brought to you by 🎚 CORE

Journal of Combinatorial Theory, Series B 99 (2009) 84-96

Contents lists available at ScienceDirect

Journal of Combinatorial Theory, Series B

www.elsevier.com/locate/jctb

Hypomorphy of graphs up to complementation [☆]

Jamel Dammak^a, Gérard Lopez^b, Maurice Pouzet^c, Hamza Si Kaddour^c

- ^a Département de Mathématiques, Faculté des Sciences, Université de Sfax, B.P. 802, 3018 Sfax, Tunisia
- ^b Institut de Mathématiques de Luminy, CNRS-UPR 9016, 163 avenue de Luminy, case 907, 13288 Marseille cedex 9, France
- ^c ICI, Université de Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France

ARTICLE INFO

Article history:

Received 18 January 2006 Available online 4 June 2008

Keywords:

Graph

Hypomorphy up to complementation Reconstruction up to complementation Reconstruction

ABSTRACT

Let V be a set of cardinality ν (possibly infinite). Two graphs G and G' with vertex set V are isomorphic up to complementation if G'is isomorphic to G or to the complement \overline{G} of G. Let k be a nonnegative integer, G and G' are k-hypomorphic up to complementation if for every k-element subset K of V, the induced subgraphs $G_{\upharpoonright K}$ and G'_{+K} are isomorphic up to complementation. A graph G is kreconstructible up to complementation if every graph G' which is k-hypomorphic to G up to complementation is in fact isomorphic to G up to complementation. We give a partial characterisation of the set S of ordered pairs (n, k) such that two graphs G and G' on the same set of n vertices are equal up to complementation whenever they are k-hypomorphic up to complementation. We prove in particular that S contains all ordered pairs (n,k) such that $4 \le k \le n-4$. We also prove that 4 is the least integer k such that every graph G having a large number n of vertices is k-reconstructible up to complementation; this answers a question raised by P. Ille [P. Ille, Personal communication, September 2000]. © 2008 Elsevier Inc. All rights reserved.

1. Introduction

Ulam's Reconstruction Conjecture [17] (see [2,3]) asserts that two graphs G and G' on the same finite set V of v vertices, $v \ge 3$, are isomorphic provided that the restrictions $G_{\uparrow K}$ and $G'_{\uparrow K}$ of G and G' to the (v-1)-element subsets of V are isomorphic. If this latter condition holds for the k-element subsets of V for some k, $2 \le k \le v - 2$, then, as it has been noticed several times, G and G' are

^{*} This work was partially supported by French-Tunisian CMCU 05S1505 "Outils mathématiques pour l'informatique." *E-mail addresses*: jdammak@yahoo.fr (J. Dammak), gerard.lopez1@free.fr (G. Lopez), pouzet@univ-lyon1.fr (M. Pouzet), sikaddour@univ-lyon1.fr (H. Si Kaddour).

identical. This conclusion does not require the finiteness of v nor the isomorphy of $G_{\uparrow K}$ and $G'_{\uparrow K}$, it only requires that $G_{\uparrow K}$ and $G'_{\uparrow K}$ have the same number of edges for all k-element subsets K of V, simply because the adjacency matrix of the Kneser graph KG(2, k+2) is non-singular (see Section 2).

In this paper we look for similar results if the conditions on the restrictions $G_{\uparrow K}$ and $G'_{\uparrow K}$ are given up to complementation, that is if $G'_{\uparrow K}$ is isomorphic to $G_{\uparrow K}$ or to its complement $\overline{G}_{\uparrow K}$, or if $G'_{\uparrow K}$ has the same number of edges than $G_{\uparrow K}$ or $\overline{G}_{\uparrow K}$. If the first condition holds for all k-element subsets K of V, we say that G and G' are k-hypomorphic up to complementation and, if the second holds, we say that G and G' have the same number of edges up to complementation. We say that G is k-reconstructible up to complementation if every graph G', k-hypomorphic to G up to complementation, is isomorphic to G or its complement.

We show first that the equality of the number of edges, up to complementation, for the k-vertices induced subgraphs suffices for the equality up to complementation provided that $4 \le k \ne 7$ and ν is large enough (Theorem 2.10). Our proof is based on Ramsey's theorem for pairs [15].

Next, we give partial description of the set S of ordered pairs (v,k) such that two graphs G and G' on the same set of v vertices are equal up to complementation whenever they are k-hypomorphic up to complementation.

Theorem 1.1.

- (1) Let $v \leq 2$, then $(v, k) \in \mathcal{S}$ iff $k \in \mathbb{N}$.
- (2) Let v > 2 then $(v, k) \in S$ implies $4 \le k \le v 2$.
 - (a) If $v \equiv 2 \pmod{4}$, $(v, k) \in S$ iff $4 \le k \le v 2$.
 - (b) If $v \equiv 0 \pmod{4}$ or $v \equiv 3 \pmod{4}$ then $(v, k) \in S$ implies $k \leq v 3$ for infinitely many v and $4 \leq k \leq v 3$ implies $(v, k) \in S$.
 - (c) If $v \equiv 1 \pmod{4}$ then $(v, k) \in S$ implies $k \le v 4$ for infinitely many v and $4 \le k \le v 4$ implies $(v, k) \in S$.

Our proof for membership in \mathcal{S} is a straightforward application of properties of incidence matrices due to D.H. Gottlieb [7], W. Kantor [10] and R.M. Wilson [19]. It is given in Section 3. Constraints on \mathcal{S} are given in Section 4.

Our motivation comes from the following problem raised by P. Ille: find the least integer k such that every graph G having a large number v of vertices is k-reconstructible up to complementation. With Theorem 1.1 we show that k = 4 (see Section 2).

A quite similar problem was raised by J.G. Hagendorf (1992) and solved by J.G. Hagendorf and G. Lopez [8]. Instead of graphs, they consider binary relations and instead of the complement of a graph, they consider the *dual* R^* of a binary relation R (where $(x, y) \in R^*$ if and only if $(y, x) \in R$); they prove that 12 is the least integer k such that two binary relations R and R', on the same large set of vertices, are either isomorphic or dually isomorphic provided that the restrictions $R_{\uparrow K}$ and $R'_{\uparrow K}$ are isomorphic or dually isomorphic, for every k-element subsets K of V.

2. Preliminaries

Our notations and terminology follow [1]. A graph is an ordered pair $G := (V, \mathcal{E})$, where \mathcal{E} is a subset of $[V]^2$, the set of pairs $\{x,y\}$ of distinct elements of V. Elements of V are the vertices of G and elements of \mathcal{E} its edges. If K is a subset of V, the restriction of G to K, also called the induced graph on K is the graph $G_{\uparrow K} := (K, [K]^2 \cap \mathcal{E})$. If $K = V \setminus \{x\}$, we denote this graph by G_{-x} . The complement of G is the graph $G := (V, [V]^2 \setminus \mathcal{E})$. We denote by V(G) the vertex set of a graph G, by E(G) its edge set and by e(G) := |E(G)| the number of edges. If $\{x,y\}$ is an edge of G we set G(x,y) = 1; otherwise we set G(x,y) = 0. The degree of a vertex X of G, denoted G(X), is the number of edges which contain X. The graph G is regular if G(X) = G(X) for all G(X) = G(X) are two graphs, we denote by $G \cong G'$ the fact that they are isomorphic. A graph is self-complementary if it is isomorphic to its complement.

