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1. Introduction

Ulam’s Reconstruction Conjecture [17] (see [2,3]) asserts that two graphs G and G’ on the same
finite set V of v vertices, v > 3, are isomorphic provided that the restrictions Gx and G’“( of G and
G’ to the (v — 1)-element subsets of V are isomorphic. If this latter condition holds for the k-element
subsets of V for some k, 2 < k < v — 2, then, as it has been noticed several times, G and G’ are
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identical. This conclusion does not require the finiteness of v nor the isomorphy of Gk and G/rK, it
only requires that Gx and G/“( have the same number of edges for all k-element subsets K of V,

simply because the adjacency matrix of the Kneser graph KG(2, k 4+ 2) is non-singular (see Section 2).
In this paper we look for similar results if the conditions on the restrictions Gk and G/m are given

up to complementation, that is if G/“( is isomorphic to Gk or to its complement C“(, or if G/m has

the same number of edges than Gk or 5“(. If the first condition holds for all k-element subsets K
of V, we say that G and G’ are k-hypomorphic up to complementation and, if the second holds, we say
that G and G’ have the same number of edges up to complementation. We say that G is k-reconstructible
up to complementation if every graph G’, k-hypomorphic to G up to complementation, is isomorphic
to G or its complement.

We show first that the equality of the number of edges, up to complementation, for the k-vertices
induced subgraphs suffices for the equality up to complementation provided that 4 <k #7 and v is
large enough (Theorem 2.10). Our proof is based on Ramsey’s theorem for pairs [15].

Next, we give partial description of the set S of ordered pairs (v, k) such that two graphs G and
G’ on the same set of v vertices are equal up to complementation whenever they are k-hypomorphic
up to complementation.

Theorem 1.1.

(1) Let v < 2, then (v, k) e Siffk e N.
(2) Let v > 2 then (v,k) € S implies4 <k <v —2.
() Ifv=2(mod4), (v,k) e Siffa<k<v-—2.
(b) If v=0 (mod 4) or v =3 (mod 4) then (v,k) € S implies k < v — 3 for infinitely many v and
4 < k< v—3implies (v,k) € S.
(c) If v=1 (mod 4) then (v,k) € S implies k < v — 4 for infinitely many v and 4 <k < v — 4 implies
(v, k) eS.

Our proof for membership in S is a straightforward application of properties of incidence matrices
due to D.H. Gottlieb [7], W. Kantor [10] and R.M. Wilson [19]. It is given in Section 3. Constraints on &
are given in Section 4.

Our motivation comes from the following problem raised by P. Ille: find the least integer k such
that every graph G having a large number v of vertices is k-reconstructible up to complementation.
With Theorem 1.1 we show that k =4 (see Section 2).

A quite similar problem was raised by J.G. Hagendorf (1992) and solved by ].G. Hagendorf and
G. Lopez [8]. Instead of graphs, they consider binary relations and instead of the complement of a
graph, they consider the dual R* of a binary relation R (where (x, y) € R* if and only if (y,x) € R);
they prove that 12 is the least integer k such that two binary relations R and R’, on the same large
set of vertices, are either isomorphic or dually isomorphic provided that the restrictions R and R’r K
are isomorphic or dually isomorphic, for every k-element subsets K of V.

2. Preliminaries

Our notations and terminology follow [1]. A graph is an ordered pair G := (V, ), where £ is a
subset of [V]?, the set of pairs {x, y} of distinct elements of V. Elements of V are the vertices of G
and elements of £ its edges. If K is a subset of V, the restriction of G to K, also called the induced
graph on K is the graph Gk := (K, [K12NE). If K=V \ {x}, we denote this graph by G_x. The
complement of G is the graph G := (V,[V]?\ £). We denote by V(G) the vertex set of a graph G,
by E(G) its edge set and by e(G) := |E(G)| the number of edges. If {x, y} is an edge of G we set
G(x, y) = 1; otherwise we set G(x, y) = 0. The degree of a vertex x of G, denoted d¢ (), is the number
of edges which contain x. The graph G is regular if dg(x) =dg(y) for all x,y e V. If G, G’ are two
graphs, we denote by G ~ G’ the fact that they are isomorphic. A graph is self-complementary if it is
isomorphic to its complement.
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2.1. Incidence matrices and isomorphy up to complementation

Let V be a finite set, with v elements. Given non-negative integers t, k, let W be the (;) by (;)
matrix of 0’s and 1's, the rows of which are indexed by the t-element subsets T of V, the columns
are indexed by the k-element subsets K of V, and where the entry W;(T,K) is 1if T C K and is 0
otherwise.

A fundamental result, due to D.H. Gottlieb [7], and independently W. Kantor [10], is this:

Theorem 2.1. For t < min (k, v — k), W has full row rank over the field Q of rational numbers.

