Journal of Combinatorial Theory, Series B 99 (2009) 84–96

Hypomorphy of graphs up to complementation \dot{x}

Jamel Dammak^a, Gérard Lopez^b, Maurice Pouzet^c, Hamza Si Kaddour^c

^a *Département de Mathématiques, Faculté des Sciences, Université de Sfax, B.P. 802, 3018 Sfax, Tunisia*

^b *Institut de Mathématiques de Luminy, CNRS-UPR 9016, 163 avenue de Luminy, case 907, 13288 Marseille cedex 9, France*

^c *ICJ, Université de Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France*

article info abstract

Article history: Received 18 January 2006 Available online 4 June 2008

Keywords: Graph Hypomorphy up to complementation Reconstruction up to complementation Reconstruction

Let *V* be a set of cardinality *v* (possibly infinite). Two graphs *G* and *G'* with vertex set *V* are *isomorphic up to complementation* if *G'* is isomorphic to *G* or to the complement \overline{G} of *G*. Let *k* be a nonnegative integer, G and G' are *k-hypomorphic up to complementation* if for every *k*-element subset *K* of *V*, the induced subgraphs $G_{\restriction K}$ and $G'_{\upharpoonright K}$ are isomorphic up to complementation. A graph *G* is *k*reconstructible up to complementation if every graph *G'* which is *k*-hypomorphic to *G* up to complementation is in fact isomorphic to *G* up to complementation. We give a partial characterisation of the set S of ordered pairs (n, k) such that two graphs G and G' on the same set of *n* vertices are equal up to complementation whenever they are *k*-hypomorphic up to complementation. We prove in particular that S contains all ordered pairs (n, k) such that $4 \leq k \leq n-4$. We also prove that 4 is the least integer *k* such that every graph *G* having a large number *n* of vertices is *k*-reconstructible up to complementation; this answers a question raised by P. Ille [P. Ille, Personal communication, September 2000]. © 2008 Elsevier Inc. All rights reserved.

1. Introduction

Ulam's Reconstruction Conjecture [17] (see [2,3]) asserts that two graphs *G* and *G'* on the same finite set *V* of *v* vertices, $v \ge 3$, are isomorphic provided that the restrictions $G_{|K}$ and $G'_{|K}$ of *G* and *G*- to the *(v* −1*)*-element subsets of *V* are isomorphic. If this latter condition holds for the *k*-element subsets of *V* for some $k, 2 \leq k \leq v - 2$, then, as it has been noticed several times, *G* and *G'* are

sikaddour@univ-lyon1.fr (H. Si Kaddour).

0095-8956/\$ – see front matter © 2008 Elsevier Inc. All rights reserved. [doi:10.1016/j.jctb.2008.04.004](http://dx.doi.org/10.1016/j.jctb.2008.04.004)

[✩] This work was partially supported by French–Tunisian CMCU 05S1505 "Outils mathématiques pour l'informatique." *E-mail addresses:* jdammak@yahoo.fr (J. Dammak), gerard.lopez1@free.fr (G. Lopez), pouzet@univ-lyon1.fr (M. Pouzet),

identical. This conclusion does not require the finiteness of v nor the isomorphy of $G_{\restriction K}$ and $G'_{\restriction K}$, it only requires that $G_{\upharpoonright K}$ and $G'_{\upharpoonright K}$ have the same number of edges for all *k*-element subsets *K* of *V*, simply because the adjacency matrix of the Kneser graph $KG(2, k + 2)$ is non-singular (see Section 2).

In this paper we look for similar results if the conditions on the restrictions $G_{\upharpoonright K}$ and $G'_{\upharpoonright K}$ are given up to complementation, that is if $G'_{\restriction K}$ is isomorphic to $G_{\restriction K}$ or to its complement $\overline{G}_{\restriction K}$, or if $G'_{\restriction K}$ has the same number of edges than $G_{\restriction K}$ or $G_{\restriction K}$. If the first condition holds for all *k*-element subsets *K* of *V*, we say that *G* and *G'* are *k-hypomorphic up to complementation* and, if the second holds, we say that *G* and *G*- have *the same number of edges up to complementation*. We say that *G* is *k-reconstructible* up to complementation if every graph *G'*, *k*-hypomorphic to *G* up to complementation, is isomorphic to *G* or its complement.

We show first that the equality of the number of edges, up to complementation, for the *k*-vertices induced subgraphs suffices for the equality up to complementation provided that $4 \leq k \neq 7$ and *v* is large enough (Theorem 2.10). Our proof is based on Ramsey's theorem for pairs [15].

Next, we give partial description of the set S of ordered pairs (v, k) such that two graphs G and *G*- on the same set of *v* vertices are equal up to complementation whenever they are *k*-hypomorphic up to complementation.

Theorem 1.1.

- (1) Let $v \le 2$, then $(v, k) \in S$ iff $k \in \mathbb{N}$.
- (2) Let $v > 2$ then $(v, k) \in S$ implies $4 \leq k \leq v 2$.
	- $(k \leq l)$ *If* $v \equiv 2 \pmod{4}$ *,* $(v, k) \in S$ *iff* $4 \leq k \leq v 2$ *.*
	- (b) *If* $v \equiv 0 \pmod{4}$ *or* $v \equiv 3 \pmod{4}$ *then* $(v, k) \in S$ *implies* $k \le v 3$ *for infinitely many v and* $4 \leq k \leq \nu - 3$ *implies* $(\nu, k) \in S$.
	- (c) *If v* ≡ ¹ *(*mod 4*) then (v,k)* ∈ S *implies k ^v* − ⁴ *for infinitely many v and* ⁴ *^k ^v* − ⁴ *implies* $(v, k) \in S$.

Our proof for membership in S is a straightforward application of properties of incidence matrices due to D.H. Gottlieb [7], W. Kantor [10] and R.M. Wilson [19]. It is given in Section 3. Constraints on S are given in Section 4.

Our motivation comes from the following problem raised by P. Ille: find the least integer *k* such that every graph *G* having a large number *v* of vertices is *k*-reconstructible up to complementation. With Theorem 1.1 we show that $k = 4$ (see Section 2).

A quite similar problem was raised by J.G. Hagendorf (1992) and solved by J.G. Hagendorf and G. Lopez [8]. Instead of graphs, they consider binary relations and instead of the complement of a graph, they consider the *dual* R^* of a binary relation R (where $(x, y) \in R^*$ if and only if $(y, x) \in R$); they prove that 12 is the least integer k such that two binary relations R and R' , on the same large set of vertices, are either isomorphic or dually isomorphic provided that the restrictions $R_{\upharpoonright K}$ and $R'_{\upharpoonright K}$ are isomorphic or dually isomorphic, for every *k*-element subsets *K* of *V* .

2. Preliminaries

Our notations and terminology follow [1]. A *graph* is an ordered pair $G := (V, \mathcal{E})$, where \mathcal{E} is a subset of $[V]^2$, the set of pairs $\{x, y\}$ of distinct elements of *V*. Elements of *V* are the *vertices* of *G* and elements of E its *edges*. If *K* is a subset of *V* , the *restriction* of *G* to *K*, also called the *induced graph* on *K* is the graph $G_{\vert K} := (K, [K]^2 \cap \mathcal{E})$. If $K = V \setminus \{x\}$, we denote this graph by G_{-x} . The *complement* of *G* is the graph $\overline{G} := (V, [V]^2 \setminus \mathcal{E})$. We denote by $V(G)$ the vertex set of a graph *G*, by $E(G)$ its edge set and by $e(G) := |E(G)|$ the number of edges. If $\{x, y\}$ is an edge of *G* we set $G(x, y) = 1$; otherwise we set $G(x, y) = 0$. The *degree* of a vertex x of G, denoted $d_G(x)$, is the number of edges which contain x. The graph G is regular if $d_G(x) = d_G(y)$ for all $x, y \in V$. If G, G' are two graphs, we denote by $G \simeq G'$ the fact that they are isomorphic. A graph is *self-complementary* if it is isomorphic to its complement.