2.1. Incidence matrices and isomorphy up to complementation

Let V be a finite set, with v elements. Given non-negative integers t, k, let $W_{t\,k}$ be the $\binom{v}{t}$ by $\binom{v}{k}$ matrix of 0's and 1's, the rows of which are indexed by the t-element subsets T of V, the columns are indexed by the k-element subsets K of V, and where the entry $W_{t\,k}(T,K)$ is 1 if $T\subseteq K$ and is 0 otherwise.

A fundamental result, due to D.H. Gottlieb [7], and independently W. Kantor [10], is this:

Theorem 2.1. For $t \leq \min(k, v - k)$, $W_{t,k}$ has full row rank over the field \mathbb{Q} of rational numbers.

If k := v - t then, up to a relabelling, $W_{t\,k}$ is the adjacency matrix $A_{t,v}$ of the *Kneser graph KG*(t,v), graph whose vertices are the t-element subsets of V, two subsets forming an edge if they are disjoint. An equivalent form of Theorem 2.1 is:

Theorem 2.2. $A_{t,v}$ is non-singular for $t \leq \frac{v}{2}$.

Applications to graphs and relational structures where given in [6] and [13]. Theorem 2.1 has a modular version due to R.M. Wilson [19].

Theorem 2.3. For $t \leq \min(k, v - k)$, the rank of W_{tk} modulo a prime p is

$$\sum \binom{v}{i} - \binom{v}{i-1}$$

where the sum is extended over those indices i, $0 \le i \le k$, such that p does not divide the binomial coefficient $\binom{k-i}{t-i}$.

In the statement of the theorem, $\binom{\nu}{-1}$ should be interpreted as zero.

We will apply Wilson's theorem with t = p = 2 for $k \equiv 0 \pmod{4}$ and for $k \equiv 1 \pmod{4}$. In the first case the rank of $W_{2k} \pmod{2}$ is $\binom{v}{2} - 1$. In the second case, the rank is $\binom{v}{2} - v$.

Let us explain why the use of these results in our context is natural.

Let X_1,\ldots,X_r be an enumeration of the 2-element subsets of V; let K_1,\ldots,K_s be an enumeration of the k-element subsets of V and $W_{2\,k}$ be the matrix of the 2-element subsets versus the k-element subsets. If G is a graph with vertex set V, let w_G be the row matrix (g_1,\ldots,g_r) where $g_i=1$ if X_i is an edge of G, 0 otherwise. We have $w_GW_{2\,k}=(e(G_{\lceil K_1}),\ldots,e(G_{\lceil K_s}))$. Thus, if G and G' are two graphs with vertex set V such that $G_{\lceil K \rceil}$ and $G'_{\lceil K \rceil}$ have the same number of edges for every k-element subset of V, we have $(w_G-w_{G'})W_{2\,k}=0$. Thus, provided that $v\geqslant 4$, by Theorem 2.1, $w_G-w_{G'}=0$ that is G=G'.

This proves the observation made at the beginning of our introduction. The same line of proof gives:

Proposition 2.4. Let $t \le \min(k, v - k)$ and G and G' be two graphs on the same set V of v vertices. If G and G' are k-hypomorphic up to complementation then they are t-hypomorphic up to complementation.

Proof. Let H be a graph on t vertices. Set $Is(H,G) := \{L \subseteq V \colon G_{\uparrow L} \simeq H\}$, $Isc(H,G) := Is(H,G) \cup Is(\overline{H},G)$ and $w_{H,G}$ the 0–1-row vector indexed by the t-element subsets X_1, \ldots, X_r of V whose coefficient of X_i is 1 if $X_i \in Isc(H,G)$ and 0 otherwise. From our hypothesis, it follows that $w_{H,G}W_{t\,k} = w_{H,G'}W_{t\,k}$. From Theorem 2.1, this implies $w_{H,G} = w_{H,G'}$ that is Isc(H,G) = Isc(H,G'). Since this equality holds for all graphs H on t-vertices, the conclusion of the proposition follows. \square

Theorem 2.5. $(k, v) \in \mathcal{S}$ for all v, k such that $4 \le k \le v - 4$.

Proof. Let k be a non-negative integer and G, G' be two graphs on the same set V of v vertices which are k-hypomorphic up to complementation. Suppose k=4. If v=6, a careful case analysis (or a very special case of Wilson's theorem, see Theorem 2.6 below) yields that G and G' are equal up to complementation. If $v \ge 6$, then from this fact, $G_{\upharpoonright K}$ and $G'_{\upharpoonright K}$ are equal up to complementation for every 6-element subset K of V. Thus, this conclusion also holds for all k-element subsets of V with $k \le 6$. This implies that it holds for all k and particularly that G and G' are equal up to complementation. Otherwise, there are two pairs of vertices $\{x,y\}$ and $\{x',y'\}$ such that $G(x,y) \ne G'(x,y)$ and $G(x',y') \ne \overline{G'}(x',y')$. But then $G_{\upharpoonright K}$ and $G'_{\upharpoonright K}$, with $K:=\{x,y,x',y'\}$, are not equal up to complementation. Now, suppose $4 \le k \le v - 4$. According to Proposition 2.4, these two graphs are 4-hypomorphic up to complementation. From the observation above, G and G' are equal up to complementation.

P. Ille [9] asked for the least integer k such that every graph G having a large number v of vertices is k-reconstructible up to complementation.

From Theorem 2.5 above, k exists and is at most 4. From Proposition 4.1 below, we have $k \ge 4$. Hence k = 4.

This was our original solution of Ille's problem.

The use of Wilson's theorem leads to the improvement of Theorem 2.5 contained in Theorem 1.1. If $k \equiv 0 \pmod{4}$ or $k \equiv 1 \pmod{4}$, its use is natural. If we look at conditions which imply G' = Gor $G' = \overline{G}$, it is simpler to consider the boolean sum G + G' of G and G', that is the graph U on V whose edges are pairs e of vertices such that $e \in E(G)$ if and only if $e \notin E(G')$. Indeed, G' = G or $G' = \overline{G}$ amounts to the fact that U is either the empty graph or the complete graph. This leads to the use of the matrix W_{2k} . Indeed, if we suppose for an example that G and G' are k-hypomorphic up to complementation, $e(G_{\restriction K})$ and $e(G'_{\restriction K})$ are equal up to complementation for every k-element subset K of V thus, in particular, have the same parity up to complementation. If $k \equiv 0 \pmod{4}$ or $k \equiv 1 \pmod{4}$, $\binom{k}{2}$ is even, hence this latter condition amounts to the fact that $e(G_{\uparrow K})$ and $e(G'_{\uparrow K})$ have the same parity. As it is easy to see, this amounts to the fact that $e(U_{\mid K}) = 0$ modulo 2. Since this property holds for every k-element subset K, we have $w_U W_{2k} = (0, \dots, 0) \pmod{2}$. As we will see below, if $k \equiv 0 \pmod{4}$, Wilson's theorem yields $w_U = (0, \dots, 0)$ or $w_U = (1, \dots, 1)$, that is U is empty or complete, so G' = G or $G' = \overline{G}$. If $k \equiv 1 \pmod{4}$ an additional condition is needed to get the same conclusion. Indeed, in this case, the empty graph and a star-graph on the same vertex set yield $w_U W_{2k} = (0, ..., 0)$ (mod 2). We have not been able yet to apply Wilson's theorem in the cases $k \equiv 2 \pmod{4}$ and $k \equiv 3 \pmod{4}$ (also note that in these cases, $e(G_{\uparrow K})$ and $e(G'_{\uparrow K})$ have always the same parity up to complementation, no matter what G and G' are).