If k:= v —t then, up to a relabelling, W is the adjacency matrix A, of the Kneser graph KG(t, v),
graph whose vertices are the t-element subsets of V, two subsets forming an edge if they are disjoint.
An equivalent form of Theorem 2.1 is:

Theorem 2.2. A; y is non-singular for t < %

Applications to graphs and relational structures where given in [6] and [13].
Theorem 2.1 has a modular version due to R.M. Wilson [19].

Theorem 2.3. For t < min (k, v — k), the rank of W modulo a prime p is

Z(Y)‘Cl)

where the sum is extended over those indices i, 0 < i < k, such that p does not divide the binomial coefficient

(7)-

In the statement of the theorem, (fl) should be interpreted as zero.

We will apply Wilson’s theorem with t = p =2 for k=0 (mod 4) and for k=1 (mod 4). In the
first case the rank of Wy (mod 2) is (5) — 1. In the second case, the rank is (5) — v.

Let us explain why the use of these results in our context is natural.

Let X1, ..., X; be an enumeration of the 2-element subsets of V; let K1, ..., K; be an enumeration
of the k-element subsets of V and W, be the matrix of the 2-element subsets versus the k-element
subsets. If G is a graph with vertex set V, let w; be the row matrix (g1,..., gr) where g; =1 if X;

is an edge of G, 0 otherwise. We have wgWy = (e(Gk,), ...,e(Gk,)). Thus, if G and G’ are two
graphs with vertex set V such that Gk and G,rK have the same number of edges for every k-element
subset of V, we have (wg — wg/)W5 = 0. Thus, provided that v > 4, by Theorem 2.1, wg — wg =0
that is G =G'.

This proves the observation made at the beginning of our introduction. The same line of proof
gives:

Proposition 2.4. Let t < min (k, v — k) and G and G’ be two graphs on the same set V of v vertices. If G and
G’ are k-hypomorphic up to complementation then they are t-hypomorphic up to complementation.

Proof. Let H be a graph on ¢ vertices. Set Is(H, G) :={L C V: Gy ~ H}, Isc(H, G) :=Is(H, G)UIs(H, G)
and wy,c the 0-1-row vector indexed by the t-element subsets Xi,...,X; of V whose coeffi-
cient of X; is 1 if X; € Isc(H, G) and 0 otherwise. From our hypothesis, it follows that wy ¢W;y =
Wy ¢ Wek. From Theorem 2.1, this implies wy ¢ = wy ¢ that is Isc(H, G) = Isc(H, G'). Since this
equality holds for all graphs H on t-vertices, the conclusion of the proposition follows. O

Theorem 2.5. (k, v) € S forall v,k such that4 <k <v —4.
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Proof. Let k be a non-negative integer and G, G’ be two graphs on the same set V of v vertices
which are k-hypomorphic up to complementation. Suppose k = 4. If v =6, a careful case analysis (or
a very special case of Wilson’s theorem, see Theorem 2.6 below) yields that G and G’ are equal up
to complementation. If v > 6, then from this fact, G;x and G’“( are equal up to complementation for
every 6-element subset K of V. Thus, this conclusion also holds for all k-element subsets of V with
k < 6. This implies that it holds for all k and particularly that G and G’ are equal up to complemen-
tation. Otherwise, there are two pairs of vertices {x, y} and {x, y’} such that G(x, y) # G’(x, y) and
G, y)#G'(x,y"). But then Gk and G’“<, with K :={x, y, X, y'}, are not equal up to complementa-
tion. Now, suppose 4 < k < v — 4. According to Proposition 2.4, these two graphs are 4-hypomorphic
up to complementation. From the observation above, G and G’ are equal up to complementation. O

P. Ille [9] asked for the least integer k such that every graph G having a large number v of vertices
is k-reconstructible up to complementation.

From Theorem 2.5 above, k exists and is at most 4. From Proposition 4.1 below, we have k > 4.
Hence k = 4.

This was our original solution of Ille’s problem.

The use of Wilson’s theorem leads to the improvement of Theorem 2.5 contained in Theorem 1.1.
If k=0 (mod 4) or k=1 (mod 4), its use is natural. If we look at conditions which imply G’ =G
or G’ =G, it is simpler to consider the boolean sum G 4+ G’ of G and G’, that is the graph U on V
whose edges are pairs e of vertices such that e € E(G) if and only if e ¢ E(G’). Indeed, G’ =G or
G’ = G amounts to the fact that U is either the empty graph or the complete graph. This leads to
the use of the matrix W5 . Indeed, if we suppose for an example that G and G’ are k-hypomorphic
up to complementation, e(Gx) and e(G’rK) are equal up to complementation for every k-element
subset K of V thus, in particular, have the same parity up to complementation. If k=0 (mod 4) or
k=1 (mod 4), (’;) is even, hence this latter condition amounts to the fact that e(Gx) and e(G/[K)
have the same parity. As it is easy to see, this amounts to the fact that e(U;x) =0 modulo 2. Since
this property holds for every k-element subset K, we have wy Wy, = (0,...,0) (mod 2). As we will
see below, if k=0 (mod 4), Wilson’s theorem yields wy = (0,...,0) or wy =(1,...,1), thatis U is
empty or complete, so G'=G or G'=G. If k=1 (mod 4) an additional condition is needed to get
the same conclusion. Indeed, in this case, the empty graph and a star-graph on the same vertex set
yield wy W, = (0, ...,0) (mod 2). We have not been able yet to apply Wilson’s theorem in the cases
k=2 (mod 4) and k =3 (mod 4) (also note that in these cases, e(G k) and e(G’FK) have always the

same parity up to complementation, no matter what G and G’ are).