2.1. Incidence matrices and isomorphy up to complementation

Let *V* be a finite set, with *v* elements. Given non-negative integers *t*, *k*, let $W_{t,k}$ be the $\binom{v}{t}$ by $\binom{v}{k}$ matrix of 0's and 1's, the rows of which are indexed by the *t*-element subsets *T* of *V* , the columns are indexed by the *k*-element subsets *K* of *V*, and where the entry $W_{tk}(T, K)$ is 1 if $T \subseteq K$ and is 0 otherwise.

A fundamental result, due to D.H. Gottlieb [7], and independently W. Kantor [10], is this:

Theorem 2.1. *For t* \leq min $(k, v - k)$ *, W_{tk}* has full row rank over the field \circ of rational numbers.

If $k := v - t$ then, up to a relabelling, $W_{t\,k}$ is the adjacency matrix $A_{t\,v}$ of the *Kneser graph KG* (t, v) , graph whose vertices are the *t*-element subsets of *V* , two subsets forming an edge if they are disjoint.

An equivalent form of Theorem 2.1 is:

Theorem 2.2. $A_{t,v}$ is non-singular for $t \leq \frac{v}{2}$.

Applications to graphs and relational structures where given in [6] and [13]. Theorem 2.1 has a modular version due to R.M. Wilson [19].

Theorem 2.3. For $t \leq m$ in $(k, v - k)$, the rank of W_{tk} modulo a prime p is

$$
\sum {\binom{v}{i}} - {\binom{v}{i-1}}
$$

where the sum is extended over those indices i, $0 \leq i \leq k$, such that p does not divide the binomial coefficient -*k*−*i t*−*i .*

In the statement of the theorem, $\begin{pmatrix} v \\ -1 \end{pmatrix}$ should be interpreted as zero.

We will apply Wilson's theorem with $t = p = 2$ for $k \equiv 0 \pmod{4}$ and for $k \equiv 1 \pmod{4}$. In the first case the rank of W_{2k} (mod 2) is $\binom{v}{2} - 1$. In the second case, the rank is $\binom{v}{2} - v$.

Let us explain why the use of these results in our context is natural.

Let X_1, \ldots, X_r be an enumeration of the 2-element subsets of V; let K_1, \ldots, K_s be an enumeration of the *k*-element subsets of *V* and W_{2k} be the matrix of the 2-element subsets versus the *k*-element subsets. If *G* is a graph with vertex set *V*, let w_G be the row matrix (g_1, \ldots, g_r) where $g_i = 1$ if X_i is an edge of G, 0 otherwise. We have $w_G W_{2k} = (e(G_{\upharpoonright K_1}), \ldots, e(G_{\upharpoonright K_s}))$. Thus, if G and G' are two graphs with vertex set *V* such that $G_{\restriction K}$ and $G'_{\restriction K}$ have the same number of edges for every *k*-element subset of *V*, we have $(w_G - w_{G'})W_{2k} = 0$. Thus, provided that $v \ge 4$, by Theorem 2.1, $w_G - w_{G'} = 0$ that is $G = G'$.

This proves the observation made at the beginning of our introduction. The same line of proof gives:

Proposition 2.4. Let t ≤ min (k, v − k) and G and G' be two graphs on the same set V of v vertices. If G and *G*- *are k-hypomorphic up to complementation then they are t-hypomorphic up to complementation.*

Proof. Let H be a graph on t vertices. Set $Is(H,G) := \{L \subseteq V: G_{\upharpoonright L} \simeq H\}$, $Isc(H,G) := Is(H,G) \cup Is(\overline{H},G)$ and $w_{H,G}$ the 0–1-row vector indexed by the *t*-element subsets X_1, \ldots, X_r of *V* whose coefficient of X_i is 1 if $X_i \in \text{Isc}(H, G)$ and 0 otherwise. From our hypothesis, it follows that $w_{H,G}W_{t,k} =$ $w_{H,G'}W_{t,k}$. From Theorem 2.1, this implies $w_{H,G} = w_{H,G'}$ that is $\text{Isc}(H,G) = \text{Isc}(H,G')$. Since this equality holds for all graphs *H* on *t*-vertices, the conclusion of the proposition follows. \Box

Theorem 2.5. $(k, v) \in S$ for all v, k such that $4 \leq k \leq v - 4$.

Proof. Let *k* be a non-negative integer and *G*, *G*- be two graphs on the same set *V* of *v* vertices which are *k*-hypomorphic up to complementation. Suppose $k = 4$. If $v = 6$, a careful case analysis (or a very special case of Wilson's theorem, see Theorem 2.6 below) yields that *G* and *G*- are equal up to complementation. If $v \ge 6$, then from this fact, $G_{\restriction K}$ and $G'_{\restriction K}$ are equal up to complementation for every 6-element subset *K* of *V* . Thus, this conclusion also holds for all *k*-element subsets of *V* with $k \leqslant 6$. This implies that it holds for all k and particularly that *G* and *G'* are equal up to complementation. Otherwise, there are two pairs of vertices $\{x, y\}$ and $\{x', y'\}$ such that $G(x, y) \neq G'(x, y)$ and $G(x', y') \neq \overline{G'}(x', y')$. But then $G_{\restriction K}$ and $G'_{\restriction K}$, with $K := \{x, y, x', y'\}$, are not equal up to complementation. Now, suppose $4 \leq k \leq v - 4$. According to Proposition 2.4, these two graphs are 4-hypomorphic up to complementation. From the observation above, *G* and *G'* are equal up to complementation. \Box

P. Ille [9] asked for the least integer *k* such that every graph *G* having a large number *v* of vertices is *k*-reconstructible up to complementation.

From Theorem 2.5 above, *k* exists and is at most 4. From Proposition 4.1 below, we have $k \geqslant 4$. Hence $k = 4$.

This was our original solution of Ille's problem.

The use of Wilson's theorem leads to the improvement of Theorem 2.5 contained in Theorem 1.1. If $k \equiv 0 \pmod{4}$ or $k \equiv 1 \pmod{4}$, its use is natural. If we look at conditions which imply $G' = G$ or $G' = \overline{G}$, it is simpler to consider the *boolean sum* $G + G'$ of G and G' , that is the graph U on V whose edges are pairs *e* of vertices such that $e \in E(G)$ if and only if $e \notin E(G')$. Indeed, $G' = G$ or $G' = \overline{G}$ amounts to the fact that *U* is either the empty graph or the complete graph. This leads to the use of the matrix $W_{2,k}$. Indeed, if we suppose for an example that *G* and *G'* are *k*-hypomorphic up to complementation, $e(G_{\restriction K})$ and $e(G'_{\restriction K})$ are equal up to complementation for every *k*-element subset *K* of *V* thus, in particular, have the same parity up to complementation. If $k \equiv 0 \pmod{4}$ or $k \equiv 1 \pmod{4}$, $\binom{k}{2}$ is even, hence this latter condition amounts to the fact that $e(G_{\upharpoonright K})$ and $e(G'_{\upharpoonright K})$ have the same parity. As it is easy to see, this amounts to the fact that $e(U_{\upharpoonright K}) = 0$ modulo 2. Since this property holds for every *k*-element subset *K*, we have $w_U W_{2k} = (0, \ldots, 0)$ (mod 2). As we will see below, if $k \equiv 0 \pmod{4}$, Wilson's theorem yields $w_U = (0, \ldots, 0)$ or $w_U = (1, \ldots, 1)$, that is *U* is empty or complete, so $G' = G$ or $G' = \overline{G}$. If $k \equiv 1 \pmod{4}$ an additional condition is needed to get the same conclusion. Indeed, in this case, the empty graph and a star-graph on the same vertex set yield $w_U W_{2k} = (0, \ldots, 0)$ (mod 2). We have not been able yet to apply Wilson's theorem in the cases *k* ≡ 2 *(mod 4)* and *k* ≡ 3 *(mod 4)* (also note that in these cases, $e(G_{\upharpoonright K})$ and $e(G'_{\upharpoonright K})$ have always the same parity up to complementation, no matter what G and G' are).

