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Let V be a set of cardinality v (possibly infinite). Two graphs G
and G ′ with vertex set V are isomorphic up to complementation if G ′
is isomorphic to G or to the complement G of G . Let k be a non-
negative integer, G and G ′ are k-hypomorphic up to complementation
if for every k-element subset K of V , the induced subgraphs G�K

and G ′
�K are isomorphic up to complementation. A graph G is k-

reconstructible up to complementation if every graph G ′ which is
k-hypomorphic to G up to complementation is in fact isomorphic
to G up to complementation. We give a partial characterisation of
the set S of ordered pairs (n,k) such that two graphs G and G ′
on the same set of n vertices are equal up to complementation
whenever they are k-hypomorphic up to complementation. We
prove in particular that S contains all ordered pairs (n,k) such
that 4 � k � n − 4. We also prove that 4 is the least integer k
such that every graph G having a large number n of vertices is
k-reconstructible up to complementation; this answers a question
raised by P. Ille [P. Ille, Personal communication, September 2000].

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Ulam’s Reconstruction Conjecture [17] (see [2,3]) asserts that two graphs G and G ′ on the same
finite set V of v vertices, v � 3, are isomorphic provided that the restrictions G�K and G ′

�K of G and
G ′ to the (v − 1)-element subsets of V are isomorphic. If this latter condition holds for the k-element
subsets of V for some k, 2 � k � v − 2, then, as it has been noticed several times, G and G ′ are
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identical. This conclusion does not require the finiteness of v nor the isomorphy of G�K and G ′
�K , it

only requires that G�K and G ′
�K have the same number of edges for all k-element subsets K of V ,

simply because the adjacency matrix of the Kneser graph KG(2,k + 2) is non-singular (see Section 2).
In this paper we look for similar results if the conditions on the restrictions G�K and G ′

�K are given

up to complementation, that is if G ′
�K is isomorphic to G�K or to its complement G�K , or if G ′

�K has

the same number of edges than G�K or G�K . If the first condition holds for all k-element subsets K
of V , we say that G and G ′ are k-hypomorphic up to complementation and, if the second holds, we say
that G and G ′ have the same number of edges up to complementation. We say that G is k-reconstructible
up to complementation if every graph G ′ , k-hypomorphic to G up to complementation, is isomorphic
to G or its complement.

We show first that the equality of the number of edges, up to complementation, for the k-vertices
induced subgraphs suffices for the equality up to complementation provided that 4 � k �= 7 and v is
large enough (Theorem 2.10). Our proof is based on Ramsey’s theorem for pairs [15].

Next, we give partial description of the set S of ordered pairs (v,k) such that two graphs G and
G ′ on the same set of v vertices are equal up to complementation whenever they are k-hypomorphic
up to complementation.

Theorem 1.1.

(1) Let v � 2, then (v,k) ∈ S iff k ∈ N.
(2) Let v > 2 then (v,k) ∈ S implies 4 � k � v − 2.

(a) If v ≡ 2 (mod 4), (v,k) ∈ S iff 4 � k � v − 2.
(b) If v ≡ 0 (mod 4) or v ≡ 3 (mod 4) then (v,k) ∈ S implies k � v − 3 for infinitely many v and

4 � k � v − 3 implies (v,k) ∈ S .
(c) If v ≡ 1 (mod 4) then (v,k) ∈ S implies k � v − 4 for infinitely many v and 4 � k � v − 4 implies

(v,k) ∈ S .

Our proof for membership in S is a straightforward application of properties of incidence matrices
due to D.H. Gottlieb [7], W. Kantor [10] and R.M. Wilson [19]. It is given in Section 3. Constraints on S
are given in Section 4.

Our motivation comes from the following problem raised by P. Ille: find the least integer k such
that every graph G having a large number v of vertices is k-reconstructible up to complementation.
With Theorem 1.1 we show that k = 4 (see Section 2).

A quite similar problem was raised by J.G. Hagendorf (1992) and solved by J.G. Hagendorf and
G. Lopez [8]. Instead of graphs, they consider binary relations and instead of the complement of a
graph, they consider the dual R∗ of a binary relation R (where (x, y) ∈ R∗ if and only if (y, x) ∈ R);
they prove that 12 is the least integer k such that two binary relations R and R ′ , on the same large
set of vertices, are either isomorphic or dually isomorphic provided that the restrictions R�K and R ′

�K
are isomorphic or dually isomorphic, for every k-element subsets K of V .

2. Preliminaries

Our notations and terminology follow [1]. A graph is an ordered pair G := (V , E ), where E is a
subset of [V ]2, the set of pairs {x, y} of distinct elements of V . Elements of V are the vertices of G
and elements of E its edges. If K is a subset of V , the restriction of G to K , also called the induced
graph on K is the graph G�K := (K , [K ]2 ∩ E ). If K = V \ {x}, we denote this graph by G−x . The
complement of G is the graph G := (V , [V ]2 \ E ). We denote by V (G) the vertex set of a graph G ,
by E(G) its edge set and by e(G) := |E(G)| the number of edges. If {x, y} is an edge of G we set
G(x, y) = 1; otherwise we set G(x, y) = 0. The degree of a vertex x of G , denoted dG(x), is the number
of edges which contain x. The graph G is regular if dG(x) = dG(y) for all x, y ∈ V . If G, G ′ are two
graphs, we denote by G � G ′ the fact that they are isomorphic. A graph is self-complementary if it is
isomorphic to its complement.
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2.1. Incidence matrices and isomorphy up to complementation

Let V be a finite set, with v elements. Given non-negative integers t,k, let Wt k be the
(v

t

)
by

(v
k

)
matrix of 0’s and 1’s, the rows of which are indexed by the t-element subsets T of V , the columns
are indexed by the k-element subsets K of V , and where the entry Wt k(T , K ) is 1 if T ⊆ K and is 0
otherwise.