Theorem 2.6. Let G and G’ be two graphs on the same set V of v vertices (possibly infinite). Let k be an integer
such that 4 <k < v — 2, k=0 (mod 4). Then the following properties are equivalent:

(i) e(G k) has the same parity as e(G’“()for all k-element subsets K of V;
(i) G’ =GorG' =G.

Proof. The implication (ii) = (i) is trivial. We prove (i) = (ii).

We may suppose V finite. Let W, be the matrix defined page 3 and ‘W, its transpose. Let
U := G + G’. From the fact that e(G k) has the same parity as e(G’“() for all k-element subsets K, the
boolean sum U belongs to the kernel of ‘W, over the 2-element field. Since by Wilson’s theorem,
the rank of W5, modulo 2 is (;’) — 1, the kernel of its transpose ‘W5 has dimension 1. Since
a,..., )Wy, =1(0,...,0) (mod 2) then wyW,, =(0,...,0) (mod 2) amounts to wy = (0,...,0) or
wy =(1,...,1), that is U is empty or complete, so G'=G or G'=G. O

Let G be a graph. A 3-element subset T of V such that all pairs belong to E(G) is a triangle of G.
A 3-element subset of V which is a triangle of G or of G is a 3-homogeneous subset of G.
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Theorem 2.7. Let G and G’ be two graphs on the same set V of v vertices (possibly infinite). Let k be an integer
such that 5 <k < v — 2, k=1 (mod 4). Then the following properties are equivalent:

(i) e(Gk) has the same parity as e(G/rK) for all k-element subsets K of V and the same 3-homogeneous
subsets; 3
(ii) G =Gor G =G.

Proof. We follow the same line as for the proof of Theorem 2.6. The implication (ii) = (i) is trivial.
We prove (i) = (ii).

We suppose V finite, we set U := G 4+ G’ and from the fact that e(Gk) has the same parity as
e(G/rK) for all k-element subsets K, we get that the boolean sum U belongs to the kernel of ‘W5
(over the 2-element field).

Claim 2.8. Let k be an integer such that 2 < k < v — 2, k =1 (mod 4), then the kernel of W5 consists of
complete bipartite graphs and their complements (including the empty graph and the complete graph).

Proof. Let us recall that a star-graph of v vertices consists of a vertex linked to all other vertices, those
v — 1 vertices forming an independent set. The vector space (over the 2-element field) generated by
the star-graphs on V consists of all complete bipartite graphs; since v is distinct from 1 and 2,
these are distinct from the complete graph (but include the empty graph). Moreover, its dimension
is v — 1 (a basis being made of star-graphs). Let K be the kernel of ‘W;. Since k is odd, each
star-graph belongs to K. Since k =1 (mod 4), the complete graph also belongs to K. According to
Wilson’s theorem, the rank of Wy, (mod 2) is (;) — v. Hence the kernel of ‘W, has dimension v.
Consequently, K consists of complete bipartite graphs and their complements, as claimed. O

A claw is a star-graph on four vertices, that is a graph made of a vertex joined to three other
vertices, with no edges between these three vertices. A graph is claw-free if no induced subgraph is
a claw.

Claim 2.9. Let G and G’ be two graphs on the same set and having the same 3-homogeneous subsets, then the
boolean sum U := G 4 G’ and its complement are claw-free.

Proof. Suppose there is a claw in U with edges {x, y}, {x, ¥’} and {x, y”}. Without loss of general-
ity, assume that G(x, y) =G(x, y"). If U(y,y’) =0, that is G(y,y’) = G'(y, y’), then since G and G’
have the same 3-element homogeneous sets and G(x, y) # G'(x, ¥), {x, ¥, ¥’} cannot be homogeneous,
hence G(y,y") # G(x,y) and G'(y,y’) # G'(x, y). This implies G(y,y’) # G'(y,y’), a contradiction.
From this observation, U is claw-free. Since G and G’ have the same 3-homogeneous subsets and
U =G+ G, we also get that U is claw-free. O

For a characterization of these boolean sums, see [14].

From Claim 2.8, U or its complement is a complete bipartite graph and, from Claim 2.9, U and U
are claw-free. Since v > 5 (in fact v > 7), it follows that U is either the empty graph or the complete
graph. Hence G’ =G or G’ =G as claimed. O

2.2. Conditions on the number of edges and Ramsey’s theorem

Theorem 2.10. Let k be an integer, 7 # k > 4. There is an integer m such that if G and G’ are two graphs on
the same set V of v vertices, v > m, such that Gk and G’r « have the same number of edges, up to comple-

mentation, for all k-element subsets K of V, then G’ = G or G’ =G.