Theorem 2.6. *Let G and G*- *be two graphs on the same set V of v vertices* (*possibly infinite*)*. Let k be an integer such that* $4 \leq k \leq v - 2$, $k \equiv 0 \pmod{4}$. Then the following properties are equivalent:

(i) $e(G_{\restriction K})$ has the same parity as $e(G'_{\restriction K})$ for all k-element subsets K of V ;

(ii)
$$
G' = G
$$
 or $G' = \overline{G}$.

Proof. The implication (ii) \Rightarrow (i) is trivial. We prove (i) \Rightarrow (ii).

We may suppose *V* finite. Let W_{2k} be the matrix defined page 3 and ${}^tW_{2k}$ its transpose. Let $U := G \dotplus G'$. From the fact that $e(G_{\restriction K})$ has the same parity as $e(G'_{\restriction K})$ for all *k*-element subsets *K*, the boolean sum *U* belongs to the kernel of ${}^tW_{2k}$ over the 2-element field. Since by Wilson's theorem, the rank of W_{2k} modulo 2 is $\binom{v}{2}$ $\binom{v}{2}$ – 1, the kernel of its transpose ^t W_{2k} has dimension 1. Since $(1,\ldots,1)W_{2k} = (0,\ldots,0)$ (mod 2) then $W_U W_{2k} = (0,\ldots,0)$ (mod 2) amounts to $W_U = (0,\ldots,0)$ or $w_U = (1, \ldots, 1)$, that is *U* is empty or complete, so $G' = G$ or $G' = \overline{G}$. \Box

Let *G* be a graph. A 3-element subset *T* of *V* such that all pairs belong to *E(G)* is a *triangle* of *G*. A 3-element subset of *V* which is a triangle of *G* or of *G* is a 3-*homogeneous* subset of *G*.

Theorem 2.7. *Let G and G*- *be two graphs on the same set V of v vertices* (*possibly infinite*)*. Let k be an integer such that* $5 \le k \le v - 2$, $k \equiv 1 \pmod{4}$. Then the following properties are equivalent:

- (i) $e(G_{\upharpoonright K})$ has the same parity as $e(G'_{\upharpoonright K})$ for all k-element subsets K of V and the same 3-homogeneous *subsets*;
- (ii) $G' = G$ or $G' = \overline{G}$.

Proof. We follow the same line as for the proof of Theorem 2.6. The implication (ii) \Rightarrow (i) is trivial. We prove (i) \Rightarrow (ii).

We suppose *V* finite, we set $U := G + G'$ and from the fact that $e(G_{\upharpoonright K})$ has the same parity as $e(G'_{|K})$ for all *k*-element subsets *K*, we get that the boolean sum *U* belongs to the kernel of *^tW*_{2 *k*} (over the 2-element field).

Claim 2.8. Let *k* be an integer such that $2 \le k \le v - 2$, $k \equiv 1 \pmod{4}$, then the kernel of ^tW₂_{*k*} consists of *complete bipartite graphs and their complements* (*including the empty graph and the complete graph*)*.*

Proof. Let us recall that a *star-graph* of *v* vertices consists of a vertex linked to all other vertices, those $v - 1$ vertices forming an independent set. The vector space (over the 2-element field) generated by the star-graphs on *V* consists of all complete bipartite graphs; since ν is distinct from 1 and 2, these are distinct from the complete graph (but include the empty graph). Moreover, its dimension is *v* − 1 (a basis being made of star-graphs). Let K be the kernel of *tW*² *^k*. Since *k* is odd, each star-graph belongs to K. Since $k \equiv 1 \pmod{4}$, the complete graph also belongs to K. According to Wilson's theorem, the rank of W_{2k} (mod 2) is $\binom{v}{2}$ $\binom{v}{2}$ – *v*. Hence the kernel of ^{*t*} W_{2*k*} has dimension *v*. Consequently, $\mathbb K$ consists of complete bipartite graphs and their complements, as claimed. \Box

A *claw* is a star-graph on four vertices, that is a graph made of a vertex joined to three other vertices, with no edges between these three vertices. A graph is *claw-free* if no induced subgraph is a claw.

Claim 2.9. *Let G and G*- *be two graphs on the same set and having the same* 3*-homogeneous subsets, then the* boolean sum $U := G \dotplus G'$ and its complement are claw-free.

Proof. Suppose there is a claw in *U* with edges {*x, y*}, {*x, y*- } and {*x, y*--}. Without loss of generality, assume that $G(x, y) = G(x, y')$. If $U(y, y') = 0$, that is $G(y, y') = G'(y, y')$, then since G and G' have the same 3-element homogeneous sets and $G(x, y) \neq G'(x, y)$, $\{x, y, y'\}$ cannot be homogeneous, hence $G(y, y') \neq G(x, y)$ and $G'(y, y') \neq G'(x, y)$. This implies $G(y, y') \neq G'(y, y')$, a contradiction. From this observation, U is claw-free. Since G and \overline{G}' have the same 3-homogeneous subsets and $\overline{U} = G + \overline{G}'$, we also get that \overline{U} is claw-free. \Box

For a characterization of these boolean sums, see [14].

From Claim 2.8, *U* or its complement is a complete bipartite graph and, from Claim 2.9, *U* and *U* are claw-free. Since $v \geqslant 5$ (in fact $v \geqslant 7$), it follows that U is either the empty graph or the complete graph. Hence $G' = G$ or $G' = \overline{G}$ as claimed. \Box

2.2. Conditions on the number of edges and Ramsey's theorem

 Let k **be an integer,** $7 \neq k \geqslant 4$ **. There is an integer** m **such that if G and G' are two graphs on** the same set V of v vertices, $v \geqslant m$, such that $G_{\restriction K}$ and $G'_{\restriction K}$ have the same number of edges, up to comple*mentation, for all k-element subsets K of V , then* $G' = G$ *or* $G' = \overline{G}.$

Conditions $7 \neq k \geqslant 4$ in Theorem 2.10 are necessary.

 $K = 7$, consider two graphs *G* and *G'* on $V := \{1, 2, ..., v\}$ such that $\{i, j\}$ is an edge of *G* and G' for all $i \neq j$ in $\{1, 2, \ldots, \nu - 2\}$, G has no another edge and G' has $\{\nu - 1, \nu\}$ as an additional edge. For *k <* 4 apply Proposition 4.1 below.

Let $c(k)$ be the least integer *m* for which the conclusion of Theorem 2.10 holds.

Problem 2.11. *Is* $c(k) \le k + 4$?

Our proof uses Ramsey's theorem rather than incidence matrices. It is inspired from a relationship between Ramsey's theorem and Theorem 2.1 pointed out in [13]. The drawback is that the bound on *c(k)* is quite crude.

Let $r_2^2(k)$ be the bicolor Ramsey number for pairs: the least integer *n* such that every graph on *n* vertices contains a *k*-homogeneous subset, that is a clique or an independent on *k* vertices. We deduce Theorem 2.10 and $c(k) \leq r_2^2(k)$ from the following result.