Theorem 2.6. Let G and G' be two graphs on the same set V of v vertices (possibly infinite). Let k be an integer such that $4 \le k \le v - 2$, $k \equiv 0 \pmod{4}$. Then the following properties are equivalent:

```
(i) e(G_{\uparrow K}) has the same parity as e(G'_{\uparrow K}) for all k-element subsets K of V;
```

(ii) G' = G or $G' = \overline{G}$.

Proof. The implication (ii) \Rightarrow (i) is trivial. We prove (i) \Rightarrow (ii).

We may suppose V finite. Let W_{2k} be the matrix defined page 3 and ${}^tW_{2k}$ its transpose. Let $U := G \dotplus G'$. From the fact that $e(G_{\lceil K})$ has the same parity as $e(G'_{\lceil K})$ for all k-element subsets K, the boolean sum U belongs to the kernel of ${}^tW_{2k}$ over the 2-element field. Since by Wilson's theorem, the rank of W_{2k} modulo 2 is $\binom{v}{2} - 1$, the kernel of its transpose ${}^tW_{2k}$ has dimension 1. Since $(1, \ldots, 1)W_{2k} = (0, \ldots, 0) \pmod 2$ then $w_U W_{2k} = (0, \ldots, 0) \pmod 2$ amounts to $w_U = (0, \ldots, 0)$ or $w_U = (1, \ldots, 1)$, that is U is empty or complete, so G' = G or $G' = \overline{G}$. \square

Let G be a graph. A 3-element subset T of V such that all pairs belong to E(G) is a *triangle* of G. A 3-element subset of V which is a triangle of G or of \overline{G} is a 3-homogeneous subset of G.

Theorem 2.7. Let G and G' be two graphs on the same set V of v vertices (possibly infinite). Let k be an integer such that $5 \le k \le v - 2$, $k \equiv 1 \pmod{4}$. Then the following properties are equivalent:

- (i) $e(G_{\uparrow K})$ has the same parity as $e(G'_{\uparrow K})$ for all k-element subsets K of V and the same 3-homogeneous subsets:
- (ii) G' = G or $G' = \overline{G}$.

Proof. We follow the same line as for the proof of Theorem 2.6. The implication (ii) \Rightarrow (i) is trivial. We prove (i) \Rightarrow (ii).

We suppose V finite, we set $U := G \dotplus G'$ and from the fact that $e(G_{\uparrow K})$ has the same parity as $e(G'_{\uparrow K})$ for all k-element subsets K, we get that the boolean sum U belongs to the kernel of ${}^tW_{2k}$ (over the 2-element field).

Claim 2.8. Let k be an integer such that $2 \le k \le v - 2$, $k \equiv 1 \pmod{4}$, then the kernel of ${}^tW_{2k}$ consists of complete bipartite graphs and their complements (including the empty graph and the complete graph).

Proof. Let us recall that a *star-graph* of v vertices consists of a vertex linked to all other vertices, those v-1 vertices forming an independent set. The vector space (over the 2-element field) generated by the star-graphs on V consists of all complete bipartite graphs; since v is distinct from 1 and 2, these are distinct from the complete graph (but include the empty graph). Moreover, its dimension is v-1 (a basis being made of star-graphs). Let $\mathbb K$ be the kernel of ${}^tW_{2k}$. Since k is odd, each star-graph belongs to $\mathbb K$. Since $k \equiv 1 \pmod 4$, the complete graph also belongs to $\mathbb K$. According to Wilson's theorem, the rank of $W_{2k} \pmod 2$ is $\binom{v}{2} - v$. Hence the kernel of ${}^tW_{2k}$ has dimension v. Consequently, $\mathbb K$ consists of complete bipartite graphs and their complements, as claimed. \square

A *claw* is a star-graph on four vertices, that is a graph made of a vertex joined to three other vertices, with no edges between these three vertices. A graph is *claw-free* if no induced subgraph is a claw.

Claim 2.9. Let G and G' be two graphs on the same set and having the same 3-homogeneous subsets, then the boolean sum $U := G \dotplus G'$ and its complement are claw-free.

Proof. Suppose there is a claw in U with edges $\{x, y\}$, $\{x, y'\}$ and $\{x, y''\}$. Without loss of generality, assume that G(x, y) = G(x, y'). If U(y, y') = 0, that is G(y, y') = G'(y, y'), then since G and G' have the same 3-element homogeneous sets and $G(x, y) \neq G'(x, y)$, $\{x, y, y'\}$ cannot be homogeneous, hence $G(y, y') \neq G(x, y)$ and $G'(y, y') \neq G'(x, y)$. This implies $G(y, y') \neq G'(y, y')$, a contradiction. From this observation, U is claw-free. Since G and \overline{G}' have the same 3-homogeneous subsets and $\overline{U} = G \dotplus \overline{G}'$, we also get that \overline{U} is claw-free. \square

For a characterization of these boolean sums, see [14].

From Claim 2.8, U or its complement is a complete bipartite graph and, from Claim 2.9, U and \overline{U} are claw-free. Since $v \ge 5$ (in fact $v \ge 7$), it follows that U is either the empty graph or the complete graph. Hence G' = G or $G' = \overline{G}$ as claimed. \square

2.2. Conditions on the number of edges and Ramsey's theorem

Theorem 2.10. Let k be an integer, $7 \neq k \geqslant 4$. There is an integer m such that if G and G' are two graphs on the same set V of v vertices, $v \geqslant m$, such that $G_{\upharpoonright K}$ and $G'_{\upharpoonright K}$ have the same number of edges, up to complementation, for all k-element subsets K of V, then G' = G or $G' = \overline{G}$.

Conditions $7 \neq k \geqslant 4$ in Theorem 2.10 are necessary.

- For k=7, consider two graphs G and G' on $V:=\{1,2,\ldots,\nu\}$ such that $\{i,j\}$ is an edge of G and G' for all $i\neq j$ in $\{1,2,\ldots,\nu-2\}$, G has no another edge and G' has $\{\nu-1,\nu\}$ as an additional edge. For k<4 apply Proposition 4.1 below.

Let c(k) be the least integer m for which the conclusion of Theorem 2.10 holds.

Problem 2.11. *Is* $c(k) \le k + 4$?

Our proof uses Ramsey's theorem rather than incidence matrices. It is inspired from a relationship between Ramsey's theorem and Theorem 2.1 pointed out in [13]. The drawback is that the bound on c(k) is quite crude.

Let $r_2^2(k)$ be the bicolor Ramsey number for pairs: the least integer n such that every graph on n vertices contains a k-homogeneous subset, that is a clique or an independent on k vertices. We deduce Theorem 2.10 and $c(k) \le r_2^2(k)$ from the following result.

Proposition 2.12. Let k be an integer, $7 \neq k \geqslant 4$ and let G and G' be two graphs on the same set V of v vertices, $v \geqslant k$ such that:

- (1) $G_{\uparrow K}$ and $G'_{\uparrow K}$ have the same number of edges, up to complementation, for all k-element subsets K of V;
- (2) V contains a k-element subset K such that $G_{\uparrow K}$ or $\overline{G}_{\uparrow K}$ has at least l edges where $l:=\min(\frac{k^2+7k-12}{4},\frac{k(k-1)}{2})$.

Then G' = G or $G' = \overline{G}$.

