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Summary

Succulent water storage is a prominent feature among

plants adapted to arid zones, but we know little about how
succulence evolves and how it is integrated into organs

already tasked with multiple functions. Increased volume
in succulent leaves, for example, may result in longer trans-

port distances between veins and the cells that they supply,
which in turn could negatively impact photosynthesis [1–4].

We quantified water storage [5] in a group of 83 closely
related species to examine the evolutionary dynamics of

succulence and leaf venation. In most leaves, vein density
decreased with increasing succulence, resulting in signifi-

cant increases in the path length of water from veins to evap-
orative surfaces. The most succulent leaves, however, had a

distinct three-dimensional (3D) venation pattern, which
evolved 11–12 times within this small lineage, likely via

multiple developmental pathways. 3D venation ‘‘resets’’
internal leaf distances, maintaining moderate vein density

in extremely succulent tissues and suggesting that the evo-
lution of extreme succulence is constrained by the need to

maintain an efficient leaf hydraulic system. The repeated

evolution of 3D venation decouples leaf water storage from
hydraulic path length, facilitating the evolutionary explora-

tion of novel phenotypic space.

Results

Succulence and Vein Density

We used comparative phylogenetic methods to investigate
relationships between leaf succulence and vein density in
the Portulacineae + Molluginaceae lineage, an angiosperm
clade prominent in semiarid to arid regions throughout the
subtropics that shows considerable variation in leaf water
storage [6] (see Table S2 available online). We inferred the
phylogenetic relationships of 240 taxa of Portulacineae +
Molluginaceae using multiple molecular markers and the
Bayesian inference software BEAST v1.6.1 [7] (Table S1). To
estimate succulence, we measured leaf saturated water con-
tent (SWC) [5] for 83 species representing the morphological
and phylogenetic diversity of this group. Functional anatom-
ical traits were then measured on a subset of 42 of these
species (Table S2). We focused on vein density because the
leaf venation network performs two critical functions: veins
replenish leaf water lost through transpiration, and they also
transport newly generated sugars from photosynthetic cells
to other parts of the plant. High vein density reduces the
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resistance to water flow through the leaf by decreasing the
distance between a vein and the leaf’s internal evaporative
surface, and an efficient hydraulic transport system is critical
to photosynthesis [2–4]. We measured multiple anatomical
traits that estimate the path length of water flow from vein to
transpiring surface (Supplemental Experimental Procedures),
as well as interveinal distance (IVD) as a more direct measure
of vein density [1, 8]. In addition to the hydraulic path, we
also investigated variation in the phloem-loading (i.e., photo-
synthetic sugar transport) path length as a function of leaf suc-
culence. Because intercellular sugar transport occurs either
mostly or entirely through the symplast [9], the greatest resis-
tance to flow occurs at the cell-to-cell boundary. Therefore, we
estimated the path length for sugar transport by counting the
average number of cells from the subepidermal photosyn-
thetic cell layer to the nearest vein.
Because vein density is modeled to scale inversely with leaf

thickness [1], we predicted that increased succulence will lead
to lower vein densities and increased resistance to both water
and sugar transport throughout the leaf. Using phylogenetic
regression models, we initially found that most of the pre-
dicted relationships between SWC and measures of vein den-
sity, the hydraulic path, and the sugar transport path were
either marginally significant or nonsignificant (Figure 1, all
points; Table 1, ‘‘Main Factor Only’’ column). However, during
the anatomical surveys, we noted that the most highly succu-
lent taxa tended to have venation systems ramifying in three
dimensions (3D). This differs from most vascular plant leaves,
which have venation systems restricted to a single plane (2D)
[11]. We identified two distinct arrangements of veins in the
3D taxa (hereafter ‘‘type I’’ and ‘‘type II’’ 3D venation), sug-
gesting that 3D venation can evolve via multiple develop-
mental pathways (Figures 2A and S2). We note that type I 3D
leaves are generally round in cross-section, whereas type II
3D leaves tend to be more oblong.
Factoring variation due to venation type (2D versus 3D) out of

the regression models resulted in stronger correlations
between SWC and IVD, as well as with all of the hydraulic
path measures (Figures 1A and 1B, solid regression lines;
Table1, ‘‘VenationTypeFactoredOut’’ column). Inotherwords,
IVDandhydraulic path lengthboth increaseas a functionof leaf
succulence in taxa with 2D venation, but this relationship is
disrupted in the most succulent species by 3D venation. In
contrast, there was no significant relationship between leaf
SWC and the number of cells intervening between veins and
subepidermal cells, suggesting that increased succulence did
not limit the movement of sugars into the vein system (Figures
1C and S1). This is further supported by positive correlations
between leaf SWC and cell size, suggesting that increases in
succulence and leaf thickness are achieved through changes
in cell size rather than cell number (Figure S1) [8].