Proposition 2.12. Let k be an integer, $7 \neq k \geqslant 4$ and let G and G' be two graphs on the same set V of v $vertices, v \geq k$ such that:

- (1) $G_{\restriction K}$ and $G'_{\restriction K}$ have the same number of edges, up to complementation, for all k-element subsets K of V ;
- (2) *V* contains a k-element subset K such that $G_{\restriction K}$ or $G_{\restriction K}$ has at least l edges where $l :=$ $\min(\frac{k^2+7k-12}{4}, \frac{k(k-1)}{2})$ *.*

Then $G' = G$ or $G' = \overline{G}$.

The inequality $\frac{k^2+7k-12}{4} \le \frac{k(k-1)}{2}$ holds iff $k \ge 8$. For $k > 8$ the condition $l = \frac{k^2+7k-12}{4}$ is weaker than the existence of a clique of size k.

Proof. We may suppose that *V* contains a *k*-element subset of *V*, say *K*, such that $e(G_{\restriction K}) \geqslant l$; also we may suppose, from condition (1), that $e(G_{\upharpoonright K}) = e(G'_{\upharpoonright K})$ otherwise replace G' by its complement. We shall prove that for all *V'* such that $K \subseteq V' \subseteq V$ and $|V'| = k + 2$ we have $e(G_{\upharpoonright K'}) = e(G'_{\upharpoonright K'})$ for all *k*-element subset *K'* of *V'*. Since the adjacency matrix of the Kneser graph *KG* $(2, k + 2)$ is non-singular, $G_{\restriction V'} = G'_{\restriction V'}$. It follows that $G = G'$.

Claim 2.13. For $x \notin K$ and $y \in K$, $e(G_{\upharpoonright (K \cup \{x\}) \setminus \{y\}}) = e(G'_{\upharpoonright (K \cup \{x\}) \setminus \{y\}})$.

Proof. Let $x \notin K$ and $y \in K$. Set $K' := (K \cup \{x\}) \setminus \{y\}$. The graphs $G_{\restriction K'}$ and $G'_{\restriction K'}$ have at least $l' :=$ *l* − (*k* − 1) edges. Since $G_{\upharpoonright K'}$ and $G'_{\upharpoonright K'}$ have the same number of edges up to complementation, we have $e(G_{|K'}) = e(G'_{|K'})$ whenever $l' \ge \frac{k(k-1)}{4}$, that is $l \ge l'' := \frac{(k-1)(k+4)}{4}$.

If *k* ≥ 8 we have *l* = $\frac{k^2+7k-12}{4}$ yielding *l* > *l''* as required. If *k* ∈ {4, 5, 6} we have *l* = $\frac{k(k-1)}{2}$ yielding again *l ≥ l''*. □

Claim 2.14. For distinct $x, x' \notin K$ and $y, y' \in K$, $e(G_{\restriction (K \cup \{x,x'\}) \setminus \{y,y'\})} = e(G'_{\restriction (K \cup \{x,x'\}) \setminus \{y,y'\})}$.

Proof. Let $x, x' \notin K$ and $y, y' \in K$ be distinct. Set $K' := (K \cup \{x, x'\}) \setminus \{y, y'\}$. We have $e(G_{\upharpoonright K'}) \geq$ $e(G_{\upharpoonright K}) - (2k - 3)$ and $e(G'_{\upharpoonright K'}) \ge e(G_{\upharpoonright K}) - (2k - 3)$. Thus $e(G_{\upharpoonright K'})$ and $e(G'_{\upharpoonright K'})$ have at least $l' :=$ *l* − (2*k* − 3) edges. Since $G_{\restriction K'}$ and $G'_{\restriction K'}$ have the same number of edges up to complementation, we have $e(G_{\restriction K'})=e(G'_{\restriction K'})$ whenever $l'\geqslant \frac{k(k-1)}{4}$, that is $l\geqslant \frac{k^2+7k-12}{4}$. This inequality holds if $k\geqslant 8$.

Suppose $k \in \{4, 5, 6\}$. Thus $l = \frac{k(k-1)}{2}$. Hence *K* is a clique for *G* and *G'*.

Subclaim. Let $u \notin K$ then *G* and *G'* coincide on $K \cup \{u\}$.

Proof. Since *K* is a clique, this amounts to $G(u, v) = G'(u, v)$ for all $v \in K$, a fact which follows from Claim 2.13. Indeed, we have $d_{G_{\restriction K \cup \{u\}}}(u) = \frac{1}{k-1} \sum_{w \in K} d_{G_{\restriction (K \cup \{u\}) \setminus \{w\}}}(u)$. From Claim 2.13 we have $d_{G_{\restriction(K\cup\{u\}\setminus\{w\}}(u))} = d_{G'_{\restriction(K\cup\{u\}\setminus\{w\}}}(u)$. Thus $d_{G_{\restriction K\cup\{u\}}}(u) = d_{G'_{\restriction K\cup\{u\}}}(u)$. Since $d_{G_{\restriction(K\cup\{u\}\setminus\{v\}}}(u) = d_{G'_{\restriction(K\cup\{u\})\setminus\{v\}}}(u)$ the equality $G(u, v) = G'(u, v)$ follows. \Box

From this subclaim it follows that *G* and *G'* coincide on *K'* with the possible exception of the pair $\{x, x'\}$. Set $a := e(G_{\upharpoonright K'})$, $a' := e(G'_{\upharpoonright K'})$. Suppose $a \neq a'$. Then $|a - a'| = 1$, hence the sum $a + a'$ is odd. Since $G_{\upharpoonright K'}$ and $G'_{\upharpoonright K'}$ have the same number of edges up to complementation, this sum is also $\frac{k(k-1)}{2}$. If $k = 4$ or $k = 5$ this number is even, a contradiction. Suppose $k = 6$. We may suppose $a = a' + 1$ hence from $a + a' = \frac{k(k-1)}{2}$ we get $a = 8$. Put $\{x_1, x_2, x_3, x_4, y, y'\} := K$. Since K is a clique we have $G(x, x') = 1$, $G'(x, x') = \tilde{0}$ and G, G' contain just one edge from $\{x, x'\}$ to $\{x_1, x_2, x_3, x_4\}$. We may suppose $G(x_1, x) = G'(x_1, x) = 1$, $G(x_1, x') = G'(x_1, x') = 0$ and $G(t, u) = G'(t, u) = 0$ for all $t \in \{x_2, x_3, x_4\}$ and $u \in \{x, x'\}.$

Let $K'' := (K \cup \{x, x'\}) \setminus \{x_1, x_2\}$. From the subclaim above, *G* and *G*^{\prime} coincide on K'' with the exception of the pair $\{x, x'\}$ hence *G*, *G'* contain just one edge from $\{x, x'\}$ to $\{x_3, x_4, y, y'\}$. We can assume $G(y, u) = G'(y, u) = 1$ for exactly one $u \in \{x, x'\}$, and $G(t, u) = G'(t, u) = 0$ for all $t \in \{x_3, x_4, y'\}$ and $u \in \{x, x'\}.$

Set $B := \{x_2, x_3, x_4, x, x', y'\}$, then $e(G_{\upharpoonright B}) = 7$ and $e(G'_{\upharpoonright B}) = 6$. So $e(G_{\upharpoonright B}) \neq e(G'_{\upharpoonright B})$ and $e(G_{\upharpoonright B}) +$ $e(G'_{\upharpoonright B}) \neq \frac{k(k-1)}{2}$, that gives a contradiction. □

Clearly Proposition 2.12 follows from Claims 2.13 and 2.14. \Box

3. Some members of *S*

Sufficient conditions for membership stated in Theorem 1.1 are contained in Theorem 3.1 below. Let *v* be a non-negative integer and $\vartheta(v) := 4l$ if $v \in \{4l+2, 4l+3\}$, $\vartheta(v) := 4l-3$ if $v \in \{4l, 4l+1\}$.