The inequality $\frac{k^2+7k-12}{4} \leqslant \frac{k(k-1)}{2}$ holds iff $k \geqslant 8$. For k > 8 the condition $l = \frac{k^2+7k-12}{4}$ is weaker than the existence of a clique of size k.

Proof. We may suppose that V contains a k-element subset of V, say K, such that $e(G_{\upharpoonright K}) \geqslant l$; also we may suppose, from condition (1), that $e(G_{\upharpoonright K}) = e(G'_{\upharpoonright K})$ otherwise replace G' by its complement. We shall prove that for all V' such that $K \subseteq V' \subseteq V$ and |V'| = k + 2 we have $e(G_{\upharpoonright K'}) = e(G'_{\upharpoonright K'})$ for all k-element subset K' of V'. Since the adjacency matrix of the Kneser graph KG(2, k + 2) is non-singular, $G_{\upharpoonright V'} = G'_{\upharpoonright V'}$. It follows that G = G'.

Claim 2.13. For $x \notin K$ and $y \in K$, $e(G_{\lceil (K \cup \{x\}) \setminus \{y\}}) = e(G'_{\lceil (K \cup \{x\}) \setminus \{y\}})$.

Proof. Let $x \notin K$ and $y \in K$. Set $K' := (K \cup \{x\}) \setminus \{y\}$. The graphs $G_{\uparrow K'}$ and $G'_{\uparrow K'}$ have at least l' := l - (k - 1) edges. Since $G_{\uparrow K'}$ and $G'_{\uparrow K'}$ have the same number of edges up to complementation, we have $e(G_{\uparrow K'}) = e(G'_{\uparrow K'})$ whenever $l' \geqslant \frac{k(k-1)}{4}$, that is $l \geqslant l'' := \frac{(k-1)(k+4)}{4}$.

If $k \ge 8$ we have $l = \frac{k^2 + 7k - 12}{4}$ yielding l > l'' as required. If $k \in \{4, 5, 6\}$ we have $l = \frac{k(k-1)}{2}$ yielding again $l \ge l''$. \square

Claim 2.14. For distinct $x, x' \notin K$ and $y, y' \in K$, $e(G_{\upharpoonright (K \cup \{x, x'\}) \setminus \{y, y'\}}) = e(G'_{\upharpoonright (K \cup \{x, x'\}) \setminus \{y, y'\}})$.

Proof. Let $x, x' \notin K$ and $y, y' \in K$ be distinct. Set $K' := (K \cup \{x, x'\}) \setminus \{y, y'\}$. We have $e(G_{\lceil K'}) \geqslant e(G_{\lceil K}) - (2k - 3)$ and $e(G'_{\lceil K'}) \geqslant e(G_{\lceil K}) - (2k - 3)$. Thus $e(G_{\lceil K'})$ and $e(G'_{\lceil K'})$ have at least l' := l - (2k - 3) edges. Since $G_{\lceil K'}$ and $G'_{\lceil K'}$ have the same number of edges up to complementation, we have $e(G_{\lceil K'}) = e(G'_{\lceil K'})$ whenever $l' \geqslant \frac{k(k-1)}{4}$, that is $l \geqslant \frac{k^2 + 7k - 12}{4}$. This inequality holds if $k \geqslant 8$. Suppose $k \in \{4, 5, 6\}$. Thus $l = \frac{k(k-1)}{2}$. Hence K is a clique for G and G'.

Subclaim. Let $u \notin K$ then G and G' coincide on $K \cup \{u\}$.

Proof. Since K is a clique, this amounts to G(u, v) = G'(u, v) for all $v \in K$, a fact which follows from Claim 2.13. Indeed, we have $d_{G_{\lceil K \cup \{u\} \setminus \{w\}}}(u) = \frac{1}{k-1} \sum_{w \in K} d_{G_{\lceil (K \cup \{u\} \setminus \{w\}})}(u)$. From Claim 2.13 we have $d_{G_{\lceil (K \cup \{u\} \setminus \{w\})}(w)}(u) = d_{G'_{\lceil (K \cup \{u\} \setminus \{w\})}(w)}(u)$. Since $d_{G_{\lceil (K \cup \{u\} \setminus \{w\})}(w)}(u) = d_{G'_{\lceil (K \cup \{u\} \setminus \{w\})}(w)}(u)$ the equality G(u, v) = G'(u, v) follows. \square

From this subclaim it follows that G and G' coincide on K' with the possible exception of the pair $\{x, x'\}$. Set $a := e(G_{\uparrow K'})$, $a' := e(G'_{\uparrow K'})$. Suppose $a \neq a'$. Then |a - a'| = 1, hence the sum a + a'is odd. Since $G_{\uparrow K'}$ and $G'_{\uparrow K'}$ have the same number of edges up to complementation, this sum is also $\frac{k(k-1)}{2}$. If k=4 or k=5 this number is even, a contradiction. Suppose k=6. We may suppose a = a' + 1 hence from $a + a' = \frac{k(k-1)}{2}$ we get a = 8. Put $\{x_1, x_2, x_3, x_4, y, y'\} := K$. Since K is a clique we have G(x, x') = 1, G'(x, x') = 0 and G, G' contain just one edge from $\{x, x'\}$ to $\{x_1, x_2, x_3, x_4\}$. We may suppose $G(x_1, x) = G'(x_1, x) = 1$, $G(x_1, x') = G'(x_1, x') = 0$ and G(t, u) = G'(t, u) = 0 for all $t \in \{x_2, x_3, x_4\}$ and $u \in \{x, x'\}$.

Let $K'' := (K \cup \{x, x'\}) \setminus \{x_1, x_2\}$. From the subclaim above, G and G' coincide on K'' with the exception of the pair $\{x, x'\}$ hence G, G' contain just one edge from $\{x, x'\}$ to $\{x_3, x_4, y, y'\}$. We can assume G(y, u) = G'(y, u) = 1 for exactly one $u \in \{x, x'\}$, and G(t, u) = G'(t, u) = 0 for all $t \in \{x_3, x_4, y'\}$ and

Set $B := \{x_2, x_3, x_4, x, x', y'\}$, then $e(G_{|B}) = 7$ and $e(G'_{|B}) = 6$. So $e(G_{|B}) \neq e(G'_{|B})$ and $e(G_{|B}) + 6$ $e(G'_{\upharpoonright R}) \neq \frac{k(k-1)}{2}$, that gives a contradiction. \square

Clearly Proposition 2.12 follows from Claims 2.13 and 2.14.

3. Some members of \mathcal{S}

Sufficient conditions for membership stated in Theorem 1.1 are contained in Theorem 3.1 below. Let *v* be a non-negative integer and $\vartheta(v) := 4l$ if $v \in \{4l + 2, 4l + 3\}$, $\vartheta(v) := 4l - 3$ if $v \in \{4l, 4l + 1\}$.

Theorem 3.1. Let v, k be two integers with $4 \le k \le \vartheta(v)$. Then, for every pair of graphs G and G' on the same set V of v vertices, the following properties are equivalent:

- (i) G and G' are k-hypomorphic up to complementation;
- (ii) $G_{\uparrow K}$ and $G'_{\uparrow K}$ have the same number of edges, up to complementation, and the same number of 3homogeneous subsets, for all k-element subsets K of V;
- (iii) $G_{\uparrow K}$ and $G_{\uparrow K}$ have the same number of edges, up to complementation, for all k-element and k'-element subsets K of V where k' is an integer verifying $3 \le k' < k$;
- (iv) G' = G or $G' = \overline{G}$.