A fundamental result, due to D.H. Gottlieb [7], and independently W. Kantor [10], is this:

Theorem 2.1. For t � min (k, v − k), Wt k has full row rank over the field Q of rational numbers.

If k := v − t then, up to a relabelling, Wt k is the adjacency matrix At,v of the Kneser graph KG(t, v),
graph whose vertices are the t-element subsets of V , two subsets forming an edge if they are disjoint.

An equivalent form of Theorem 2.1 is:

Theorem 2.2. At,v is non-singular for t � v
2 .

Applications to graphs and relational structures where given in [6] and [13].
Theorem 2.1 has a modular version due to R.M. Wilson [19].

Theorem 2.3. For t � min (k, v − k), the rank of Wt k modulo a prime p is

∑(
v

i

)
−

(
v

i − 1

)

where the sum is extended over those indices i, 0 � i � k, such that p does not divide the binomial coefficient(k−i
t−i

)
.

In the statement of the theorem,
( v
−1

)
should be interpreted as zero.

We will apply Wilson’s theorem with t = p = 2 for k ≡ 0 (mod 4) and for k ≡ 1 (mod 4). In the
first case the rank of W2 k (mod 2) is

(v
2

) − 1. In the second case, the rank is
(v

2

) − v .
Let us explain why the use of these results in our context is natural.
Let X1, . . . , Xr be an enumeration of the 2-element subsets of V ; let K1, . . . , Ks be an enumeration

of the k-element subsets of V and W2 k be the matrix of the 2-element subsets versus the k-element
subsets. If G is a graph with vertex set V , let wG be the row matrix (g1, . . . , gr) where gi = 1 if Xi

is an edge of G , 0 otherwise. We have wG W2 k = (e(G�K1 ), . . . , e(G�Ks )). Thus, if G and G ′ are two
graphs with vertex set V such that G�K and G ′

�K have the same number of edges for every k-element
subset of V , we have (wG − wG ′ )W2 k = 0. Thus, provided that v � 4, by Theorem 2.1, wG − wG ′ = 0
that is G = G ′ .

This proves the observation made at the beginning of our introduction. The same line of proof
gives:

Proposition 2.4. Let t � min (k, v − k) and G and G ′ be two graphs on the same set V of v vertices. If G and
G ′ are k-hypomorphic up to complementation then they are t-hypomorphic up to complementation.

Proof. Let H be a graph on t vertices. Set Is(H, G) := {L ⊆ V : G�L � H}, Isc(H, G) := Is(H, G)∪ Is(H, G)

and w H,G the 0–1-row vector indexed by the t-element subsets X1, . . . , Xr of V whose coeffi-
cient of Xi is 1 if Xi ∈ Isc(H, G) and 0 otherwise. From our hypothesis, it follows that w H,G Wt k =
w H,G ′ Wt k . From Theorem 2.1, this implies w H,G = w H,G ′ that is Isc(H, G) = Isc(H, G ′). Since this
equality holds for all graphs H on t-vertices, the conclusion of the proposition follows. �
Theorem 2.5. (k, v) ∈ S for all v,k such that 4 � k � v − 4.
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Proof. Let k be a non-negative integer and G , G ′ be two graphs on the same set V of v vertices
which are k-hypomorphic up to complementation. Suppose k = 4. If v = 6, a careful case analysis (or
a very special case of Wilson’s theorem, see Theorem 2.6 below) yields that G and G ′ are equal up
to complementation. If v � 6, then from this fact, G�K and G ′

�K are equal up to complementation for
every 6-element subset K of V . Thus, this conclusion also holds for all k-element subsets of V with
k � 6. This implies that it holds for all k and particularly that G and G ′ are equal up to complemen-
tation. Otherwise, there are two pairs of vertices {x, y} and {x′, y′} such that G(x, y) �= G ′(x, y) and
G(x′, y′) �= G ′(x′, y′). But then G�K and G ′

�K , with K := {x, y, x′, y′}, are not equal up to complementa-
tion. Now, suppose 4 � k � v − 4. According to Proposition 2.4, these two graphs are 4-hypomorphic
up to complementation. From the observation above, G and G ′ are equal up to complementation. �

P. Ille [9] asked for the least integer k such that every graph G having a large number v of vertices
is k-reconstructible up to complementation.

From Theorem 2.5 above, k exists and is at most 4. From Proposition 4.1 below, we have k � 4.
Hence k = 4.

This was our original solution of Ille’s problem.
The use of Wilson’s theorem leads to the improvement of Theorem 2.5 contained in Theorem 1.1.

If k ≡ 0 (mod 4) or k ≡ 1 (mod 4), its use is natural. If we look at conditions which imply G ′ = G
or G ′ = G , it is simpler to consider the boolean sum G +̇ G ′ of G and G ′ , that is the graph U on V
whose edges are pairs e of vertices such that e ∈ E(G) if and only if e /∈ E(G ′). Indeed, G ′ = G or
G ′ = G amounts to the fact that U is either the empty graph or the complete graph. This leads to
the use of the matrix W2 k . Indeed, if we suppose for an example that G and G ′ are k-hypomorphic
up to complementation, e(G�K ) and e(G ′

�K ) are equal up to complementation for every k-element
subset K of V thus, in particular, have the same parity up to complementation. If k ≡ 0 (mod 4) or
k ≡ 1 (mod 4),

(k
2

)
is even, hence this latter condition amounts to the fact that e(G�K ) and e(G ′

�K )

have the same parity. As it is easy to see, this amounts to the fact that e(U�K ) = 0 modulo 2. Since
this property holds for every k-element subset K , we have wU W2 k = (0, . . . ,0) (mod 2). As we will
see below, if k ≡ 0 (mod 4), Wilson’s theorem yields wU = (0, . . . ,0) or wU = (1, . . . ,1), that is U is
empty or complete, so G ′ = G or G ′ = G . If k ≡ 1 (mod 4) an additional condition is needed to get
the same conclusion. Indeed, in this case, the empty graph and a star-graph on the same vertex set
yield wU W2 k = (0, . . . ,0) (mod 2). We have not been able yet to apply Wilson’s theorem in the cases
k ≡ 2 (mod 4) and k ≡ 3 (mod 4) (also note that in these cases, e(G�K ) and e(G ′

�K ) have always the
same parity up to complementation, no matter what G and G ′ are).