Conditions 7 # k > 4 in Theorem 2.10 are necessary.
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- For k=7, consider two graphs G and G’ on V :={1,2,..., v} such that {i, j} is an edge of G and
G foralli#jin {1,2,...,v —2}, G has no another edge and G’ has {v — 1, v} as an additional
edge. For k < 4 apply Proposition 4.1 below.

Let c(k) be the least integer m for which the conclusion of Theorem 2.10 holds.
Problem 2.11. Is c(k) < k +4?

Our proof uses Ramsey’s theorem rather than incidence matrices. It is inspired from a relationship
between Ramsey’s theorem and Theorem 2.1 pointed out in [13]. The drawback is that the bound on
c(k) is quite crude.

Let r%(k) be the bicolor Ramsey number for pairs: the least integer n such that every graph on
n vertices contains a k-homogeneous subset, that is a clique or an independent on k vertices. We
deduce Theorem 2.10 and c(k) < r% (k) from the following result.

Proposition 2.12. Let k be an integer, 7 # k > 4 and let G and G’ be two graphs on the same set V of v
vertices, v > k such that:

(1) Gk and G/rK have the same number of edges, up to complementation, for all k-element subsets K of V;
(2) V contains a k-element subset K such that Gyx or Gk has at least | edges where | :=

. 2 _ —
mm(k +7‘{< 12’ k(k2 l)).

Then G’ =G or G' =G.

. . _ . . 2 .
The inequality "2”# < MEZD holds iff k > 8. For k > 8 the condition | = ¥+7k=12 s weaker
than the existence of a clique of size k.

Proof. We may suppose that V contains a k-element subset of V, say K, such that e(Gx) > I; also
we may suppose, from condition (1), that e(Gx) = e(G’K) otherwise replace G’ by its complement.

We shall prove that for all V' such that K € V' €V and |V'| =k + 2 we have e(G k) = e(G/[K,)

for all k-element subset K’ of V’'. Since the adjacency matrix of the Kneser graph KG(2,k + 2) is
non-singular, Gy = G’W,. It follows that G = G'.

Claim 2.13. Forx ¢ K and y € K, e(Gkupp\(y) = e(G[(KU{x})\{y})

Proof. Let x ¢ K and y € K. Set K" := (K U {x}) \ {y}. The graphs G g and G/rK/ have at least I :=
[ — (k — 1) edges. Since Gg and G/“(, have the same number of edges up to complementation, we
have e(Gx) = e(G’“<,) whenever I’ > k("‘l—_”, thatis [ > 1" := W.

If k> 8 we have | = kzﬂ# yielding [ > I” as required. If k € {4, 5, 6} we have [ = k(k D yielding
again [ >1". O

Claim 2.14. For distinct x, X' ¢ K.and y, y" € K, e(G jkupxxy\(y.y') = (G kupmxpi(y.y))-

Proof. Let x,x' ¢ K and y,y’ € K be distinct. Set K’ := (K U {x,x'}) \ {y, y'}. We have e(G k) >
e(Gk) — (2k — 3) and e(G“<,) > e(Gg) — (2k — 3). Thus e(G k) and e(G/“(,) have at least I :=
[ — (2k — 3) edges. Since G’ and G/[K’ have the same number of edges up to complementation,
we have e(G k) = e(G)y,) whenever I' > MEED | that is 1> K2 KA7k=12 This inequality holds if k >

Suppose k € {4, 5, 6}. Thus | = k(kal) Hence K is a clique for G and G'.

Subclaim. Let u ¢ K then G and G’ coincide on K U {u}.
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Proof. Since K is a clique, this amounts to G(u,v) = G'(u,v) for all v € K, a fact which follows
from Claim 2.13. Indeed, we have dg ., (1) = g5 Ywek 46 gy (- From Claim 213 we have
4G o w W) = dGlr(Ku(u))\(w) (w). Thus dg 4, W) = dG/[KU(u) (w). Since dg |y W) = dg (u)
the equality G(u, v) = G'(u, v) follows. O

!
[ (KUfuh\{v}

From this subclaim it follows that G and G’ coincide on K’ with the possible exception of the
pair {x,x'}. Set a:=e(Gg), a’ := e(G’[K,). Suppose a # d’. Then |a — d’| = 1, hence the sum a + d
is odd. Since Gk and G/“(, have the same number of edges up to complementation, this sum is

also @ If k=4 or k=5 this number is even, a contradiction. Suppose k = 6. We may suppose

a=a + 1 hence from a+ad = k(kz—_” we get a = 8. Put {x1,X2,X3,%4,y,y’}:=K. Since K is a clique
we have G(x,x) =1, G'(x,x) =0 and G, G’ contain just one edge from {x,x'} to {x1,X2,X3, X4}
We may suppose G(x1,x) =G'(x1,x) =1, G(x1,X) =G'(x1,x) =0 and G(t,u) = G'(t,u) =0 for all
t €{x2,x3,x4} and u € {x,x'}.