Theorem 3.1. Let v , k be two integers with $4 \leqslant k \leqslant \vartheta(v)$. Then, for every pair of graphs G and G' on the same *set V of v vertices, the following properties are equivalent*:

- (i) *G and G are k-hypomorphic up to complementation*;
- (ii) $G_{\upharpoonright K}$ and $G'_{\upharpoonright K}$ have the same number of edges, up to complementation, and the same number of 3*homogeneous subsets, for all k-element subsets K of V* ;
- (iii) $G_{\restriction K}$ and $G'_{\restriction K}$ have the same number of edges, up to complementation, for all k-element and k'-element s ubsets K of V where k' is an integer verifying $3 \leqslant k' < k$;
- (iv) $G' = G$ or $G' = \overline{G}$.

3.1. Ingredients

Let $G := (V, E)$ be a graph. Let $A^{(2)}(G)$ be the set of pairs $\{u, u'\}$ made of some $u \in E(G)$ and some $u' \in E(\overline{G})$. Let $A^{(0)}(G) := \{ \{u, u'\} \in A^{(2)}(G): u \cap u' = \emptyset \}, A^{(1)}(G) := A^{(2)}(G) \setminus A^{(0)}(G)$ and let $a^{(i)}(G)$ be the cardinality of $A^{(i)}(G)$ for $i \in \{0, 1, 2\}$; thus $a^{(2)}(G) = a^{(0)}(G) + a^{(1)}(G)$. Let $T(G)$ be the set of triangles of G and let $t(G) := |T(G)|$. Let $H^{(3)}(G) := T(G) \cup T(\overline{G})$ be the set of 3-homogeneous subsets of *G* and $h^{(3)}(G) := |H^{(3)}(G)|$.

Some elementary properties of the above numbers are stated in the lemma below; the proof is immediate.

Lemma 3.2. *Let G be a graph with v vertices, then*:

(1) $A^{(i)}(G) = A^{(i)}(\overline{G})$, hence $a^{(i)}(G) = a^{(i)}(\overline{G})$, for all $i \in \{0, 1, 2\}$. (2) $a^{(2)}(G) = e(G)e(\overline{G})$ *.* (3) $a^{(1)}(G) = \sum_{x \in V(G)} d_G(x) d_{\overline{G}}(x)$. $h^{(3)}(G) = \frac{\nu(\nu-1)(\nu-2)}{6} - \frac{1}{2}a^{(1)}(G)$.

Lemma 3.3. Let G and G' be two graphs on the same finite vertex set V, then

$$
e(G') = e(G)
$$
 or $e(G') = e(\overline{G})$ iff $e(G)e(\overline{G}) = e(G')e(\overline{G'}).$

Proof. Suppose

$$
e(G)e(\overline{G}) = e(G')e(\overline{G'}).
$$
\n⁽¹⁾

Since $e(G) + e(\overline{G}) = \frac{v(v-1)}{2}$ and $e(G') + e(\overline{G}') = \frac{v(v-1)}{2}$, where $v := |V|$, we have

$$
e(G) + e(\overline{G}) = e(G') + e(\overline{G'}).
$$
\n⁽²⁾

Then (1) and (2) give $e(G') = e(G)$ or $e(G') = e(\overline{G})$. The converse is obvious. \Box

Lemma 3.4. Let G be a graph, $V := V(G)$, $v := |V|$.

(a) Let $i \in \{0, 1\}$, k such that $4 - i \leq k \leq v$, then

$$
a^{(i)}(G) = \frac{1}{\binom{v-4+i}{k-4+i}} \sum_{\substack{K \subseteq V \\ |K|=k}} a^{(i)}(G_{\restriction K}).
$$

(b) Let k such that $3 \le k \le v - 1$, then

$$
a^{(0)}(G) = \frac{v-3}{v-k} e(G) e(\overline{G}) - \frac{1}{\binom{v-4}{k-3}} \sum_{\substack{K \subseteq V \\ |K| = k}} e(G_{\restriction K}) e(\overline{G}_{\restriction K}),
$$

$$
a^{(1)}(G) = \frac{1}{\binom{v-4}{k-3}} \sum_{\substack{K \subseteq V \\ |K| = k}} e(G_{\restriction K}) e(\overline{G}_{\restriction K}) - \frac{k-3}{v-k} e(G) e(\overline{G}).
$$

Proof. (a) Let $\{u, u'\} \in A^{(i)}(G)$ for $i \in \{0, 1\}$. The number of *k*-element subsets *K* of *V* containing *u* and *u'* is $\binom{v-4+i}{k-4+i}$. The result follows.

(b) If $k = 3$ then (a) and the fact that $a^{(0)}(G) + a^{(1)}(G) = e(G)e(\overline{G})$ give the formulas. If $4 \leq k \leq v - 1$, then by (a) we have

$$
{\binom{v-4}{k-4}a^{(0)}(G)} = \sum_{\substack{K \subseteq V \\ |K| = k}} a^{(0)}(G_{\restriction K}),
$$

$$
{\binom{v-3}{k-3}a^{(1)}(G)} = \sum_{\substack{K \subseteq V \\ |K| = k}} a^{(1)}(G_{\restriction K}).
$$

Summing up and applying (2) of Lemma 3.2 to the *G*-*^K* 's we have

$$
{\binom{\nu - 4}{k - 4}} a^{(0)}(G) + {\binom{\nu - 3}{k - 3}} a^{(1)}(G) = \sum_{\substack{K \subseteq V \\ |K| = k}} e(G_{\restriction K}) e(\overline{G}_{\restriction K}).
$$
\n(3)

On the other hand

$$
a^{(0)}(G) + a^{(1)}(G) = e(G)e(\overline{G}).
$$
\n(4)

Eqs. (3) and (4) form a Cramer system with $a^{(0)}(G)$ and $a^{(1)}(G)$ as unknowns. Indeed the determinant

$$
\Delta := \begin{vmatrix} \binom{v-4}{k-4} & \binom{v-3}{k-3} \\ 1 & 1 \end{vmatrix} = \binom{v-4}{k-4} - \binom{v-3}{k-3} = -\binom{v-4}{k-3}
$$

is nonzero. A straightforward computation gives the result. \Box

Corollary 3.5. Let G and G' be two graphs on the same set V of v vertices and k be an integer such that $4 \leq k \leq v$.

The implications (ii) \Rightarrow (i) *and* (i) \Rightarrow (iii) *between the following statements hold.*

- (i) $e(G'_{\restriction K}) = e(G_{\restriction K})$ or $e(\overline{G}_{\restriction K})$ and $h^{(3)}(G_{\restriction K}) = h^{(3)}(G'_{\restriction K})$ for all k-element subsets K of V.
- (ii) $e(G'_{|K}) = e(G_{|K})$ or $e(\overline{G}_{|K})$ for all k-element and k'-element subsets K of V where k' is some integer $verifying 3 \leq k' < k$.
- (iii) $G_{\restriction L}$ and $G'_{\restriction L}$ have the same number of edges up to complementation and $h^{(3)}(G_{\restriction L})=h^{(3)}(G'_{\restriction L})$ for all *l*-element subsets L of V and all integer l such that $k \le l \le v$.

Proof. (i) \Rightarrow (iii). Let *L* be an *l*-element subset of *V* with $l \geq k$, and *K* be a *k*-element subset of *L*. From Lemma 3.3 and (2) of Lemma 3.2, we have $a^{(0)}(G_{\restriction K}) + a^{(1)}(G_{\restriction K}) = a^{(0)}(G'_{\restriction K}) + a^{(1)}(G'_{\restriction K})$, and from (4) of Lemma 3.2, $a^{(1)}(G_{\upharpoonright K}) = a^{(1)}(G'_{\upharpoonright K})$. Hence $a^{(i)}(G_{\upharpoonright K}) = a^{(i)}(G'_{\upharpoonright K})$ for all k-element subsets K of *L* and *i* ∈ {0, 1}.