Evolution of Three-Dimensional Leaf Venation
To estimate the number and polarity of transitions between 2D,
3D type I, and 3D type II venation, we used stochastic mapping
of ancestral trait values over a sample of 1,000 alternative phy-
logenies from the Bayesian posterior tree distribution. This
approach revealed that 3D venation evolved independently
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Figure 1. Relationship of Leaf Saturated Water Content to Functional Anatomical Traits

(A) Log leaf saturated water content (SWC) versus log interveinal distance (IVD), a measure of total venation density.

(B) Log leaf SWC versus log distance from vein to nearest intercellular airspace (DIAS), a measure of hydraulic path length.

(C) Log leaf SWC versus log number of cells between veins and epidermis, a measure of the sugar-loading path. VB, vascular bundle.

White circles represent taxa with 2D venation; black circles represent taxawith 3D venation. Bars are61 SEM. Solid line in (A) and (B) indicates phylogenetic

regression fit with variation attributed to venation type factored out. See also Figure S1.
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multiple times in Portulacineae, with eight likely origins of type
I 3D venation, three likely origins of type II 3D, and most likely
no reversals to 2D and no transitions between the two 3D types
(Figures 2B and S3). Increases in SWC were strongly corre-
lated with the evolution of 3D venation (irrespective of 3D
type) in the 83-taxon data set (phylogenetic ANOVA, p =
0.005) (Figure 2B) and the 42-taxon anatomical data set (phylo-
genetic ANOVA, p = 0.001).

We modeled the evolution of SWC on the posterior tree
sample under a range of scenarios: a drift or fluctuating selec-
tion (Brownian motion) model, an Ornstein-Uhlenbeck (OU)
selection model with evolution toward a single-trait optimum
(OU1), and an OU model with different selective optima for
2D and 3D venation (OU2). The OU2 model fit the data signifi-
cantly better than Brownian motion and OU1models (Table 2),
providing support for the hypothesis that evolution of 3D
Table 1. Significance for Phylogenetic Generalized Least Squares

Regression Models Fitting Leaf Saturated Water Content as a Function

of Leaf Anatomical Traits

Model Main

Factor

Frequency p % 0.05,

Main Factor Only

Frequency p % 0.05,

Venation Type Factored Out

IVD 0.549* 1.0*

DIAS 0.218 0.701*

DCELL 0.703* 1.0*

DEPI 0.787* 0.921*

Leaf thickness 0.876* 0.068

Phloem path 0 0

All models fit with Brownian motion. ‘‘Main Factor Only’’ indicates single-

predictor-variable models (e.g., SWC w IVD). ‘‘Venation Type Factored

Out’’ indicates regression of residuals from the model (SWC w venation

type) on the main factor. Because the regressions were performed on a

posterior sample of Bayesian trees, the frequency of trees for which the

model had a p value of 0.05 or less is shown, with a frequency of at least

0.5 taken as a conservative cutoff for significance [10]. Asterisks indicate

p % 0.05 in at least 50% of posterior tree sample. IVD, interveinal distance;

DIAS, average distance from vein to intercellular air space; DCELL, average

distance from chlorenchyma cells to nearest vein; DEPI, average distance

from vein to epidermis. DIAS, DCELL, and DEPI are all estimates of the extra-

xylem hydraulic path (see Supplemental Experimental Procedures).
venation increases accessibility of the upper range of the
SWC phenotype.