Let K” := (KU{x, x'}) \ {x1, Xx2}. From the subclaim above, G and G’ coincide on K” with the excep-
tion of the pair {x, x'} hence G, G’ contain just one edge from {x, X'} to {x3, X4, y, y'}. We can assume
G(y,u) =G'(y,u) =1 for exactly one u € {x,x'}, and G(t,u) = G'(t,u) =0 for all t € {x3, x4, ¥’} and
ue{xx'}.

Set B :={x3,X3,X4,X,x,y'}, then e(Gp) =7 and e(Ger) =6. So e(Gp) # e(G/rB) and e(Gp) +

e(G/[B) * k(kz—’” that gives a contradiction. O
Clearly Proposition 2.12 follows from Claims 2.13 and 2.14. O

3. Some members of S

Sufficient conditions for membership stated in Theorem 1.1 are contained in Theorem 3.1 below.
Let v be a non-negative integer and ¢ (v) :=4l if v € {4142,4l+3}, 9 (v) :=4l-3 if v € {4, 41+ 1}.

Theorem 3.1. Let v, k be two integers with 4 < k < ¥ (v). Then, for every pair of graphs G and G’ on the same
set V of v vertices, the following properties are equivalent:

(i) G and G’ are k-hypomorphic up to complementation;
(ii) Gk and G’rK have the same number of edges, up to complementation, and the same number of 3-
homogeneous subsets, for all k-element subsets K of V;
(iii) Gk and G/[K have the same number of edges, up to complementation, for all k-element and k’-element
subsets K of V where k' is an integer verifying 3 <k’ <k;
(iv) G =GorG =G.

3.1. Ingredients

Let G := (V,E) be a graph. Let A9 (G) be the set of pairs {u,u’} made of some u € E(G) and
some u’' € E(G). Let AQ(G) = {{u,u'} € ADG): unu' =g}, ADEG) := A®G)\ AD(G) and let
a®(G) be the cardinality of AV (G) for i € {0, 1, 2}; thus a@ (G) = a®@(G) + a™ (G). Let T(G) be the
set of triangles of G and let t(G) := |T(G)|. Let H®(G) := T(G) UT(G) be the set of 3-homogeneous
subsets of G and h®(G) := |H® (G)|.

Some elementary properties of the above numbers are stated in the lemma below; the proof is
immediate.

Lemma 3.2. Let G be a graph with v vertices, then:

) AD(G) = AD(G), hence aV(G) = aD (G), forall i € {0, 1, 2}.
) a@(G) =e(G)e(G).

) V(6) = Yyev 6y de (X)dg (0.

(4) h(3)(G) — v(v—lg)(v—Z) _ %a(U(G).

(1
2
3
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Lemma 3.3. Let G and G’ be two graphs on the same finite vertex set V, then

e(G)=e(G) or e(G)=e(G) iff e(Ge(G)=e(G)e(G).
Proof. Suppose

e(G)e(G) =e(G)e(G). (1)
Since e(G) 4+ e(G) = "("T_” and e(G') +e(G') = @ where v := |V|, we have

e(G) +e(G) =e(G) +e(G). (2)
Then (1) and (2) give e(G') =e(G) or e(G’) = e(G). The converse is obvious. O
Lemma 3.4. Let G be a graph, V :=V (G), v :=|V|.

(a) Letie{0,1}, ksuchthat4 —i <k < v, then

v_ati 2. aVGp.
(k—ati) kev
K=k

(b) Let k such that 3 <k < v — 1, then

a(G) =

1 _
a®(G) = e(c)e<c> > e(Gie(Gix),
(k 3) K<V
K=k
A) — k-3 -
a’(G)=~— e(Gm)e(Gm)—v_ke(G)e(G)A

(k73) KcV
|K|=k

Proof. (a) Let {u,u’} € AD(G) for i € {0,1}. The number of k-element subsets K of V containing u

and u’ is (Z:ﬁ:) The result follows.
(b) If k=3 then (a) and the fact that a©© (G) +a™(G) = e(G)e(G) give the formulas.

If 4<k<v-—1, then by (a) we have

v a© )
(k_) G) = Za Gk

Kcv

|K|=k
' ave = ¥ a6
k-3

KCVv

K=k

Summing up and applying (2) of Lemma 3.2 to the Gi’s we have

v—4 v—3 _
(k—4)a<o>(c)+ (k_3>a<1>(c) = 3" eGeG ). )

Kcv
K=k

On the other hand
a@(6) +a"(6) =e(G)e(G). 4)
Eqgs. (3) and (4) form a Cramer system with a© (G) and a®(G) as unknowns. Indeed the determinant
(=) (3] (v —4> _ (v - 3) _ _(v —4)
k—4 k-3 k-3

1 1
is nonzero. A straightforward computation gives the result. O

A=
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Corollary 3.5. Let G and G’ be two graphs on the same set V of v vertices and k be an integer such that
4<k<v.
The implications (ii) = (i) and (i) = (iii) between the following statements hold.