3.1. Ingredients

Let G := (V, E) be a graph. Let $A^{(2)}(G)$ be the set of pairs $\{u, u'\}$ made of some $u \in E(G)$ and some $u' \in E(\overline{G})$. Let $A^{(0)}(G) := \{\{u, u'\} \in A^{(2)}(G): u \cap u' = \emptyset\}, A^{(1)}(G) := A^{(2)}(G) \setminus A^{(0)}(G) \text{ and let } \{u, u'\} \in A^{(2)}(G) := A^{(2)}(G) \setminus A^{(2)}(G) = A^{(2)}(G) \cap A^{(2)}(G$ $a^{(i)}(G)$ be the cardinality of $A^{(i)}(G)$ for $i \in \{0, 1, 2\}$; thus $a^{(2)}(G) = a^{(0)}(G) + a^{(1)}(G)$. Let T(G) be the set of triangles of G and let t(G) := |T(G)|. Let $H^{(3)}(G) := T(G) \cup T(\overline{G})$ be the set of 3-homogeneous subsets of *G* and $h^{(3)}(G) := |H^{(3)}(G)|$.

Some elementary properties of the above numbers are stated in the lemma below; the proof is immediate.

Lemma 3.2. Let G be a graph with v vertices, then:

- (1) $A^{(i)}(G) = A^{(i)}(\overline{G})$, hence $a^{(i)}(G) = a^{(i)}(\overline{G})$, for all $i \in \{0, 1, 2\}$.
- (2) $a^{(2)}(G) = e(G)e(\overline{G})$.
- (3) $a^{(1)}(G) = \sum_{x \in V(G)} d_G(x) d_{\overline{G}}(x).$ (4) $h^{(3)}(G) = \frac{v(v-1)(v-2)}{6} \frac{1}{2}a^{(1)}(G).$

Lemma 3.3. Let G and G' be two graphs on the same finite vertex set V, then

$$e(G') = e(G)$$
 or $e(G') = e(\overline{G})$ iff $e(G)e(\overline{G}) = e(G')e(\overline{G'})$.

Proof. Suppose

$$e(G)e(\overline{G}) = e(G')e(\overline{G'}).$$
 (1)

Since $e(G) + e(\overline{G}) = \frac{\nu(\nu - 1)}{2}$ and $e(G') + e(\overline{G}') = \frac{\nu(\nu - 1)}{2}$, where $\nu := |V|$, we have

$$e(G) + e(\overline{G}) = e(G') + e(\overline{G'}). \tag{2}$$

Then (1) and (2) give e(G') = e(G) or $e(G') = e(\overline{G})$. The converse is obvious. \square

Lemma 3.4. Let G be a graph, V := V(G), v := |V|.

(a) Let $i \in \{0, 1\}$, k such that $4 - i \le k \le v$, then

$$a^{(i)}(G) = \frac{1}{\binom{v-4+i}{k-4+i}} \sum_{\substack{K \subseteq V \\ |K|=k}} a^{(i)}(G_{\uparrow K}).$$

(b) Let k such that $3 \le k \le v - 1$, then

$$a^{(0)}(G) = \frac{v-3}{v-k}e(G)e(\overline{G}) - \frac{1}{\binom{v-4}{k-3}} \sum_{\substack{K \subseteq V \\ |K| = k}} e(G_{\upharpoonright K})e(\overline{G}_{\upharpoonright K}),$$

$$a^{(1)}(G) = \frac{1}{\binom{\nu-4}{k-3}} \sum_{\substack{K \subseteq V \\ |K|=k}} e(G_{\uparrow K}) e(\overline{G}_{\uparrow K}) - \frac{k-3}{\nu-k} e(G) e(\overline{G}).$$

Proof. (a) Let $\{u, u'\} \in A^{(i)}(G)$ for $i \in \{0, 1\}$. The number of k-element subsets K of V containing u and u' is $\binom{v-4+i}{k-4+i}$. The result follows.

(b) If k = 3 then (a) and the fact that $a^{(0)}(G) + a^{(1)}(G) = e(G)e(\overline{G})$ give the formulas. If $4 \le k \le \nu - 1$, then by (a) we have

$$\binom{v-4}{k-4}a^{(0)}(G) = \sum_{\substack{K \subseteq V \\ |K|=k}} a^{(0)}(G_{\restriction K}),$$

$$\binom{v-3}{k-3}a^{(1)}(G) = \sum_{\substack{K \subseteq V \\ |K| = k}} a^{(1)}(G_{\uparrow K}).$$

Summing up and applying (2) of Lemma 3.2 to the $G_{\uparrow K}$'s we have

$$\binom{v-4}{k-4} a^{(0)}(G) + \binom{v-3}{k-3} a^{(1)}(G) = \sum_{\substack{K \subseteq V \\ |K| = k}} e(G_{\uparrow K}) e(\overline{G}_{\uparrow K}).$$
 (3)

On the other hand

$$a^{(0)}(G) + a^{(1)}(G) = e(G)e(\overline{G}). \tag{4}$$

Eqs. (3) and (4) form a Cramer system with $a^{(0)}(G)$ and $a^{(1)}(G)$ as unknowns. Indeed the determinant

$$\Delta := \begin{vmatrix} \binom{v-4}{k-4} & \binom{v-3}{k-3} \\ 1 & 1 \end{vmatrix} = \binom{v-4}{k-4} - \binom{v-3}{k-3} = -\binom{v-4}{k-3}$$

is nonzero. A straightforward computation gives the result. \Box

Corollary 3.5. Let G and G' be two graphs on the same set V of v vertices and k be an integer such that $4 \le k \le v$.

The implications (ii) \Rightarrow (i) and (i) \Rightarrow (iii) between the following statements hold.

- (i) $e(G'_{\uparrow K}) = e(G_{\uparrow K})$ or $e(\overline{G}_{\uparrow K})$ and $h^{(3)}(G_{\uparrow K}) = h^{(3)}(G'_{\uparrow K})$ for all k-element subsets K of V.
- (ii) $e(G_{\uparrow K}^{'}) = e(G_{\uparrow K})$ or $e(\overline{G}_{\uparrow K})$ for all k-element and k'-element subsets K of V where k' is some integer verifying $3 \le k' < k$.
- (iii) $G_{\uparrow L}$ and $G'_{\uparrow L}$ have the same number of edges up to complementation and $h^{(3)}(G_{\uparrow L}) = h^{(3)}(G'_{\uparrow L})$ for all l-element subsets L of V and all integer l such that $k \le l \le v$.
- **Proof.** (i) \Rightarrow (iii). Let L be an l-element subset of V with $l \geqslant k$, and K be a k-element subset of L. From Lemma 3.3 and (2) of Lemma 3.2, we have $a^{(0)}(G_{\restriction K}) + a^{(1)}(G_{\restriction K}) = a^{(0)}(G'_{\restriction K}) + a^{(1)}(G'_{\restriction K})$, and from (4) of Lemma 3.2, $a^{(1)}(G_{\restriction K}) = a^{(1)}(G'_{\restriction K})$. Hence $a^{(i)}(G_{\restriction K}) = a^{(i)}(G'_{\restriction K})$ for all k-element subsets K of L and $i \in \{0, 1\}$.
- From (a) of Lemma 3.4 applied to $G_{\uparrow L}$ follows $a^{(i)}(G_{\uparrow L}) = a^{(i)}(G'_{\uparrow L})$ for $i \in \{0, 1\}$, hence using (2) of Lemma 3.2 we get $e(G_{\uparrow L})e(\overline{G}'_{\uparrow L}) = e(G'_{\uparrow L})e(\overline{G}'_{\uparrow L})$. The conclusion follows from Lemma 3.3 and (4) of Lemma 3.2.
- (ii) \Rightarrow (i). It suffices to prove that $h^{(3)}(G_{\upharpoonright K}) = h^{(3)}(G'_{\upharpoonright K})$ for all k-element subsets K of V. From Lemma 3.3 we have $e(G_{\upharpoonright K})e(\overline{G}_{\upharpoonright K}) = e(G'_{\upharpoonright K})e(\overline{G}'_{\upharpoonright K})$ and $e(G_{\upharpoonright K'})e(\overline{G}_{\upharpoonright K'}) = e(G'_{\upharpoonright K'})e(\overline{G}'_{\upharpoonright K'})$ for all k'-element set $K' \subseteq K$. From (b) of Lemma 3.4 we get $a^{(i)}(G_{\upharpoonright K}) = a^{(i)}(G'_{\upharpoonright K})$ for $i \in \{0, 1\}$. Then by (4) of Lemma 3.2, $h^{(3)}(G_{\upharpoonright K}) = h^{(3)}(G'_{\upharpoonright K})$. \square