Discussion

Succulence and Vein Density
Leaves are the primary sites of photosynthesis in most plants,
and capturing light and carbon for the production of sugars
comes with the significant cost of losing water to transpiration.
Balancing these trade-offs efficiently requires tight functional
integration within the leaf. The evolution of a novel trait such
as pronounced leaf succulence fundamentally alters geometry
and may potentially disrupt this integration by resulting in
greater resistances within the leaf to transport of water and
photosynthate, or to diffusion of CO2 [2–4, 12]. For example,
recentmodelingworkhaspredicted thatmaximum leafhydrau-
lic flow saturates at interveinal distances roughly equal to the
distance from vein to epidermis [1]. Increased leaf thickness
therefore negates the hydraulic benefits of dense leaf venation
and predicts that vein density should scale inversely with leaf
succulence. It also predicts an upper limit to leaf thickness
that would be set by the minimal functional vein density. We
found support for these predictions in 2D-veined taxa; vein
density was lower in more succulent leaves, resulting in longer
hydraulic paths between veins and photosynthetic surfaces.
However, the repeated evolution of 3D venation allowed for
further increases in succulencewhilemaintainingmoderate hy-
draulicpath lengths, providingevidence for a trade-off between
water storage and hydraulic function as well as its solution.
The apparent sensitivity of succulent leaves to increasing

hydraulic path length may be surprising, given that locally
stored water should serve to buffer the transpiration stream,
decreasing dependence on water uptake from soil as has
been shown in other taxa with succulent leaves and stems
[13–17]. If hydraulics are limiting in highly succulent 2D leaves
to the extent that they drive the evolution of internal vascular
rearrangement, this indicates that stored water may not be
particularly important in succulent-leaved Portulacineae in
supporting daily photosynthetic gas exchange, at least relative
to the contribution of water obtained from the soil.
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Figure 2. Evolution of Leaf Venation and

Saturated Water Content

(A) Schematic drawings of leaf venation types in

cross-section. Blue half-circles represent xylem;

pink half-circles represent phloem. Note inver-

sion of abaxial vascular bundles in 3D type I

leaves versus consistent bundle orientation in

3D type II leaves. Arrows indicate direction of

most frequently reconstructed evolutionary tran-

sitions. White, gray, and black boxes correspond

to distribution of each venation type as shown by

pie graphs in Figure 2B. See also Figure S2.

(B) Ultrametric tree of the 83-taxon data set from

Portulacineae + Molluginaceae and outgroups

showing mappings for leaf SWC and venation

type. Branches are colored according to the re-

constructed ancestral trait value of SWC at the

subtending node. Posterior probabilities are indi-

cated above nodes; maximum-likelihood boot-

strap values are indicated below. Pie graphs at

nodes show maximum-likelihood trait recon-

structions for venation type. See also Figure S3.
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3D venation has been reported previously from leaves in a
range of angiosperm functional groups, including highly
succulent (Portulacineae [18], Aloe [19], Kalanchoe [20]), halo-
phytic (Amaranthaceae [21]), and sclerophyllous taxa (Hakea
[22]), as well as grasses (Ellisochloa [23]). Gains of 3D venation
in such an ecologically varied array of plants suggest that it is
not associated with succulence per se but may rather be a
general solution to any selective regime favoring thicker or
rounded leaves in which hydraulic resistance may become
limiting.

Geometry and Development of Succulence
It is possible that the association of 3D venationwith high SWC
is a byproduct of selection for a particular leaf geometry rather
than a functional solution to hydraulic constraints. Maximum
storage capacity will generally be
achieved by minimizing the leaf surface
area to volume ratio, so the most succu-
lent leaves by definition will tend to be
terete (i.e., round in cross-section)
rather than planate. A terete ‘‘leaf’’ could
be achieved by dispensing with true
leaves entirely and replacing them with
determinate stem segments (‘‘phyllo-
clades’’). We can confirm the homology
of the terete organs observed here with
leaves, however, by their position on
the shoot subtending axillary buds, as
would be expected for true leaves. Alter-
natively, a terete leaf could develop by
disrupting the abaxial identity of the
leaf so that the entire surface is homolo-
gous to the adaxial side; this would
result in a ring of vascular bundles, the
lower half of which would be inverted
with respect to their normal orientation.
Such terete, adaxialized leaves, albeit
with poorly organized vasculature,
have been induced in mutant or trans-
genic Arabidopsis lines with overex-
pression of adaxial-identity-specifying
ARP or HD-ZIPIII family genes [24, 25].
An adaxialization phenotype does match the pattern (type I)
observed in most of the independent origins of 3D venation, in
which leaves are terete and abaxial bundles show an inverted
orientation relative to the leaf (Figures 2A and S2). However, at
least three independent origins of 3D venation show a different
pattern (type II), in which leaves are more oblong in cross-
section, with veins that ramify in three dimensions without
altering the orientation of xylem and phloem strands (Figures
2A and S2). These different routes argue against 3D venation
as simply a developmental artifact of making a terete leaf
and instead imply that high vein density is itself functionally
advantageous. We also note that amphistomaty (i.e., stomata
occurring equally on both sides of the leaf) is the general con-
dition in the Portulacineae + Molluginaceae clade [26] and is
widespread in plants inhabiting high-light environments [27].