(i) e(G) =e(Gx) or e(G k) and K (Gx) = h(3)(G’“<)for all k-element subsets K of V.
(ii) e(G/rK) =e(Gg) or e(@m) for all k-element and k’-element subsets K of V where k' is some integer
verifying 3 <k’ <k.
(iii) G and G/, have the same number of edges up to complementation and h®(Gp) = h(3)(G/“) for all
l-element subsets L of V and all integer | such that k <I< v.

Proof. (i) = (iii). Let L be an I-element subset of V with | >k, and K be a k-element subset of L.
From Lemma 3.3 and (2) of Lemma 3.2, we have a©@ (G k) +aV (G k) :a(o)(G’“{) +a“>(G’“<), and

from (4) of Lemma 3.2, a®V (G x) = a(l)(G’rK). Hence a?(G k) = a(i)(G’rK) for all k-element subsets K
of L and i € {0, 1}. ) .
From (a) of Lemma 3.4 applied to G, follows a?(G[) = a(‘)(G’“) for i € {0, 1}, hence using (2) of

Lemma 3.2 we get e(GrL)e(ErL) = e(G’FL)e(E’M). The conclusion follows from Lemma 3.3 and (4) of
Lemma 3.2.
(ii) = (i). It suffices to prove that h® (G k) = h(3)(G/“<) for all k-element subsets K of V. From

Lemma 3.3 we have e(Gx)e(G k) = e(G/[K)e(Cer) and e(Gg)e(G k) = e(G}"/)"’@r“” for all k-
element set K’ € K. From (b) of Lemma 3.4 we get a® (G ) = a(i)(G/rK) for i € {0.1). Then by (4) of
Lemma 3.2, h® (G k) =h®(G}y). O

Proposition 3.6. Let G and G’ be two graphs on v vertices and k be an integer suchthat4 <k <v.IfG and G
are k-hypomorphic up to complementation then e(G/[L) =e(G)or e(G/rL) = e(Gy) for all I-element subsets
L of V and all integer | such that k <1< v.

Proof. If G and G’ are k-hypomorphic up to complementation then Gx and G/[K have the same
number of edges up to complementation, and the same number of 3-homogeneous subsets, for all
k-element subsets K of V. We conclude using (i) = (iii) of Corollary 3.5 O

By inspection of the eleven graphs on four vertices, one may observe that:

Fact 3.7. The ordered pair (e(G)e(G), h® (G)) characterize G up to isomorphy and complementation if
V(G| <4

Note that in Fact 3.7, we can replace (e(G)e(G),h® (G)) by (@@ (G),aV(G)) (this follows from
Lemmas 3.3 and 3.2).

Proposition 3.8. Let G and G’ be two graphs on the same set V of v vertices and k be an integer. If 3 < k <
v — 3 (respectively 4 <k < v —4) and h® (G x) = h(3)(G/rK) (respectively a©@ (G k) = a(o)(G’“())for all

k-element subsets K of V then h® (G k) = h(3)(G’“<) (respectively a© (G k) = a(o)(G’FK))for all (v —k)-
element subsets K of V.

Proof. By (4) of Lemma 3.2, h® (G k) = h(3)(G/“() iff aV (G k) = a“>(c’“<).

Case 1. k < % then v —k > k. Let K’ be a (v — k)-element subset of V, then from (a) of Lemma 3.4
we have for i € {0, 1},

. 1 .
a(’)(G“(,): m Z a(’)(G“{)_

k—4+i ) K<k’
K=k
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Then we get the conclusion.

Case 2. k > % then v —k < % Let K’ be a k-element subset of V. From (a) of Lemma 3.4 we have for
ie{0,1),

. k—4+i :
> a0 = DG ). 5
a(Gyk) (v—k—4+i>a (Grx) (5)
K<k’
IK|=v—k
Let Xi,X»,...,X; be an enumeration of the (v — k)-element subsets of V. Let Wg) =

@G 1x,),aP(Gx,), ..,aD(Gix), and wi) = @D (Gy,),aD(Gly,),....aV (G ). From (5), we
get, for i € {0, 1}, Av_k,vfwg) = A‘,_k,‘,‘wg,). We conclude using Theorem 2.2. O
3.2. Proof of Theorem 3.1

(i) = (ii), (iv) = (i), (iv) = (iii) are obvious and (iii) = (ii) is implication (ii) = (i) of Corollary 3.5.
Thus it is sufficient to prove (ii) = (iv).

Let I, k <1< v. According to implication (i) = (iii) of Corollary 3.5, e(G’FL) =e(Gp) or e(G’rL) =
6(5“_) for all I-element subsets L of V. If we may choose | =0 (mod 4) with [ < v — 2, then e(G )
and e(G/[L) have the same parity. Theorem 2.6 gives G’ = G or G’ = G. Thus, the implication (ii) = (iv)
is proved if v =2 (mod 4) and if v=3 (mod 4). There are two remaining cases.