Theorem 2.6. Let G and G ′ be two graphs on the same set V of v vertices (possibly infinite). Let k be an integer
such that 4 � k � v − 2, k ≡ 0 (mod 4). Then the following properties are equivalent:

(i) e(G�K ) has the same parity as e(G ′
�K ) for all k-element subsets K of V ;

(ii) G ′ = G or G ′ = G.

Proof. The implication (ii) ⇒ (i) is trivial. We prove (i) ⇒ (ii).
We may suppose V finite. Let W2 k be the matrix defined page 3 and t W2 k its transpose. Let

U := G +̇ G ′ . From the fact that e(G�K ) has the same parity as e(G ′
�K ) for all k-element subsets K , the

boolean sum U belongs to the kernel of t W2 k over the 2-element field. Since by Wilson’s theorem,
the rank of W2 k modulo 2 is

( v
2

) − 1, the kernel of its transpose t W2 k has dimension 1. Since
(1, . . . ,1)W2 k = (0, . . . ,0) (mod 2) then wU W2 k = (0, . . . ,0) (mod 2) amounts to wU = (0, . . . ,0) or
wU = (1, . . . ,1), that is U is empty or complete, so G ′ = G or G ′ = G . �

Let G be a graph. A 3-element subset T of V such that all pairs belong to E(G) is a triangle of G .
A 3-element subset of V which is a triangle of G or of G is a 3-homogeneous subset of G .
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Theorem 2.7. Let G and G ′ be two graphs on the same set V of v vertices (possibly infinite). Let k be an integer
such that 5 � k � v − 2, k ≡ 1 (mod 4). Then the following properties are equivalent:

(i) e(G�K ) has the same parity as e(G ′
�K ) for all k-element subsets K of V and the same 3-homogeneous

subsets;
(ii) G ′ = G or G ′ = G.

Proof. We follow the same line as for the proof of Theorem 2.6. The implication (ii) ⇒ (i) is trivial.
We prove (i) ⇒ (ii).

We suppose V finite, we set U := G +̇ G ′ and from the fact that e(G�K ) has the same parity as
e(G ′

�K ) for all k-element subsets K , we get that the boolean sum U belongs to the kernel of t W2 k

(over the 2-element field).

Claim 2.8. Let k be an integer such that 2 � k � v − 2, k ≡ 1 (mod 4), then the kernel of t W2 k consists of
complete bipartite graphs and their complements (including the empty graph and the complete graph).

Proof. Let us recall that a star-graph of v vertices consists of a vertex linked to all other vertices, those
v − 1 vertices forming an independent set. The vector space (over the 2-element field) generated by
the star-graphs on V consists of all complete bipartite graphs; since v is distinct from 1 and 2,
these are distinct from the complete graph (but include the empty graph). Moreover, its dimension
is v − 1 (a basis being made of star-graphs). Let K be the kernel of t W2 k . Since k is odd, each
star-graph belongs to K. Since k ≡ 1 (mod 4), the complete graph also belongs to K. According to
Wilson’s theorem, the rank of W2k (mod 2) is

( v
2

) − v . Hence the kernel of t W2 k has dimension v .
Consequently, K consists of complete bipartite graphs and their complements, as claimed. �

A claw is a star-graph on four vertices, that is a graph made of a vertex joined to three other
vertices, with no edges between these three vertices. A graph is claw-free if no induced subgraph is
a claw.

Claim 2.9. Let G and G ′ be two graphs on the same set and having the same 3-homogeneous subsets, then the
boolean sum U := G +̇ G ′ and its complement are claw-free.

Proof. Suppose there is a claw in U with edges {x, y}, {x, y′} and {x, y′′}. Without loss of general-
ity, assume that G(x, y) = G(x, y′). If U (y, y′) = 0, that is G(y, y′) = G ′(y, y′), then since G and G ′
have the same 3-element homogeneous sets and G(x, y) �= G ′(x, y), {x, y, y′} cannot be homogeneous,
hence G(y, y′) �= G(x, y) and G ′(y, y′) �= G ′(x, y). This implies G(y, y′) �= G ′(y, y′), a contradiction.
From this observation, U is claw-free. Since G and G ′ have the same 3-homogeneous subsets and
U = G +̇ G ′ , we also get that U is claw-free. �

For a characterization of these boolean sums, see [14].
From Claim 2.8, U or its complement is a complete bipartite graph and, from Claim 2.9, U and U

are claw-free. Since v � 5 (in fact v � 7), it follows that U is either the empty graph or the complete
graph. Hence G ′ = G or G ′ = G as claimed. �
2.2. Conditions on the number of edges and Ramsey’s theorem

Theorem 2.10. Let k be an integer, 7 �= k � 4. There is an integer m such that if G and G ′ are two graphs on
the same set V of v vertices, v � m, such that G�K and G ′

�K have the same number of edges, up to comple-

mentation, for all k-element subsets K of V , then G ′ = G or G ′ = G.