Proposition 3.6. Let G and G' be two graphs on v vertices and k be an integer such that $4 \le k \le v$. If G and G' are k-hypomorphic up to complementation then $e(G'_{\upharpoonright L}) = e(G_{\upharpoonright L})$ or $e(G'_{\upharpoonright L}) = e(\overline{G}_{\upharpoonright L})$ for all l-element subsets L of V and all integer l such that $k \le l \le v$.

Proof. If G and G' are k-hypomorphic up to complementation then $G_{\uparrow K}$ and $G'_{\uparrow K}$ have the same number of edges up to complementation, and the same number of 3-homogeneous subsets, for all k-element subsets K of V. We conclude using (i) \Rightarrow (iii) of Corollary 3.5 \Box

By inspection of the eleven graphs on four vertices, one may observe that:

Fact 3.7. The ordered pair $(e(G)e(\overline{G}), h^{(3)}(G))$ characterize G up to isomorphy and complementation if $|V(G)| \leq 4$.

Note that in Fact 3.7, we can replace $(e(G)e(\overline{G}), h^{(3)}(G))$ by $(a^{(0)}(G), a^{(1)}(G))$ (this follows from Lemmas 3.3 and 3.2).

Proposition 3.8. Let G and G' be two graphs on the same set V of v vertices and k be an integer. If $3 \le k \le v-3$ (respectively $4 \le k \le v-4$) and $h^{(3)}(G_{\restriction K}) = h^{(3)}(G'_{\restriction K})$ (respectively $a^{(0)}(G_{\restriction K}) = a^{(0)}(G'_{\restriction K})$) for all k-element subsets K of V then $h^{(3)}(G_{\restriction K}) = h^{(3)}(G'_{\restriction K})$ (respectively $a^{(0)}(G_{\restriction K}) = a^{(0)}(G'_{\restriction K})$) for all (v-k)-element subsets K of V.

Proof. By (4) of Lemma 3.2, $h^{(3)}(G_{\uparrow K}) = h^{(3)}(G'_{\uparrow K})$ iff $a^{(1)}(G_{\uparrow K}) = a^{(1)}(G'_{\uparrow K})$.

Case 1. $k \leq \frac{v}{2}$, then $v - k \geqslant k$. Let K' be a (v - k)-element subset of V, then from (a) of Lemma 3.4 we have for $i \in \{0, 1\}$,

$$a^{(i)}(G_{\upharpoonright K'}) = \frac{1}{\binom{v-k-4+i}{k-4+i}} \sum_{\substack{K \subseteq K' \\ |K|=k}} a^{(i)}(G_{\upharpoonright K}).$$

Then we get the conclusion.

Case 2. $k > \frac{v}{2}$, then $v - k < \frac{v}{2}$. Let K' be a k-element subset of V. From (a) of Lemma 3.4 we have for $i \in \{0, 1\}$,

$$\sum_{\substack{K \subseteq K' \\ K|=\nu-k}} a^{(i)}(G_{\restriction K}) = \binom{k-4+i}{\nu-k-4+i} a^{(i)}(G_{\restriction K'}). \tag{5}$$

Let $X_1, X_2, ..., X_l$ be an enumeration of the (v - k)-element subsets of V. Let $w_G^{(i)} := (a^{(i)}(G_{\uparrow X_1}), a^{(i)}(G_{\uparrow X_2}), ..., a^{(i)}(G_{\uparrow X_l}))$, and $w_{G'}^{(i)} := (a^{(i)}(G'_{\uparrow X_1}), a^{(i)}(G'_{\uparrow X_2}), ..., a^{(i)}(G'_{\uparrow X_l}))$. From (5), we get, for $i \in \{0, 1\}$, $A_{v-k,v}{}^t w_G^{(i)} = A_{v-k,v}{}^t w_{G'}^{(i)}$. We conclude using Theorem 2.2. \Box

3.2. Proof of Theorem 3.1

 $(i) \Rightarrow (ii), (iv) \Rightarrow (i), (iv) \Rightarrow (iii)$ are obvious and $(iii) \Rightarrow (ii)$ is implication $(ii) \Rightarrow (i)$ of Corollary 3.5. Thus it is sufficient to prove $(ii) \Rightarrow (iv)$.

Let l, $k \le l \le v$. According to implication (i) \Rightarrow (iii) of Corollary 3.5, $e(G'_{\uparrow L}) = e(G_{\uparrow L})$ or $e(G'_{\uparrow L}) = e(\overline{G}_{\uparrow L})$ for all l-element subsets L of V. If we may choose $l \equiv 0 \pmod{4}$ with $l \le v - 2$, then $e(G_{\uparrow L})$ and $e(G'_{\uparrow L})$ have the same parity. Theorem 2.6 gives G' = G or $G' = \overline{G}$. Thus, the implication (ii) \Rightarrow (iv) is proved if $v \equiv 2 \pmod{4}$ and if $v \equiv 3 \pmod{4}$. There are two remaining cases.

Case 1. $v \equiv 1 \pmod 4$ and k = v - 4. We prove that $e(G'_{\restriction L})$ and $e(G_{\restriction L})$ have the same parity for all 4-element subsets L of V. Theorem 2.6 again gives G' = G or $G' = \overline{G}$. The proof goes as follows. Let L be a 4-element subset of V, and K be a k-element subset of V. By Lemma 3.2, $a^{(2)}(G_{\restriction K}) = a^{(2)}(G'_{\restriction K})$ and $a^{(1)}(G_{\restriction K}) = a^{(1)}(G'_{\restriction K})$. Thus $a^{(0)}(G_{\restriction K}) = a^{(0)}(G'_{\restriction K})$. Using Proposition 3.8, we get $a^{(0)}(G_{\restriction L}) = a^{(0)}(G'_{\restriction L})$ and $a^{(3)}(G_{\restriction L}) = a^{(3)}(G'_{\restriction L})$. Now (4) of Lemma 3.2 gives $a^{(1)}(G_{\restriction L}) = a^{(1)}(G'_{\restriction L})$. So $a^{(2)}(G_{\restriction L}) = a^{(2)}(G'_{\restriction L})$, then using (2) of Lemma 3.2 and Lemma 3.3 we get $e(G'_{\restriction L}) = e(G_{\restriction L})$ or $e(\overline{G}_{\restriction L})$, thus $e(G'_{\restriction L})$ and $e(G_{\restriction L})$ have the same parity.