Case1. v=1 (mod 4) and k = v — 4. We prove that e(G’“) and e(G ) have the same parity for all 4-
element subsets L of V. Theorem 2.6 again gives G’ = G or G’ = G. The proof goes as follows. Let L be
a 4-element subset of V, and K be a k-element subset of V. By Lemma 3.2, a® (G ) = a(2>(G/rK) and
aD(Gx) = a(l)(G’rK). Thus a©@ (G k) = a(o)(G’“<). Using Proposition 3.8, we get a® (G ) = a(o)(G’rL)
and h®(Gp) = h<3>(c/”). Now (4) of Lemma 3.2 gives aV(G;) = a<1>(c/”). So a® (G ) =a(2>(c/“),
then using (2) of Lemma 3.2 and Lemma 3.3 we get e(G/rL) =e(Gyp) or e(Gyp), thus e(G/rL) and e(G)
have the same parity.

Case 2. v =0 (mod 4) and k = v — 3. From Proposition 3.8, G and G’ have the same 3-homogeneous
subsets. From Theorem 2.7, G’ =G or G’ =G as claimed.

4. Constraints on S

Two arbitrary graphs on the same set of vertices are k-hypomorphic up to complementation
for k < 2. Hence, if v <2, (v,k) € S iff k € N. This is item (1) of Theorem 1.1.

Next, suppose v > 2, and (v, k) € S.

According to the proposition below, we have k > 4.

Proposition 4.1. For every integer v > 4, there are two graphs G and G, on the same set of v vertices, which
are 3-hypomorphic up to complementation but not isomorphic up to complementation.

Proof. Let G and G’ be two graphs having {1, 2, ..., v} as set of vertices.

- Even case: v = 2p. Pairs {i, j} are edges of G and G’ for all i # j in {1,2,..., p} and for all i # j
in {p+1,...,2p}. The graph G has no other edge and G’ has {1, p + 1} as an additional edge.
Clearly G’ and G are 3-hypomorphic up to complementation and not isomorphic. Since G has p2
edges but G’ has p(p — 1) + 1 edges, G’ and G are not isomorphic.

- 0dd case: v =2p + 1. Pairs {i, j} are edges of G and G’ for all i # j in {1,2,..., p} and for all
i#jin{p+1,...,2p+1}. The graph G has no other edge and G’ has {1, p + 1} as an additional
edge. Clearly G’ and G are 3-hypomorphic up to complementation and not isomorphic. Since G
has p(p + 1) edges but G’ has p? +1 edges, G’ and G are not isomorphic.
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In both cases G and G’ are 3-hypomorphic up to complementation but not isomorphic up to comple-
mentation. O

According to the following lemma, v > 6.

Lemma 4.2. For every v, 3 < v < 5, there are two graphs G and G’, on the same set of v vertices, which are
k-hypomorphic for allk < v but G’ # G and G’ #G.

Proof. Let V :={0,1,2,3,4}, £:={{0,1},{1,2},{2,3},{3,4},{4,0}} and & := (£ \ {{0,4},{1,2}}h U
{{1,4},{0,2}}. Let G :=(V,€&) and G’ := (V,E&’). These graphs are two 5-element cycles, G’ being
obtained from G by exchanging 0 and 1. Trivially, they satisfy the conclusion of the lemma. The two
pairs G_3, G' ; and G_3 _4 and G/—3,—4 also satisfy the conclusion of the lemma. O

Next, a straightforward extension of the construction in Lemma 4.2 above yields k < v — 2. Indeed,
let us say that two graphs G and G’ on the same set V of vertices are k-hypomorphic if for any
subset X of V of cardinality k, G;x and G/yx are isomorphic. We have:

Lemma 4.3. For every integer v, v > 4, there are two graphs G and G’, on the same set of v vertices, which
are k-hypomorphic forallk € {v — 1, v} but G’ # G and G’ #G.

Proof. Let V :={0,...,v—1}, E:={{i,i+1}: 0<i<v—-1}U{{0,v —1}}, & :=(E\{{0,v — 1},
{1,2}h U {{1,v —1},{0,2}}. Let G:=(V,€&) and G’ := (V,E&’). These graphs are two v-element cy-
cles, G’ being obtained from G by exchanging O and 1. Trivially, they satisfy the conclusion of the
lemma. O

With this lemma, the proof of the first part of item (2) is complete.
The fact that (v, k) € S implies k < 9 (v) for infinitely many v is an immediate consequence of the
following proposition.

Proposition 4.4. For every integer v := m +r such that ¢ = 1 (mod 4) for each prime power q occuring in the
decomposition of m and r € {2, 3, 4} there are two graphs G and G, on the same set of v vertices, which are
k-hypomorphic up to complementation for all k, 9 (v) +1 <k < v but G’ # G and G’ #G.