Conditions 7 �= k � 4 in Theorem 2.10 are necessary.
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– For k = 7, consider two graphs G and G ′ on V := {1,2, . . . , v} such that {i, j} is an edge of G and
G ′ for all i �= j in {1,2, . . . , v − 2}, G has no another edge and G ′ has {v − 1, v} as an additional
edge. For k < 4 apply Proposition 4.1 below.

Let c(k) be the least integer m for which the conclusion of Theorem 2.10 holds.

Problem 2.11. Is c(k) � k + 4?

Our proof uses Ramsey’s theorem rather than incidence matrices. It is inspired from a relationship
between Ramsey’s theorem and Theorem 2.1 pointed out in [13]. The drawback is that the bound on
c(k) is quite crude.

Let r2
2(k) be the bicolor Ramsey number for pairs: the least integer n such that every graph on

n vertices contains a k-homogeneous subset, that is a clique or an independent on k vertices. We
deduce Theorem 2.10 and c(k) � r2

2(k) from the following result.

Proposition 2.12. Let k be an integer, 7 �= k � 4 and let G and G ′ be two graphs on the same set V of v
vertices, v � k such that:

(1) G�K and G ′
�K have the same number of edges, up to complementation, for all k-element subsets K of V ;

(2) V contains a k-element subset K such that G�K or G�K has at least l edges where l :=
min( k2+7k−12

4 ,
k(k−1)

2 ).

Then G ′ = G or G ′ = G.

The inequality k2+7k−12
4 � k(k−1)

2 holds iff k � 8. For k > 8 the condition l = k2+7k−12
4 is weaker

than the existence of a clique of size k.

Proof. We may suppose that V contains a k-element subset of V , say K , such that e(G�K ) � l; also
we may suppose, from condition (1), that e(G�K ) = e(G ′

�K ) otherwise replace G ′ by its complement.
We shall prove that for all V ′ such that K ⊆ V ′ ⊆ V and |V ′| = k + 2 we have e(G�K ′ ) = e(G ′

�K ′)
for all k-element subset K ′ of V ′ . Since the adjacency matrix of the Kneser graph KG(2,k + 2) is
non-singular, G�V ′ = G ′

�V ′ . It follows that G = G ′ .

Claim 2.13. For x /∈ K and y ∈ K , e(G�(K∪{x})\{y}) = e(G ′
�(K∪{x})\{y}).

Proof. Let x /∈ K and y ∈ K . Set K ′ := (K ∪ {x}) \ {y}. The graphs G�K ′ and G ′
�K ′ have at least l′ :=

l − (k − 1) edges. Since G�K ′ and G ′
�K ′ have the same number of edges up to complementation, we

have e(G�K ′ ) = e(G ′
�K ′ ) whenever l′ � k(k−1)

4 , that is l � l′′ := (k−1)(k+4)
4 .

If k � 8 we have l = k2+7k−12
4 yielding l > l′′ as required. If k ∈ {4,5,6} we have l = k(k−1)

2 yielding
again l � l′′ . �
Claim 2.14. For distinct x, x′ /∈ K and y, y′ ∈ K , e(G�(K∪{x,x′})\{y,y′}) = e(G ′

�(K∪{x,x′})\{y,y′}).

Proof. Let x, x′ /∈ K and y, y′ ∈ K be distinct. Set K ′ := (K ∪ {x, x′}) \ {y, y′}. We have e(G�K ′ ) �
e(G�K ) − (2k − 3) and e(G ′

�K ′) � e(G�K ) − (2k − 3). Thus e(G�K ′) and e(G ′
�K ′) have at least l′ :=

l − (2k − 3) edges. Since G�K ′ and G ′
�K ′ have the same number of edges up to complementation,

we have e(G�K ′ ) = e(G ′
�K ′ ) whenever l′ � k(k−1)

4 , that is l � k2+7k−12
4 . This inequality holds if k � 8.

Suppose k ∈ {4,5,6}. Thus l = k(k−1)
2 . Hence K is a clique for G and G ′ .

Subclaim. Let u /∈ K then G and G ′ coincide on K ∪ {u}.
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Proof. Since K is a clique, this amounts to G(u, v) = G ′(u, v) for all v ∈ K , a fact which follows
from Claim 2.13. Indeed, we have dG�K∪{u}(u) = 1

k−1

∑
w∈K dG�(K∪{u})\{w}(u). From Claim 2.13 we have

dG�(K∪{u})\{w} (u) = dG ′
�(K∪{u})\{w}(u). Thus dG�K∪{u}(u) = dG ′

�K∪{u}(u). Since dG�(K∪{u})\{v} (u) = dG ′
�(K∪{u})\{v} (u)

the equality G(u, v) = G ′(u, v) follows. �
From this subclaim it follows that G and G ′ coincide on K ′ with the possible exception of the

pair {x, x′}. Set a := e(G�K ′), a′ := e(G ′
�K ′ ). Suppose a �= a′ . Then |a − a′| = 1, hence the sum a + a′

is odd. Since G�K ′ and G ′
�K ′ have the same number of edges up to complementation, this sum is

also k(k−1)
2 . If k = 4 or k = 5 this number is even, a contradiction. Suppose k = 6. We may suppose

a = a′ + 1 hence from a + a′ = k(k−1)
2 we get a = 8. Put {x1, x2, x3, x4, y, y′} := K . Since K is a clique

we have G(x, x′) = 1, G ′(x, x′) = 0 and G , G ′ contain just one edge from {x, x′} to {x1, x2, x3, x4}.
We may suppose G(x1, x) = G ′(x1, x) = 1, G(x1, x′) = G ′(x1, x′) = 0 and G(t, u) = G ′(t, u) = 0 for all
t ∈ {x2, x3, x4} and u ∈ {x, x′}.