Case 2. $v \equiv 0 \pmod{4}$ and k = v - 3. From Proposition 3.8, G and G' have the same 3-homogeneous subsets. From Theorem 2.7, G' = G or $G' = \overline{G}$ as claimed.

4. Constraints on \mathcal{S}

Two arbitrary graphs on the same set of vertices are k-hypomorphic up to complementation for $k \le 2$. Hence, if $v \le 2$, $(v, k) \in \mathcal{S}$ iff $k \in \mathbb{N}$. This is item (1) of Theorem 1.1.

Next, suppose v > 2, and $(v, k) \in S$.

According to the proposition below, we have $k \ge 4$.

Proposition 4.1. For every integer $v \ge 4$, there are two graphs G and G', on the same set of v vertices, which are 3-hypomorphic up to complementation but not isomorphic up to complementation.

Proof. Let G and G' be two graphs having $\{1, 2, ..., v\}$ as set of vertices.

- Even case: v=2p. Pairs $\{i,j\}$ are edges of G and G' for all $i\neq j$ in $\{1,2,\ldots,p\}$ and for all $i\neq j$ in $\{p+1,\ldots,2p\}$. The graph G has no other edge and G' has $\{1,p+1\}$ as an additional edge. Clearly G' and G are 3-hypomorphic up to complementation and not isomorphic. Since \overline{G} has p^2 edges but G' has p(p-1)+1 edges, G' and \overline{G} are not isomorphic.
- Odd case: v=2p+1. Pairs $\{i,j\}$ are edges of G and G' for all $i\neq j$ in $\{1,2,\ldots,p\}$ and for all $i\neq j$ in $\{p+1,\ldots,2p+1\}$. The graph G has no other edge and G' has $\{1,p+1\}$ as an additional edge. Clearly G' and G are 3-hypomorphic up to complementation and not isomorphic. Since \overline{G} has p(p+1) edges but G' has p^2+1 edges, G' and \overline{G} are not isomorphic.

In both cases G and G' are 3-hypomorphic up to complementation but not isomorphic up to complementation. \Box

According to the following lemma, $v \ge 6$.

Lemma 4.2. For every v, $3 \le v \le 5$, there are two graphs G and G', on the same set of v vertices, which are k-hypomorphic for all $k \le v$ but $G' \ne G$ and $G' \ne \overline{G}$.

Proof. Let $V := \{0, 1, 2, 3, 4\}$, $\mathcal{E} := \{\{0, 1\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 0\}\}$ and $\mathcal{E}' := (\mathcal{E} \setminus \{\{0, 4\}, \{1, 2\}\}) \cup \{\{1, 4\}, \{0, 2\}\}$. Let $G := (V, \mathcal{E})$ and $G' := (V, \mathcal{E}')$. These graphs are two 5-element cycles, G' being obtained from G by exchanging 0 and 1. Trivially, they satisfy the conclusion of the lemma. The two pairs G_{-3} , G'_{-3} and $G_{-3, -4}$ and $G'_{-3, -4}$ also satisfy the conclusion of the lemma. \square

Next, a straightforward extension of the construction in Lemma 4.2 above yields $k \le v - 2$. Indeed, let us say that two graphs G and G' on the same set V of vertices are k-hypomorphic if for any subset X of V of cardinality k, $G_{\uparrow X}$ and $G'_{\uparrow X}$ are isomorphic. We have:

Lemma 4.3. For every integer v, $v \ge 4$, there are two graphs G and G', on the same set of v vertices, which are k-hypomorphic for all $k \in \{v-1, v\}$ but $G' \ne G$ and $G' \ne \overline{G}$.

Proof. Let $V := \{0, \dots, \nu-1\}$, $\mathcal{E} := \{\{i, i+1\}: 0 \le i < \nu-1\} \cup \{\{0, \nu-1\}\}$, $\mathcal{E}' := (\mathcal{E} \setminus \{\{0, \nu-1\}, \{1, 2\}\}) \cup \{\{1, \nu-1\}, \{0, 2\}\}$. Let $G := (V, \mathcal{E})$ and $G' := (V, \mathcal{E}')$. These graphs are two ν -element cycles, G' being obtained from G by exchanging 0 and 1. Trivially, they satisfy the conclusion of the lemma. \square

With this lemma, the proof of the first part of item (2) is complete.

The fact that $(v, k) \in S$ implies $k \leq \vartheta(v)$ for infinitely many v is an immediate consequence of the following proposition.

Proposition 4.4. For every integer v := m + r such that $q \equiv 1 \pmod{4}$ for each prime power q occurring in the decomposition of m and $r \in \{2, 3, 4\}$ there are two graphs G and G', on the same set of v vertices, which are k-hypomorphic up to complementation for all k, $\vartheta(v) + 1 \le k \le v$ but $G' \ne G$ and $G' \ne \overline{G}$.

Our construction uses vertex-transitive self-complementary graphs. We recall that there is a vertex-transitive self-complementary graph on m vertices if and only if $q \equiv 1 \pmod 4$ for each prime power q occurring in the decomposition of m [12,16]. Lexicographical products of Paley graphs readily provide examples of vertex-transitive self-complementary graphs for each m as above. A complete description is not known. For more information about these graphs see [5]. For Paley graphs see also [18].

Lemma 4.5. A finite graph G is vertex-transitive and self-complementary if and only if its order is distinct from 2 and G_{-x} is self-complementary for every vertex $x \in V(G)$.

Proof. Let \mathcal{G} be the class of finite graphs of order distinct from 2 such that G_{-x} is self-complementary for every vertex $x \in V(G)$. Let $G \in \mathcal{G}$. Let n := |V(G)|. We may suppose n > 2. Let $x \in V(G)$. We have $d_G(x) = e(G) - e(G_{-x})$. Since G_{-x} is self-complementary, $e(G_{-x}) = e(\overline{G}_{-x})$ and, since $e(G_{-x}) + e(\overline{G}_{-x}) = \binom{n-1}{2}$, $e(G_{-x}) = \frac{1}{2}\binom{n-1}{2}$. Thus $d_G(x)$ does not depend on x, that is G is regular. Since n > 2 we have $e(G) = \frac{1}{n-2} \sum_{x \in V(G)} e(G_{-x})$ thus $e(G) = \frac{n(n-1)}{4}$. This added to $e(G_{-x}) = \frac{(n-1)(n-2)}{4}$ yields $n(n-1) \equiv 0 \pmod{4}$ and $(n-1)(n-2) \equiv 0 \pmod{4}$. It follows that $n \equiv 1 \pmod{4}$. As it is well known [11], regular graphs of order distinct from 2 are reconstructible. Thus G is self-complementary. The proof that G is reconstructible yields that for every vertex x, every isomorphism from G_{-x} onto

 \overline{G}_{-x} is induced by an isomorphism φ from G onto \overline{G} which fixes x. Hence, for a given pair of vertices x,x' there is an element $\Gamma \in \operatorname{Aut}(G)$ such that $\Gamma(x)=x'$ if and only if there is an isomorphism $\varphi:G \to \overline{G}$ such that $\varphi(x)=x'$. It follows that each orbit of $\operatorname{Aut}(G)$ is preserved under all isomorphisms from G onto \overline{G} . Thus, if A is a union of orbits, $G_{\upharpoonright A} \in \mathcal{G}$. Since members of G have odd order, there is just one orbit, proving that $\operatorname{Aut}(G)$ is vertex-transitive.