Our construction uses vertex-transitive self-complementary graphs. We recall that there is a
vertex-transitive self-complementary graph on m vertices if and only if g =1 (mod 4) for each prime
power q occuring in the decomposition of m [12,16]. Lexicographical products of Paley graphs readily
provide examples of vertex-transitive self-complementary graphs for each m as above. A complete
description is not known. For more information about these graphs see [5]. For Paley graphs see
also [18].

Lemma 4.5. A finite graph G is vertex-transitive and self-complementary if and only if its order is distinct
from 2 and G _y is self-complementary for every vertex x € V (G).

Proof. Let G be the class of finite graphs of order distinct from 2 such that G_y is self-complementary
for every vertex x € V(G). Let G € G. Let n :=|V(G)|. We may suppose n > 2. Let x € V(G). We
have dg(x) = e(G) — e(G_y). Since G_y is self-complementary, e(G_y) = e(G_x) and, since e(G_x) +
e(G_y) = (”;1), e(G_y) = %(”;1). Thus dg(x) does not depend on x, that is G is regular. Since n > 2
we have e(G) = anszewc)e(Gfx) thus e(G) = @. This added to e(G_yx) = W yields
nn—1)=0 (mod 4) and (n — 1)(n — 2) =0 (mod 4). It follows that n =1 (mod 4). As it is well
known [11], regular graphs of order distinct from 2 are reconstructible. Thus G is self-complementary.
The proof that G is reconstructible yields that for every vertex x, every isomorphism from G_, onto
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G_x is induced by an isomorphism ¢ from G onto G which fixes x. Hence, for a given pair of ver-
tices x, x' there is an element I" € Aut(G) such that I'(x) = x" if and only if there is an isomorphism
@ : G — G such that ¢(x) = . It follows that each orbit of Aut(G) is preserved under all isomor-
phisms from G onto G. Thus, if A is a union of orbits, Gia € G. Since members of G have odd order,
there is just one orbit, proving that Aut(G) is vertex-transitive.

Conversely, let G be a self-complementary vertex-transitive graph. Clearly G is not of order 2.
Let x € V(G). Since G is self-complementary, G_x is isomorphic to E,y for some y € V(G). Since
Aut(G) = Aut(G) and Aut(G) is vertex-transitive, G_, is isomorphic to G_y. Hence, G € G.

Proof of Proposition 4.4. Let v, m, r satisfying the stated conditions. Let P be a self-complementary
vertex-transitive graph of order m.

Case 1. r = 4. In this case ¥ (v) =m. Let V be made of V(P) and four new elements added, say
1,2,3,4. Let G and G’ be the graphs with vertex set V which coincide with P on V(P), the other
edges of G being {1,2}, {2,3}, {3,4}, {2,x}, {3, ]} for all xe V(P), the other edges of G’ being {1, 3},
(2,3}, (2,4}, {2,x}, {3,x} for all xe V(P). Clearly, G’ # G and G’ # G. We check that G and G’ are
k-hypomorphic for #(v) + 1 <k < v. Let X CV with |X| <3 and K :=V \ X. With the help of
Lemma 4.5, note that if X N{1,2,3,4} e {{1,2},{1,3},{2,4},{3,4}} then G ~ 5’“(. In all other cases
G~ G/IK'

Case 2. r = 3. In this case ¥(v) =m. Let Gy :=G_q and G} := G’ ; where G, G’ are the graphs

constructed in Case 1. Clearly G’ % G and G’ # G. And since G, G’ are k-hypomorphic for m +1 <k <
m + 4, the graphs Gy and G} are k-hypomorphic for #(v) +1 <k <v.

Case 3. r = 2. In this case ¥#(v) =m — 1. Let V be made of V(P) and two new elements added, say
1,2. Let G and G’ be the graphs with vertex set V which coincide with P on V(P), the other edges
of G being (2, x) for all x € V(P), the other edges of G’ being (1, x) for all x € V(P). Clearly, G' # G
and G’ #G. Let X €V with |X| <2 and K:=V\ X. If XN {1,2} #0 then Gx ~ E}K. In all other

cases Gg =~ G’“(. Hence, G and G’ are k-hypomorphic for #(v) +1<k<v. O
By Theorem 2.6 we have:

Remark 4.6. Let G be a graph with v vertices. If there is a graph G’ # G on the same vertex set V,
an integer k such that 1 <k <v —2, k=0 (mod 4), G’ is (v — 1)-hypomorphic to G and e(G}K)
has the same parity as e(Gx) for all k-element subsets K of V, then G is vertex-transitive and self-
complementary.

5. Conclusion

Let R be the set of ordered pairs (v, k) such that two graphs on the same set of v vertices are
isomorphic up to complementation whenever these two graphs are k-hypomorphic up to complemen-
tation.

Behind Ille’s problem was the question of a description of R.

This seems to be a very difficult problem. Except the trivial inclusion S € R, the fact that some
ordered pairs like (5,4), (v,v —3) for v > 7 belong to R requires some effort [4].

We prefer to point out the following problem.

Problem 5.1. Let v > 2.Is (v,k) € S <= 4<k<¥(v)?
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