Let K ′′ := (K ∪{x, x′})\{x1, x2}. From the subclaim above, G and G ′ coincide on K ′′ with the excep-
tion of the pair {x, x′} hence G , G ′ contain just one edge from {x, x′} to {x3, x4, y, y′}. We can assume
G(y, u) = G ′(y, u) = 1 for exactly one u ∈ {x, x′}, and G(t, u) = G ′(t, u) = 0 for all t ∈ {x3, x4, y′} and
u ∈ {x, x′}.

Set B := {x2, x3, x4, x, x′, y′}, then e(G�B) = 7 and e(G ′
�B) = 6. So e(G�B) �= e(G ′

�B) and e(G�B) +
e(G ′

�B) �= k(k−1)
2 , that gives a contradiction. �

Clearly Proposition 2.12 follows from Claims 2.13 and 2.14. �
3. Some members of S

Sufficient conditions for membership stated in Theorem 1.1 are contained in Theorem 3.1 below.
Let v be a non-negative integer and ϑ(v) := 4l if v ∈ {4l+2,4l+3}, ϑ(v) := 4l−3 if v ∈ {4l,4l+1}.

Theorem 3.1. Let v, k be two integers with 4 � k � ϑ(v). Then, for every pair of graphs G and G ′ on the same
set V of v vertices, the following properties are equivalent:

(i) G and G ′ are k-hypomorphic up to complementation;
(ii) G�K and G ′

�K have the same number of edges, up to complementation, and the same number of 3-
homogeneous subsets, for all k-element subsets K of V ;

(iii) G�K and G ′
�K have the same number of edges, up to complementation, for all k-element and k′-element

subsets K of V where k′ is an integer verifying 3 � k′ < k;
(iv) G ′ = G or G ′ = G.

3.1. Ingredients

Let G := (V , E) be a graph. Let A(2)(G) be the set of pairs {u, u′} made of some u ∈ E(G) and
some u′ ∈ E(G). Let A(0)(G) := {{u, u′} ∈ A(2)(G): u ∩ u′ = ∅}, A(1)(G) := A(2)(G) \ A(0)(G) and let
a(i)(G) be the cardinality of A(i)(G) for i ∈ {0,1,2}; thus a(2)(G) = a(0)(G) + a(1)(G). Let T (G) be the
set of triangles of G and let t(G) := |T (G)|. Let H(3)(G) := T (G) ∪ T (G) be the set of 3-homogeneous
subsets of G and h(3)(G) := |H(3)(G)|.

Some elementary properties of the above numbers are stated in the lemma below; the proof is
immediate.

Lemma 3.2. Let G be a graph with v vertices, then:

(1) A(i)(G) = A(i)(G), hence a(i)(G) = a(i)(G), for all i ∈ {0,1,2}.
(2) a(2)(G) = e(G)e(G).
(3) a(1)(G) = ∑

x∈V (G) dG(x)dG (x).

(4) h(3)(G) = v(v−1)(v−2)
6 − 1

2 a(1)(G).
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Lemma 3.3. Let G and G ′ be two graphs on the same finite vertex set V , then

e(G ′) = e(G) or e(G ′) = e(G) iff e(G)e(G) = e(G ′)e(G ′).

Proof. Suppose

e(G)e(G) = e(G ′)e(G ′). (1)

Since e(G) + e(G) = v(v−1)
2 and e(G ′) + e(G ′) = v(v−1)

2 , where v := |V |, we have

e(G) + e(G) = e(G ′) + e(G ′). (2)

Then (1) and (2) give e(G ′) = e(G) or e(G ′) = e(G). The converse is obvious. �
Lemma 3.4. Let G be a graph, V := V (G), v := |V |.

(a) Let i ∈ {0,1}, k such that 4 − i � k � v, then

a(i)(G) = 1(v−4+i
k−4+i

) ∑
K⊆V
|K |=k

a(i)(G�K ).

(b) Let k such that 3 � k � v − 1, then

a(0)(G) = v − 3

v − k
e(G)e(G) − 1(v−4

k−3

) ∑
K⊆V
|K |=k

e(G�K )e(G�K ),

a(1)(G) = 1(v−4
k−3

) ∑
K⊆V
|K |=k

e(G�K )e(G�K ) − k − 3

v − k
e(G)e(G).

Proof. (a) Let {u, u′} ∈ A(i)(G) for i ∈ {0,1}. The number of k-element subsets K of V containing u
and u′ is

(v−4+i
k−4+i

)
. The result follows.

(b) If k = 3 then (a) and the fact that a(0)(G) + a(1)(G) = e(G)e(G) give the formulas.
If 4 � k � v − 1, then by (a) we have(

v − 4

k − 4

)
a(0)(G) =

∑
K⊆V
|K |=k

a(0)(G�K ),

(
v − 3

k − 3

)
a(1)(G) =

∑
K⊆V
|K |=k

a(1)(G�K ).

Summing up and applying (2) of Lemma 3.2 to the G�K ’s we have(
v − 4

k − 4

)
a(0)(G) +

(
v − 3

k − 3

)
a(1)(G) =

∑
K⊆V
|K |=k

e(G�K )e(G�K ). (3)

On the other hand

a(0)(G) + a(1)(G) = e(G)e(G). (4)

Eqs. (3) and (4) form a Cramer system with a(0)(G) and a(1)(G) as unknowns. Indeed the determinant

� :=
∣∣∣∣
(v−4

k−4

) (v−3
k−3

)
1 1

∣∣∣∣ =
(

v − 4

k − 4

)
−

(
v − 3

k − 3

)
= −

(
v − 4

k − 3

)

is nonzero. A straightforward computation gives the result. �
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Corollary 3.5. Let G and G ′ be two graphs on the same set V of v vertices and k be an integer such that
4 � k � v.