From (a) of Lemma 3.4 applied to $G_{\restriction L}$ follows $a^{(i)}(G_{\restriction L}) = a^{(i)}(G'_{\restriction L})$ for $i \in \{0, 1\}$, hence using (2) of Lemma 3.2 we get $e(G_{\restriction L})e(\overline{G}_{\restriction L})=e(G'_{\restriction L})e(\overline{G}'_{\restriction L})$. The conclusion follows from Lemma 3.3 and (4) of Lemma 3.2.

(ii) \Rightarrow (i). It suffices to prove that $h^{(3)}(G_{\restriction K}) = h^{(3)}(G'_{\restriction K})$ for all k-element subsets K of V. From Lemma 3.3 we have $e(G_{\restriction K})e(\overline{G}_{\restriction K})=e(G'_{\restriction K})e(\overline{G}'_{\restriction K})$ and $e(G_{\restriction K'})e(\overline{G}_{\restriction K'})=e(G'_{\restriction K'})e(\overline{G}'_{\restriction K'})$ for all k' element set $K' \subseteq K$. From (b) of Lemma 3.4 we get $a^{(i)}(G_{\restriction K}) = a^{(i)}(G'_{\restriction K})$ for $i \in \{0, 1\}$. Then by (4) of Lemma 3.2, $h^{(3)}(G_{\upharpoonright K}) = h^{(3)}(G'_{\upharpoonright K})$. \Box

Proposition 3.6. Let G and G' be two graphs on v vertices and k be an integer such that $4 \leq k \leq v$. If G and G' are k-hypomorphic up to complementation then $e(G'_{\restriction L})=e(G_{\restriction L})$ or $e(G'_{\restriction L})=e(\overline{G}_{\restriction L})$ for all l-element subsets *L* of *V* and all integer l such that $k \leq l \leq v$.

Proof. If *G* and *G*^{\prime} are *k*-hypomorphic up to complementation then $G_{\restriction K}$ and $G'_{\restriction K}$ have the same From the direct engagementation, and the same number of 3-homogeneous subsets, for all number of edges up to complementation, and the same number of 3-homogeneous subsets, for all *k*-element subsets *K* of *V*. We conclude using (i) \Rightarrow (iii) of Corollary 3.5 \Box

By inspection of the eleven graphs on four vertices, one may observe that:

Fact 3.7. The ordered pair $(e(G)e(\overline{G}), h^{(3)}(G))$ characterize G up to isomorphy and complementation if $|V(G)| \leq 4.$

Note that in Fact 3.7, we can replace $(e(G)e(\overline{G}), h^{(3)}(G))$ by $(a^{(0)}(G), a^{(1)}(G))$ (this follows from Lemmas 3.3 and 3.2).

Proposition 3.8. Let G and G' be two graphs on the same set V of v vertices and k be an integer. If 3 \leqslant k \leqslant $v-3$ (respectively $4 \le k \le v-4$) and $h^{(3)}(G_{\restriction K}) = h^{(3)}(G'_{\restriction K})$ (respectively $a^{(0)}(G_{\restriction K}) = a^{(0)}(G'_{\restriction K})$) for all k-element subsets K of V then $h^{(3)}(G_{\restriction K}) = h^{(3)}(G'_{\restriction K})$ (respectively $a^{(0)}(G_{\restriction K}) = a^{(0)}(G'_{\restriction K})$) for all $(v - k)$ *element subsets K of V .*

Proof. By (4) of Lemma 3.2, $h^{(3)}(G_{\restriction K}) = h^{(3)}(G'_{\restriction K})$ iff $a^{(1)}(G_{\restriction K}) = a^{(1)}(G'_{\restriction K})$.

Case 1. $k \leq \frac{v}{2}$, then $v - k \geq k$. Let *K*^{*'*} be a $(v - k)$ -element subset of *V*, then from (a) of Lemma 3.4 we have for $i \in \{0, 1\}$,

$$
a^{(i)}(G_{\restriction K'}) = \frac{1}{\binom{v-k-4+i}{k-4+i}} \sum_{\substack{K \subseteq K' \\ |K| = k}} a^{(i)}(G_{\restriction K}).
$$

Then we get the conclusion.

Case 2. $k > \frac{v}{2}$, then $v - k < \frac{v}{2}$. Let *K'* be a *k*-element subset of *V*. From (a) of Lemma 3.4 we have for *i* ∈ {0*,* 1},

$$
\sum_{\substack{K \subseteq K' \\ |K| = v - k}} a^{(i)}(G_{\restriction K}) = {k - 4 + i \choose v - k - 4 + i} a^{(i)}(G_{\restriction K'}).
$$
\n(5)

Let X_1, X_2, \ldots, X_l be an enumeration of the $(v - k)$ -element subsets of *V*. Let $w_G^{(i)} :=$ $(a^{(i)}(G_{\upharpoonright X_1}), a^{(i)}(G_{\upharpoonright X_2}), \ldots, a^{(i)}(G_{\upharpoonright X_l})),$ and $w^{(i)}_{G'} := (a^{(i)}(G'_{\upharpoonright X_1}), a^{(i)}(G'_{\upharpoonright X_2}), \ldots, a^{(i)}(G'_{\upharpoonright X_l})).$ From (5), we get, for $i \in \{0, 1\}$, $A_{v-k, v}^t w_G^{(i)} = A_{v-k, v}^t w_{G'}^{(i)}$. We conclude using Theorem 2.2. \Box

3.2. Proof of Theorem 3.1

 $(i) \Rightarrow (ii)$, $(iv) \Rightarrow (i)$, $(iv) \Rightarrow (iii)$ are obvious and $(iii) \Rightarrow (ii)$ is implication $(ii) \Rightarrow (i)$ of Corollary 3.5. Thus it is sufficient to prove (ii) \Rightarrow (iv).

Let $l, k \leq l \leq v$. According to implication (i) \Rightarrow (iii) of Corollary 3.5, $e(G'_{|L}) = e(G_{|L})$ or $e(G'_{|L}) =$ $e(\overline{G}_{|L})$ for all *l*-element subsets *L* of *V*. If we may choose $l \equiv 0 \pmod{4}$ with $l \le v - 2$, then $e(G_{|L})$ and $e(G'_{|L})$ have the same parity. Theorem 2.6 gives $G' = G$ or $G' = \overline{G}$. Thus, the implication (ii) \Rightarrow (iv) is proved if $v \equiv 2 \pmod{4}$ and if $v \equiv 3 \pmod{4}$. There are two remaining cases.

Case 1. $v \equiv 1 \pmod{4}$ and $k = v - 4$. We prove that $e(G'_{|L})$ and $e(G_{|L})$ have the same parity for all 4element subsets *L* of *V*. Theorem 2.6 again gives $G' = G$ or $G' = \overline{G}$. The proof goes as follows. Let *L* be a 4-element subset of V, and K be a k-element subset of V. By Lemma 3.2, $a^{(2)}(G_{\restriction K}) = a^{(2)}(G'_{\restriction K})$ and $a^{(1)}(G_{\restriction K}) = a^{(1)}(G'_{\restriction K})$. Thus $a^{(0)}(G_{\restriction K}) = a^{(0)}(G'_{\restriction K})$. Using Proposition 3.8, we get $a^{(0)}(G_{\restriction L}) = a^{(0)}(G'_{\restriction L})$ and $h^{(3)}(G_{\restriction L}) = h^{(3)}(G'_{\restriction L})$. Now (4) of Lemma 3.2 gives $a^{(1)}(G_{\restriction L}) = a^{(1)}(G'_{\restriction L})$. So $a^{(2)}(G_{\restriction L}) = a^{(2)}(G'_{\restriction L})$, then using (2) of Lemma 3.2 and Lemma 3.3 we get $e(G'_{|L}) = e(G_{|L})$ or $e(\overline{G}_{|L})$, thus $e(G'_{|L})$ and $e(G_{|L})$ have the same parity.

