+R be Riemann-integrable and g be of bounded 
variation V(g). If cr) = (xn), n = 1,2, . . . . iV, is a finite sequence of N points in 1, 
then 

This inequality can be proved along the same lines as Koksma’s. 
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