The implications (ii) ⇒ (i) and (i) ⇒ (iii) between the following statements hold.

(i) e(G ′
�K ) = e(G�K ) or e(G�K ) and h(3)(G�K ) = h(3)(G ′

�K ) for all k-element subsets K of V .

(ii) e(G ′
�K ) = e(G�K ) or e(G�K ) for all k-element and k′-element subsets K of V where k′ is some integer

verifying 3 � k′ < k.
(iii) G�L and G ′

�L have the same number of edges up to complementation and h(3)(G�L) = h(3)(G ′
�L) for all

l-element subsets L of V and all integer l such that k � l � v.

Proof. (i) ⇒ (iii). Let L be an l-element subset of V with l � k, and K be a k-element subset of L.
From Lemma 3.3 and (2) of Lemma 3.2, we have a(0)(G�K ) + a(1)(G�K ) = a(0)(G ′

�K ) + a(1)(G ′
�K ), and

from (4) of Lemma 3.2, a(1)(G�K ) = a(1)(G ′
�K ). Hence a(i)(G�K ) = a(i)(G ′

�K ) for all k-element subsets K
of L and i ∈ {0,1}.

From (a) of Lemma 3.4 applied to G�L follows a(i)(G�L) = a(i)(G ′
�L) for i ∈ {0,1}, hence using (2) of

Lemma 3.2 we get e(G�L)e(G�L) = e(G ′
�L)e(G ′

�L). The conclusion follows from Lemma 3.3 and (4) of
Lemma 3.2.

(ii) ⇒ (i). It suffices to prove that h(3)(G�K ) = h(3)(G ′
�K ) for all k-element subsets K of V . From

Lemma 3.3 we have e(G�K )e(G�K ) = e(G ′
�K )e(G ′

�K ) and e(G�K ′ )e(G�K ′ ) = e(G ′
�K ′)e(G ′

�K ′ ) for all k′-
element set K ′ ⊆ K . From (b) of Lemma 3.4 we get a(i)(G�K ) = a(i)(G ′

�K ) for i ∈ {0,1}. Then by (4) of

Lemma 3.2, h(3)(G�K ) = h(3)(G ′
�K ). �

Proposition 3.6. Let G and G ′ be two graphs on v vertices and k be an integer such that 4 � k � v. If G and G ′
are k-hypomorphic up to complementation then e(G ′

�L) = e(G�L) or e(G ′
�L) = e(G�L) for all l-element subsets

L of V and all integer l such that k � l � v.

Proof. If G and G ′ are k-hypomorphic up to complementation then G�K and G ′
�K have the same

number of edges up to complementation, and the same number of 3-homogeneous subsets, for all
k-element subsets K of V . We conclude using (i) ⇒ (iii) of Corollary 3.5 �

By inspection of the eleven graphs on four vertices, one may observe that:

Fact 3.7. The ordered pair (e(G)e(G),h(3)(G)) characterize G up to isomorphy and complementation if
|V (G)| � 4.

Note that in Fact 3.7, we can replace (e(G)e(G),h(3)(G)) by (a(0)(G),a(1)(G)) (this follows from
Lemmas 3.3 and 3.2).

Proposition 3.8. Let G and G ′ be two graphs on the same set V of v vertices and k be an integer. If 3 � k �
v − 3 (respectively 4 � k � v − 4) and h(3)(G�K ) = h(3)(G ′

�K ) (respectively a(0)(G�K ) = a(0)(G ′
�K )) for all

k-element subsets K of V then h(3)(G�K ) = h(3)(G ′
�K ) (respectively a(0)(G�K ) = a(0)(G ′

�K )) for all (v − k)-
element subsets K of V .

Proof. By (4) of Lemma 3.2, h(3)(G�K ) = h(3)(G ′
�K ) iff a(1)(G�K ) = a(1)(G ′

�K ).

Case 1. k � v
2 , then v − k � k. Let K ′ be a (v − k)-element subset of V , then from (a) of Lemma 3.4

we have for i ∈ {0,1},

a(i)(G�K ′ ) = 1(v−k−4+i
k−4+i

) ∑
K⊆K ′
|K |=k

a(i)(G�K ).
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Then we get the conclusion.

Case 2. k > v
2 , then v − k < v

2 . Let K ′ be a k-element subset of V . From (a) of Lemma 3.4 we have for
i ∈ {0,1},

∑
K⊆K ′

|K |=v−k

a(i)(G�K ) =
(

k − 4 + i

v − k − 4 + i

)
a(i)(G�K ′ ). (5)

Let X1, X2, . . . , Xl be an enumeration of the (v − k)-element subsets of V . Let w(i)
G :=

(a(i)(G�X1 ),a(i)(G�X2 ), . . . ,a(i)(G�Xl )), and w(i)
G ′ := (a(i)(G ′

�X1
),a(i)(G ′

�X2
), . . . ,a(i)(G ′

�Xl
)). From (5), we

get, for i ∈ {0,1}, Av−k,v
t w(i)

G = Av−k,v
t w(i)

G ′ . We conclude using Theorem 2.2. �
3.2. Proof of Theorem 3.1

(i) ⇒ (ii), (iv) ⇒ (i), (iv) ⇒ (iii) are obvious and (iii) ⇒ (ii) is implication (ii) ⇒ (i) of Corollary 3.5.
Thus it is sufficient to prove (ii) ⇒ (iv).