Case 2. $v \equiv 0 \pmod{4}$ and $k = v - 3$. From Proposition 3.8, *G* and *G*^{\prime} have the same 3-homogeneous subsets. From Theorem 2.7, $G' = G$ or $G' = \overline{G}$ as claimed.

4. Constraints on *S*

Two arbitrary graphs on the same set of vertices are *k*-hypomorphic up to complementation for $k \le 2$. Hence, if $v \le 2$, $(v, k) \in S$ iff $k \in \mathbb{N}$. This is item (1) of Theorem 1.1.

Next, suppose $v > 2$, and $(v, k) \in S$.

According to the proposition below, we have $k\geqslant 4.$

 ${\bf Proposition \ 4.1}.$ For every integer $v\geqslant 4$, there are two graphs G and G', on the same set of v vertices, which *are* 3*-hypomorphic up to complementation but not isomorphic up to complementation.*

Proof. Let *G* and *G*^{\prime} be two graphs having $\{1, 2, ..., v\}$ as set of vertices.

- $-$ Even case: $v = 2p$. Pairs $\{i, j\}$ are edges of *G* and *G'* for all $i \neq j$ in $\{1, 2, ..., p\}$ and for all $i \neq j$ in $\{p+1,\ldots,2p\}$. The graph *G* has no other edge and *G*^{\prime} has $\{1,p+1\}$ as an additional edge. Clearly *G'* and *G* are 3-hypomorphic up to complementation and not isomorphic. Since \overline{G} has p^2 edges but *G'* has $p(p-1) + 1$ edges, *G'* and \overline{G} are not isomorphic.
- Odd case: $v = 2p + 1$. Pairs $\{i, j\}$ are edges of *G* and *G*^{\prime} for all $i \neq j$ in $\{1, 2, \ldots, p\}$ and for all $i \neq j$ in $\{p+1, \ldots, 2p+1\}$. The graph *G* has no other edge and *G*^{\prime} has $\{1, p+1\}$ as an additional edge. Clearly *G'* and *G* are 3-hypomorphic up to complementation and not isomorphic. Since \overline{G} has $p(p+1)$ edges but *G*^{\prime} has p^2+1 edges, *G*^{\prime} and \overline{G} are not isomorphic.

In both cases *G* and *G'* are 3-hypomorphic up to complementation but not isomorphic up to complementation. \square

According to the following lemma, $v \geqslant 6$.

Lemma 4.2. For every $v, 3 \leqslant v \leqslant 5$, there are two graphs G and G', on the same set of v vertices, which are *k*-hypomorphic for all $k \leqslant v$ but $G' \neq G$ and $G' \neq \overline{G}.$

Proof. Let $V := \{0, 1, 2, 3, 4\}, \ \mathcal{E} := \{\{0, 1\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 0\}\}$ and $\mathcal{E}' := (\mathcal{E} \setminus \{\{0, 4\}, \{1, 2\}\}) \cup$ $\{(1,4), \{0,2\}\}\)$. Let $G := (V, \mathcal{E})$ and $G' := (V, \mathcal{E}')$. These graphs are two 5-element cycles, G' being obtained from *G* by exchanging 0 and 1. Trivially, they satisfy the conclusion of the lemma. The two pairs *G*_{−3}, *G'*_{−3} and *G*_{−3,−4} and *G'*_{−3,−4} also satisfy the conclusion of the lemma. \Box

Next, a straightforward extension of the construction in Lemma 4.2 above yields *k v* − 2. Indeed, let us say that two graphs *G* and *G'* on the same set *V* of vertices are *k*-hypomorphic if for any subset *X* of *V* of cardinality *k*, $G_{|X}$ and $G'_{|X}$ are isomorphic. We have:

Lemma 4.3. For every integer v, v \geqslant 4, there are two graphs G and G', on the same set of v vertices, which *are k-hypomorphic for all k* \in {*v* $-$ 1, *v*} *but G'* \neq *G and G'* \neq $\overline{G}.$

Proof. Let $V := \{0, \ldots, \nu - 1\}, \ \mathcal{E} := \{\{i, i + 1\}: \ 0 \leq i < \nu - 1\} \cup \{\{0, \nu - 1\}\}, \ \mathcal{E}' := (\mathcal{E} \setminus \{0, \nu - 1\}),$ $(1, 2)$) \cup $\{(1, v - 1), (0, 2)\}$. Let $G := (V, E)$ and $G' := (V, E')$. These graphs are two v-element cycles, *G*- being obtained from *G* by exchanging 0 and 1. Trivially, they satisfy the conclusion of the lemma. \Box

With this lemma, the proof of the first part of item *(*2*)* is complete.

The fact that $(v, k) \in S$ implies $k \le \vartheta(v)$ for infinitely many *v* is an immediate consequence of the following proposition.

Proposition 4.4. For every integer $v := m + r$ such that $q \equiv 1 \pmod{4}$ for each prime power q occuring in the $decomposition$ of m and $r \in \{2, 3, 4\}$ there are two graphs G and G', on the same set of v vertices, which are *k-hypomorphic up to complementation for all k,* ϑ (*v*) $+$ 1 \leqslant k \leqslant *v but G'* \neq *G* and *G'* \neq *G*.

Our construction uses vertex-transitive self-complementary graphs. We recall that there is a vertex-transitive self-complementary graph on *m* vertices if and only if $q \equiv 1 \pmod{4}$ for each prime power *q* occuring in the decomposition of *m* [12,16]. Lexicographical products of Paley graphs readily provide examples of vertex-transitive self-complementary graphs for each *m* as above. A complete description is not known. For more information about these graphs see [5]. For Paley graphs see also [18].

Lemma 4.5. *A finite graph G is vertex-transitive and self-complementary if and only if its order is distinct from* 2 *and* G_{-x} *is self-complementary for every vertex* $x \in V(G)$ *.*

Proof. Let G be the class of finite graphs of order distinct from 2 such that $G_−x$ is self-complementary for every vertex $x \in V(G)$. Let $G \in \mathcal{G}$. Let $n := |V(G)|$. We may suppose $n > 2$. Let $x \in V(G)$. We have $d_G(x) = e(G) - e(G_{-x})$. Since G_{-x} is self-complementary, $e(G_{-x}) = e(\overline{G}_{-x})$ and, since $e(G_{-x})$ + $e(\overline{G}_{-x}) = \binom{n-1}{2}$, $e(G_{-x}) = \frac{1}{2} \binom{n-1}{2}$. Thus $d_G(x)$ does not depend on x, that is G is regular. Since $n > 2$ we have $e(G) = \frac{1}{n-2} \sum_{x \in V(G)} e(G_{-x})$ thus $e(G) = \frac{n(n-1)}{4}$. This added to $e(G_{-x}) = \frac{(n-1)(n-2)}{4}$ yields $n(n-1) \equiv 0 \pmod{4}$ and $(n-1)(n-2) \equiv 0 \pmod{4}$. It follows that $n \equiv 1 \pmod{4}$. As it is well known [11], regular graphs of order distinct from 2 are reconstructible. Thus *G* is self-complementary. The proof that *G* is reconstructible yields that for every vertex *x*, every isomorphism from *G*−*^x* onto *G*−*^x* is induced by an isomorphism *ϕ* from *G* onto *G* which fixes *x*. Hence, for a given pair of vertices *x*, *x'* there is an element $\Gamma \in Aut(G)$ such that $\Gamma(x) = x'$ if and only if there is an isomorphism $\varphi: G \to \overline{G}$ such that $\varphi(x) = x'$. It follows that each orbit of Aut(*G*) is preserved under all isomorphisms from *G* onto *G*. Thus, if *A* is a union of orbits, $G_{\restriction A} \in \mathcal{G}$. Since members of \mathcal{G} have odd order, there is just one orbit, proving that Aut*(G)* is vertex-transitive.