Conversely, let G be a self-complementary vertex-transitive graph. Clearly G is not of order 2. Let $x \in V(G)$. Since G is self-complementary, G_{-x} is isomorphic to \overline{G}_{-y} for some $y \in V(G)$. Since $\operatorname{Aut}(\overline{G}) = \operatorname{Aut}(G)$ and $\operatorname{Aut}(G)$ is vertex-transitive, \overline{G}_{-y} is isomorphic to \overline{G}_{-x} . Hence, $G \in \mathcal{G}$.

Proof of Proposition 4.4. Let v, m, r satisfying the stated conditions. Let P be a self-complementary vertex-transitive graph of order m.

Case 1. r=4. In this case $\vartheta(v)=m$. Let V be made of V(P) and four new elements added, say 1, 2, 3, 4. Let G and G' be the graphs with vertex set V which coincide with P on V(P), the other edges of G being $\{1,2\}, \{2,3\}, \{3,4\}, \{2,x\}, \{3,x\}$ for all $x\in V(P)$, the other edges of G' being $\{1,3\}, \{2,3\}, \{2,4\}, \{2,x\}, \{3,x\}$ for all $x\in V(P)$. Clearly, $G'\neq G$ and $G'\neq \overline{G}$. We check that G and G' are k-hypomorphic for $\vartheta(v)+1\leqslant k\leqslant v$. Let $X\subseteq V$ with $|X|\leqslant 3$ and $K:=V\setminus X$. With the help of Lemma 4.5, note that if $X\cap\{1,2,3,4\}\in\{\{1,2\},\{1,3\},\{2,4\},\{3,4\}\}$ then $G_{\uparrow K}\simeq \overline{G}'_{\uparrow K}$. In all other cases $G_{\uparrow K}\simeq G'_{\uparrow K}$.

Case 2. r=3. In this case $\vartheta(v)=m$. Let $G_1:=G_{-1}$ and $G_1':=G_{-1}'$ where G, G' are the graphs constructed in Case 1. Clearly $G'\neq G$ and $G'\neq \overline{G}$. And since G,G' are k-hypomorphic for $m+1\leqslant k\leqslant m+4$, the graphs G_1 and G_1' are k-hypomorphic for $\vartheta(v)+1\leqslant k\leqslant v$.

Case 3. r=2. In this case $\vartheta(v)=m-1$. Let V be made of V(P) and two new elements added, say 1, 2. Let G and G' be the graphs with vertex set V which coincide with P on V(P), the other edges of G being (2,x) for all $x\in V(P)$, the other edges of G' being (1,x) for all $x\in V(P)$. Clearly, $G'\neq G$ and $G'\neq \overline{G}$. Let $X\subseteq V$ with $|X|\leqslant 2$ and $K:=V\setminus X$. If $X\cap\{1,2\}\neq\emptyset$ then $G_{\upharpoonright K}\simeq \overline{G'}_{\upharpoonright K}$. In all other cases $G_{\upharpoonright K}\simeq G'_{\upharpoonright K}$. Hence, G and G' are k-hypomorphic for $\vartheta(v)+1\leqslant k\leqslant v$. \square

By Theorem 2.6 we have:

Remark 4.6. Let G be a graph with v vertices. If there is a graph $G' \neq G$ on the same vertex set V, an integer k such that $1 \le k \le v-2$, $k \equiv 0 \pmod 4$, G' is (v-1)-hypomorphic to G and $e(G'_{\restriction K})$ has the same parity as $e(G_{\restriction K})$ for all k-element subsets K of V, then G is vertex-transitive and self-complementary.

5. Conclusion

Let \mathcal{R} be the set of ordered pairs (v,k) such that two graphs on the same set of v vertices are isomorphic up to complementation whenever these two graphs are k-hypomorphic up to complementation.

Behind Ille's problem was the question of a description of \mathcal{R} .

This seems to be a very difficult problem. Except the trivial inclusion $S \subseteq \mathcal{R}$, the fact that some ordered pairs like (5,4), $(\nu,\nu-3)$ for $\nu\geqslant 7$ belong to \mathcal{R} requires some effort [4].

We prefer to point out the following problem.

Problem 5.1. Let v > 2. Is $(v, k) \in \mathcal{S} \iff 4 \leqslant k \leqslant \vartheta(v)$?

Acknowledgments

We thank J.A. Bondy, E. Salhi and S. Thomassé for their helpful comments.

References

- [1] J.A. Bondy, Basic graph theory: Paths and circuits, in: R.L. Graham, M. Grötschel, L. Lovász (Eds.), Handbook of Combinatorics, vol. I, North-Holland, 1995, pp. 3–110.
- [2] J.A. Bondy, R.L. Hemminger, Graph reconstruction, a survey, J. Graph Theory 1 (1977) 227-268.
- [3] J.A. Bondy, A graph reconstruction manual, in: A.D. Keedwell (Ed.), Surveys in Combinatorics, in: LMS-Lecture Note Series, vol. 166, 1991, pp. 221–252.
- [4] J. Dammak, G. Lopez, M. Pouzet, H. Si Kaddour, Reconstruction of graphs up to complementation, in: Y. Boudabbous, N. Zaguia (Eds.), Proceeding of the First International Conference on Relations, Orders and Graphs: Interaction with Computer Science, ROGICS'08, Mahdia, Tunisia, 2008, pp. 195–203.
- [5] A. Farrugia, Self-complementary graphs and generalisations: A comprehensive reference manual, University of Malta, 1999, 254 pp.
- [6] R. Fraïssé, Theory of Relations, first ed., North-Holland Publ. Co., Amsterdam, 1986, second ed., North-Holland Publ. Co., Amsterdam, 2000.
- [7] D.H. Gottlieb, A class of incidence matrices, Proc. Amer. Math. Soc. 17 (1966) 1233-1237.
- [8] J.G. Hagendorf, G. Lopez, La demi-reconstructibilité des relations binaires d'au moins 13 éléments, C. R. Acad. Sci. Paris Sér. I 317 (1993) 7-12.
- [9] P. Ille, Personal communication, September 2000.
- [10] W. Kantor, On incidence matrices of finite projection and affine spaces, Math. Z. 124 (1972) 315-318.
- [11] P.J. Kelly, A congruence theorem for trees, Pacific J. Math. 7 (1957) 961-968.
- [12] M. Muzychuk, On Sylow subgraphs of vertex-transitive self-complementary graphs, Bull. London Math. Soc. 31 (1999) 531–533.
- [13] M. Pouzet, Application d'une propriété combinatoire des parties d'un ensemble aux groupes et aux relations, Math. Z. 150 (1976) 117–134.
- [14] M. Pouzet, H. Si Kaddour, Claw-freeness and the 3-homogeneous subsets of a graph, Discrete Math., January 2005, submitted for publication.
- [15] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1976) 264-286.
- [16] S.B. Rao, On regular and strongly-regular self-complementary graphs, Discrete Math. 54 (1985) 73-82.
- [17] S.M. Ulam, A Collection of Mathematical Problems, Intersciences Publishers, New York, 1960.
- [18] J.H. Van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.
- [19] R.M. Wilson, A diagonal form for the incidence matrices of t-subsets vs. k-subsets, European J. Combin. (1990) 609-615.