Let l, k � l � v . According to implication (i) ⇒ (iii) of Corollary 3.5, e(G ′
�L) = e(G�L) or e(G ′

�L) =
e(G�L) for all l-element subsets L of V . If we may choose l ≡ 0 (mod 4) with l � v − 2, then e(G�L)

and e(G ′
�L) have the same parity. Theorem 2.6 gives G ′ = G or G ′ = G . Thus, the implication (ii) ⇒ (iv)

is proved if v ≡ 2 (mod 4) and if v ≡ 3 (mod 4). There are two remaining cases.

Case 1. v ≡ 1 (mod 4) and k = v − 4. We prove that e(G ′
�L) and e(G�L) have the same parity for all 4-

element subsets L of V . Theorem 2.6 again gives G ′ = G or G ′ = G . The proof goes as follows. Let L be
a 4-element subset of V , and K be a k-element subset of V . By Lemma 3.2, a(2)(G�K ) = a(2)(G ′

�K ) and

a(1)(G�K ) = a(1)(G ′
�K ). Thus a(0)(G�K ) = a(0)(G ′

�K ). Using Proposition 3.8, we get a(0)(G�L) = a(0)(G ′
�L)

and h(3)(G�L) = h(3)(G ′
�L). Now (4) of Lemma 3.2 gives a(1)(G�L) = a(1)(G ′

�L). So a(2)(G�L) = a(2)(G ′
�L),

then using (2) of Lemma 3.2 and Lemma 3.3 we get e(G ′
�L) = e(G�L) or e(G�L), thus e(G ′

�L) and e(G�L)

have the same parity.

Case 2. v ≡ 0 (mod 4) and k = v − 3. From Proposition 3.8, G and G ′ have the same 3-homogeneous
subsets. From Theorem 2.7, G ′ = G or G ′ = G as claimed.

4. Constraints on S

Two arbitrary graphs on the same set of vertices are k-hypomorphic up to complementation
for k � 2. Hence, if v � 2, (v,k) ∈ S iff k ∈ N. This is item (1) of Theorem 1.1.

Next, suppose v > 2, and (v,k) ∈ S .
According to the proposition below, we have k � 4.

Proposition 4.1. For every integer v � 4, there are two graphs G and G ′ , on the same set of v vertices, which
are 3-hypomorphic up to complementation but not isomorphic up to complementation.

Proof. Let G and G ′ be two graphs having {1,2, . . . , v} as set of vertices.

– Even case: v = 2p. Pairs {i, j} are edges of G and G ′ for all i �= j in {1,2, . . . , p} and for all i �= j
in {p + 1, . . . ,2p}. The graph G has no other edge and G ′ has {1, p + 1} as an additional edge.
Clearly G ′ and G are 3-hypomorphic up to complementation and not isomorphic. Since G has p2

edges but G ′ has p(p − 1) + 1 edges, G ′ and G are not isomorphic.
– Odd case: v = 2p + 1. Pairs {i, j} are edges of G and G ′ for all i �= j in {1,2, . . . , p} and for all

i �= j in {p + 1, . . . ,2p + 1}. The graph G has no other edge and G ′ has {1, p + 1} as an additional
edge. Clearly G ′ and G are 3-hypomorphic up to complementation and not isomorphic. Since G
has p(p + 1) edges but G ′ has p2 + 1 edges, G ′ and G are not isomorphic.



94 J. Dammak et al. / Journal of Combinatorial Theory, Series B 99 (2009) 84–96
In both cases G and G ′ are 3-hypomorphic up to complementation but not isomorphic up to comple-
mentation. �

According to the following lemma, v � 6.

Lemma 4.2. For every v, 3 � v � 5, there are two graphs G and G ′ , on the same set of v vertices, which are
k-hypomorphic for all k � v but G ′ �= G and G ′ �= G.

Proof. Let V := {0,1,2,3,4}, E := {{0,1}, {1,2}, {2,3}, {3,4}, {4,0}} and E ′ := (E \ {{0,4}, {1,2}}) ∪
{{1,4}, {0,2}}. Let G := (V , E ) and G ′ := (V , E ′). These graphs are two 5-element cycles, G ′ being
obtained from G by exchanging 0 and 1. Trivially, they satisfy the conclusion of the lemma. The two
pairs G−3, G ′−3 and G−3,−4 and G ′−3,−4 also satisfy the conclusion of the lemma. �

Next, a straightforward extension of the construction in Lemma 4.2 above yields k � v − 2. Indeed,
let us say that two graphs G and G ′ on the same set V of vertices are k-hypomorphic if for any
subset X of V of cardinality k, G�X and G ′

�X are isomorphic. We have:

Lemma 4.3. For every integer v, v � 4, there are two graphs G and G ′ , on the same set of v vertices, which
are k-hypomorphic for all k ∈ {v − 1, v} but G ′ �= G and G ′ �= G.

Proof. Let V := {0, . . . , v − 1}, E := {{i, i + 1}: 0 � i < v − 1} ∪ {{0, v − 1}}, E ′ := (E \ {{0, v − 1},
{1,2}}) ∪ {{1, v − 1}, {0,2}}. Let G := (V , E ) and G ′ := (V , E ′). These graphs are two v-element cy-
cles, G ′ being obtained from G by exchanging 0 and 1. Trivially, they satisfy the conclusion of the
lemma. �

With this lemma, the proof of the first part of item (2) is complete.
The fact that (v,k) ∈ S implies k � ϑ(v) for infinitely many v is an immediate consequence of the

following proposition.

Proposition 4.4. For every integer v := m + r such that q ≡ 1 (mod 4) for each prime power q occuring in the
decomposition of m and r ∈ {2,3,4} there are two graphs G and G ′ , on the same set of v vertices, which are
k-hypomorphic up to complementation for all k, ϑ(v) + 1 � k � v but G ′ �= G and G ′ �= G.