Conversely, let *G* be a self-complementary vertex-transitive graph. Clearly *G* is not of order 2. Let *x* ∈ *V* (*G*). Since *G* is self-complementary, $G_{-\chi}$ is isomorphic to $\overline{G}_{-\chi}$ for some χ ∈ *V* (*G*). Since Aut(\overline{G}) = Aut(G) and Aut(G) is vertex-transitive, \overline{G} _{−*y*} is isomorphic to \overline{G} _{−*x*}. Hence, $G \in \mathcal{G}$.

Proof of Proposition 4.4. Let *v,m,r* satisfying the stated conditions. Let *P* be a self-complementary vertex-transitive graph of order *m*.

Case 1. $r = 4$. In this case $\vartheta(v) = m$. Let *V* be made of $V(P)$ and four new elements added, say 1, 2, 3, 4. Let *G* and *G*^{\prime} be the graphs with vertex set *V* which coincide with *P* on *V*(*P*), the other edges of *G* being {1, 2}, {2, 3}, {3, 4}, {2, x}, {3, x} for all $x \in V(P)$, the other edges of *G*⁻ being {1, 3}, $\{2,3\},\ \{2,4\},\ \{2,x\},\ \{3,x\}$ for all $x \in V(P)$. Clearly, $G' \neq G$ and $G' \neq \overline{G}$. We check that G and G' are *k*-hypomorphic for ϑ (*v*) + 1 \leq *k* \leq *v*. Let *X* \subseteq *V* with $|X| \leq 3$ and *K* := *V* \ *X*. With the help of Lemma 4.5, note that if *X* ∩ {1, 2, 3, 4} ∈ {{1, 2}, {1, 3}, {2, 4}, {3, 4}} then $G_{\upharpoonright K} \simeq \overline{G}'_{\upharpoonright K}$. In all other cases $G_{\restriction K} \simeq G'_{\restriction K}$.

Case 2. $r = 3$. In this case $\vartheta(v) = m$. Let $G_1 := G_{-1}$ and $G'_1 := G'_{-1}$ where G , G' are the graphs constructed in Case 1. Clearly $G'\neq G$ and $G'\neq \overline{G}.$ And since G,G' are k -hypomorphic for $m+1\leqslant k\leqslant k$ $m + 4$, the graphs G_1 and G'_1 are *k*-hypomorphic for $\vartheta(v) + 1 \leq k \leq v$.

Case 3. $r = 2$. In this case $\vartheta(v) = m - 1$. Let *V* be made of *V(P)* and two new elements added, say 1, 2. Let G and G' be the graphs with vertex set *V* which coincide with *P* on $V(P)$, the other edges of G being $(2, x)$ for all $x \in V(P)$, the other edges of G' being $(1, x)$ for all $x \in V(P)$. Clearly, $G' \neq G$ and $G' \neq \overline{G}$. Let $X \subseteq V$ with $|X| \leq 2$ and $K := V \setminus X$. If $X \cap \{1, 2\} \neq \emptyset$ then $G_{\upharpoonright K} \simeq \overline{G}'_{\upharpoonright K}$. In all other cases $G_{\upharpoonright K} \simeq G'_{\upharpoonright K}$. Hence, *G* and *G'* are *k*-hypomorphic for $\vartheta(v) + 1 \leq k \leq v$. \Box

By Theorem 2.6 we have:

Remark 4.6. Let *G* be a graph with *v* vertices. If there is a graph $G' \neq G$ on the same vertex set *V*, an integer *k* such that $1 \leq k \leq v - 2$, $k \equiv 0 \pmod{4}$, *G'* is $(v - 1)$ -hypomorphic to *G* and $e(G'_{|K})$ has the same parity as $e(G_{\restriction K})$ for all *k*-element subsets *K* of *V*, then *G* is vertex-transitive and selfcomplementary.

5. Conclusion

Let R be the set of ordered pairs (v, k) such that two graphs on the same set of v vertices are isomorphic up to complementation whenever these two graphs are *k*-hypomorphic up to complementation.

Behind Ille's problem was the question of a description of \mathcal{R} .

This seems to be a very difficult problem. Except the trivial inclusion $S \subseteq \mathcal{R}$, the fact that some ordered pairs like (5, 4), $(v, v - 3)$ for $v \ge 7$ belong to R requires some effort [4].

We prefer to point out the following problem.

Problem 5.1. *Let* $v > 2$ *. Is* $(v, k) \in S \iff 4 \leq k \leq \vartheta(v)$?

Acknowledgments

We thank J.A. Bondy, E. Salhi and S. Thomassé for their helpful comments.

References

- [1] J.A. Bondy, Basic graph theory: Paths and circuits, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, vol. I, North-Holland, 1995, pp. 3–110.
- [2] J.A. Bondy, R.L. Hemminger, Graph reconstruction, a survey, J. Graph Theory 1 (1977) 227–268.
- [3] J.A. Bondy, A graph reconstruction manual, in: A.D. Keedwell (Ed.), Surveys in Combinatorics, in: LMS-Lecture Note Series, vol. 166, 1991, pp. 221–252.
- [4] J. Dammak, G. Lopez, M. Pouzet, H. Si Kaddour, Reconstruction of graphs up to complementation, in: Y. Boudabbous, N. Zaguia (Eds.), Proceeding of the First International Conference on Relations, Orders and Graphs: Interaction with Computer Science, ROGICS'08, Mahdia, Tunisia, 2008, pp. 195–203.
- [5] A. Farrugia, Self-complementary graphs and generalisations: A comprehensive reference manual, University of Malta, 1999, 254 pp.
- [6] R. Fraïssé, Theory of Relations, first ed., North-Holland Publ. Co., Amsterdam, 1986, second ed., North-Holland Publ. Co., Amsterdam, 2000.
- [7] D.H. Gottlieb, A class of incidence matrices, Proc. Amer. Math. Soc. 17 (1966) 1233–1237.
- [8] J.G. Hagendorf, G. Lopez, La demi-reconstructibilité des relations binaires d'au moins 13 éléments, C. R. Acad. Sci. Paris Sér. I 317 (1993) 7–12.
- [9] P. Ille, Personal communication, September 2000.
- [10] W. Kantor, On incidence matrices of finite projection and affine spaces, Math. Z. 124 (1972) 315–318.
- [11] P.J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957) 961–968.
- [12] M. Muzychuk, On Sylow subgraphs of vertex-transitive self-complementary graphs, Bull. London Math. Soc. 31 (1999) 531– 533.
- [13] M. Pouzet, Application d'une propriété combinatoire des parties d'un ensemble aux groupes et aux relations, Math. Z. 150 (1976) 117–134.
- [14] M. Pouzet, H. Si Kaddour, Claw-freeness and the 3-homogeneous subsets of a graph, Discrete Math., January 2005, submitted for publication.
- [15] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1976) 264–286.
- [16] S.B. Rao, On regular and strongly-regular self-complementary graphs, Discrete Math. 54 (1985) 73–82.
- [17] S.M. Ulam, A Collection of Mathematical Problems, Intersciences Publishers, New York, 1960.
- [18] J.H. Van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.
- [19] R.M. Wilson, A diagonal form for the incidence matrices of *t*-subsets vs. *k*-subsets, European J. Combin. (1990) 609–615.