Table 2. Comparison of Brownian Motion and Ornstein-Uhlenbeck

Models for the Evolution of Leaf Saturated Water Content

Model Log Likelihood AICc Rate a q (2D/3D)

Brownian 275.93 156.03 1.44 NA 2.60

OU1 265.33 137.01 2.87 3.26 2.77

OU2 261.07 130.71 3.50 4.95 2.61/3.31

Values shown are medians of parameters obtained from fitting all models

over the posterior tree distribution. Brownian motion models a ‘‘random

walk’’ of trait evolution across the phylogenetic tree. OU1 models selection

toward a single-trait optimum for all taxa, and OU2models distinct selective

optima for taxa with 2D versus 3D venation. AICc, Akaike information

criterion with sample size correction; a, strength of selection parameter;

q, selective optimum (in the case of Brownian motion, this is the trait

mean across the tree); OU1, Ornstein-Uhlenbeck model with a single selec-

tive optimum; OU2, Ornstein-Uhlenbeck model with separate selective

optima for 2D and 3D venation types, with internal nodes assigned a sto-

chastically simulated value for each tree in the posterior sample.
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If type I 3D venation does evolve through leaf adaxialization,
amphistomaty may be an evolutionary prerequisite for viability
of this phenotype.

The two cases in this study that potentially associate an
origin of 3D venation with a reduction of leaf SWC are in
Maihuenia and Portulaca (Figure 2B). Maihuenia are cushion-
forming leafy cacti with small, terete leaves. Despite their
position as sister to the diverse Cactoideae clade [28], they
likely represent a highly specialized life form, and it is possible
that their 3D venation is the signature of a lost ancestor with
larger and more succulent leaves. Portulaca are distinguished
among Portulacineae in having the C4 photosynthetic path-
way, and 3D venation may present distinct advantages in
regard to the significant anatomical alterations associated
with Kranz anatomy. A high leaf bundle sheath:mesophyll ratio
has been inferred as a precursor trait for the evolution of C4

photosynthesis [29–31], and the evolution of 3D venation in
Portulaca may have been co-opted for this divergent ecolog-
ical strategy. It is noteworthy that diverse varieties of 3D vena-
tion have been reported in other C4 taxa (e.g., Amaranthaceae
[21], Eleocharis [32]).

Concluding Remarks

Multiple transitions to 3D venation appear to represent a solu-
tion to a generalized transport problem imposed by evolu-
tionary changes in organ geometry, namely, the shift from
nearly planate to three-dimensional leaves as a function of
increasing water storage. Such basic biophysical constraints
are not unique to plants; similar transitions can be found in
the multiple repeated shifts between asconoid, syconoid,
and leuconoid forms as a function of size in calcareous
sponges (Calcarea) [33]. Previous work in highly succulent
plants has hypothesized that the evolution of extraxylary
vascular bundles in stems of cacti [34–36] and Adenia [37]
facilitated the incredible diversity in growth form in these line-
ages, in particular allowing the evolution of massive forms
such as barrel and columnar cacti. Succulent stems have rela-
tively large volumes andwould be expected to be vulnerable to
the negative effects of higher transport resistances with large
increases in size. We found strong evidence for a similar
pattern in leaves, despite their smaller size. The evolution of
novel arrangements in transport tissues appears to be a gen-
eral solution in all of these systems, allowing for the evolu-
tionary exploration of otherwise inaccessible phenotypic
space.
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