Our construction uses vertex-transitive self-complementary graphs. We recall that there is a
vertex-transitive self-complementary graph on m vertices if and only if q ≡ 1 (mod 4) for each prime
power q occuring in the decomposition of m [12,16]. Lexicographical products of Paley graphs readily
provide examples of vertex-transitive self-complementary graphs for each m as above. A complete
description is not known. For more information about these graphs see [5]. For Paley graphs see
also [18].

Lemma 4.5. A finite graph G is vertex-transitive and self-complementary if and only if its order is distinct
from 2 and G−x is self-complementary for every vertex x ∈ V (G).

Proof. Let G be the class of finite graphs of order distinct from 2 such that G−x is self-complementary
for every vertex x ∈ V (G). Let G ∈ G . Let n := |V (G)|. We may suppose n > 2. Let x ∈ V (G). We
have dG(x) = e(G) − e(G−x). Since G−x is self-complementary, e(G−x) = e(G−x) and, since e(G−x) +
e(G−x) = (n−1

2

)
, e(G−x) = 1

2

(n−1
2

)
. Thus dG(x) does not depend on x, that is G is regular. Since n > 2

we have e(G) = 1
n−2

∑
x∈V (G) e(G−x) thus e(G) = n(n−1)

4 . This added to e(G−x) = (n−1)(n−2)
4 yields

n(n − 1) ≡ 0 (mod 4) and (n − 1)(n − 2) ≡ 0 (mod 4). It follows that n ≡ 1 (mod 4). As it is well
known [11], regular graphs of order distinct from 2 are reconstructible. Thus G is self-complementary.
The proof that G is reconstructible yields that for every vertex x, every isomorphism from G−x onto
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G−x is induced by an isomorphism ϕ from G onto G which fixes x. Hence, for a given pair of ver-
tices x, x′ there is an element Γ ∈ Aut(G) such that Γ (x) = x′ if and only if there is an isomorphism
ϕ : G → G such that ϕ(x) = x′ . It follows that each orbit of Aut(G) is preserved under all isomor-
phisms from G onto G . Thus, if A is a union of orbits, G�A ∈ G . Since members of G have odd order,
there is just one orbit, proving that Aut(G) is vertex-transitive.

Conversely, let G be a self-complementary vertex-transitive graph. Clearly G is not of order 2.
Let x ∈ V (G). Since G is self-complementary, G−x is isomorphic to G−y for some y ∈ V (G). Since
Aut(G) = Aut(G) and Aut(G) is vertex-transitive, G−y is isomorphic to G−x . Hence, G ∈ G .

Proof of Proposition 4.4. Let v,m, r satisfying the stated conditions. Let P be a self-complementary
vertex-transitive graph of order m.

Case 1. r = 4. In this case ϑ(v) = m. Let V be made of V (P ) and four new elements added, say
1,2,3,4. Let G and G ′ be the graphs with vertex set V which coincide with P on V (P ), the other
edges of G being {1,2}, {2,3}, {3,4}, {2, x}, {3, x} for all x ∈ V (P ), the other edges of G ′ being {1,3},
{2,3}, {2,4}, {2, x}, {3, x} for all x ∈ V (P ). Clearly, G ′ �= G and G ′ �= G . We check that G and G ′ are
k-hypomorphic for ϑ(v) + 1 � k � v . Let X ⊆ V with |X | � 3 and K := V \ X . With the help of
Lemma 4.5, note that if X ∩ {1,2,3,4} ∈ {{1,2}, {1,3}, {2,4}, {3,4}} then G�K � G ′

�K . In all other cases
G�K � G ′

�K .

Case 2. r = 3. In this case ϑ(v) = m. Let G1 := G−1 and G ′
1 := G ′−1 where G , G ′ are the graphs

constructed in Case 1. Clearly G ′ �= G and G ′ �= G . And since G, G ′ are k-hypomorphic for m + 1 � k �
m + 4, the graphs G1 and G ′

1 are k-hypomorphic for ϑ(v) + 1 � k � v .

Case 3. r = 2. In this case ϑ(v) = m − 1. Let V be made of V (P ) and two new elements added, say
1,2. Let G and G ′ be the graphs with vertex set V which coincide with P on V (P ), the other edges
of G being (2, x) for all x ∈ V (P ), the other edges of G ′ being (1, x) for all x ∈ V (P ). Clearly, G ′ �= G
and G ′ �= G . Let X ⊆ V with |X | � 2 and K := V \ X . If X ∩ {1,2} �= ∅ then G�K � G ′

�K . In all other
cases G�K � G ′

�K . Hence, G and G ′ are k-hypomorphic for ϑ(v) + 1 � k � v . �
By Theorem 2.6 we have:

Remark 4.6. Let G be a graph with v vertices. If there is a graph G ′ �= G on the same vertex set V ,
an integer k such that 1 � k � v − 2, k ≡ 0 (mod 4), G ′ is (v − 1)-hypomorphic to G and e(G ′

�K )

has the same parity as e(G�K ) for all k-element subsets K of V , then G is vertex-transitive and self-
complementary.

5. Conclusion

Let R be the set of ordered pairs (v,k) such that two graphs on the same set of v vertices are
isomorphic up to complementation whenever these two graphs are k-hypomorphic up to complemen-
tation.

Behind Ille’s problem was the question of a description of R.
This seems to be a very difficult problem. Except the trivial inclusion S ⊆ R, the fact that some

ordered pairs like (5,4), (v, v − 3) for v � 7 belong to R requires some effort [4].
We prefer to point out the following problem.

Problem 5.1. Let v > 2. Is (v,k) ∈ S ⇐⇒ 4 � k � ϑ(v)?
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