
Journal of Computational and Applied Mathematics 197 (2006) 534–557
www.elsevier.com/locate/cam

Numerical methods for the Lotka–McKendrick’s equation�
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Abstract

The Lotka–McKendrick’s model is a well-known model which describes the evolution in time of the age structure of a population.
In this paper we consider this linear model and discuss a range of methods for its numerical solution. We take advantage of different
analytical approaches to the system, to design different numerical methods and compare them with already existing algorithms. In
particular we set up some algorithms inspired by the approach based on Volterra integral equations and we also consider a direct
approach based on the nonlinear system that describes the evolution of the age profile of the population.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Lotka–McKendrick system, describing the evolution of an age structured population, is a basic linear model in
population theory and, in particular, in mathematical demography. The model concerns a single population living
isolated, where individuals are considered neither with sex differences, nor dependent on their size, but they are
structured by age. Namely, denoting by p(a, t), the age density of the population (where a ∈ [0, a+], t �0 and a+ is
the maximum age) we have the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

�p

�t
+ �p

�a
+ �(a)p = 0, a, t > 0,

p(0, t) = ∫ a+
0 �(a)p(a, t) da = B(t), t > 0,

p(a, 0) = p0(a), a > 0,

(1.1)

where �(a) is age specific fertility (i.e., the number of newborn in one time unit, coming from a single individual whose
age is in the interval [a, a + da]), �(a) is the age specific mortality (i.e., the death rate of people who have age in the
interval [a, a + da]) and p0(a) is the initial age distribution.

� This research was supported in part within the FIRB project RBAU01k7M2 “Metodi dell’Analisi Matematica in Biologia, Medicina eAmbiente”.
∗ Corresponding author. Tel.: +39 046 188 1657; fax: +39 046 188 7624.

E-mail addresses: galena@science.unitn.it (G. Pelovska), iannelli@science.unitn.it (M. Iannelli).

0377-0427/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.11.033

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82725634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:galena@science.unitn.it
mailto:iannelli@science.unitn.it


G. Pelovska, M. Iannelli / Journal of Computational and Applied Mathematics 197 (2006) 534–557 535

This is a well studied model that has been discussed in many articles (see for instance [9,17,19]). In order to allow
the mathematical treatment of (1.1), we need to specify some conditions and particularly we note that we want the
maximum age a+ to be finite (i.e., a ∈ [0, a+], where a+ < + ∞) and we require that the survival probability

�(a) = e− ∫ a
0 �(�) d� (1.2)

vanishes at a+. Then we assume

• �(.) is non-negative and belongs to L∞(0, a+);
• �(.) is non-negative and belongs to L1(0, a+);
• ∫ a+

0 �(�) d� = +∞ (in order survival probability to vanish at a+);
• p0 ∈ L1(0, a+), p0(a)�0 a.e. in [0, a+].

From the numerical view point, many schemes for the Lotka–McKendrick model have been presented and analyzed
[6,11,18]. The main goal of the present article is to give a review of some of these methods and to suggest some new
ones, comparing these approaches in terms of numerical efficiency and accuracy.

In Section 2 we present some theory about our model and we discuss the connections of the Lotka–McKendrick’s
equation with the Renewal equation and with the equation for the age profile.

In Section 3 we present some of the methods of characteristics for the Lotka–McKendrick’s equation.
In Sections 4 and 5 we give a thorough discussion of the methods based on the integral equation approach and for

the equation of the age profile.
Our test examples are presented in Section 6.
Finally, in Section 7 we discuss the numerical results.

2. Some preliminaries on problem 1.1

In view of the numerical approach to problem (1.1), we introduce here a preliminary insight of the theoretical
treatment of the problem.

If we integrate the governing equation in (1.1) along the characteristic lines a = t + c [9], we obtain

p(a, t) =
⎧⎨⎩p0(a − t)

�(a)

�(a − t)
, a� t,

B(t − a)�(a), a < t,

(2.1)

where B(t)=∫ a+
0 �(a)p(a, t) da gives the total number of newborn in one time unit and �(a) is the survival probability

defined in (1.2). We note the fact that even if the initial age distribution p0 is continuous, the solution p(a, t) of (1.1)
may not be if the following condition is not satisfied:

p0(0) =
∫ a+

0
�(�)p0(�) d�. (2.2)

Moreover, we have to add another compatibility condition for the differentiability of p along the characteristics, namely

p′
0(0) + �(0)p0(0) =

∫ a+

0
�(a)[p′

0(a) + �(a)p0(a)] da. (2.3)

If we analyze carefully formula (2.1), we can notice that, since the initial value p0(a) of p(a, t) and the survival
probability �(a) are known, we can easily get the solution of our model if we know the total birth rate B(t). In fact,
using the second equation in (1.1) and then combining this boundary condition with (2.1), it can be shown (see [9]) that
our initial-boundary value problem is equivalent to the following Volterra integral equation of second kind (Renewal
equation) on the birth rate B(t):

B(t) =
{

F(t) + ∫ t

0 K(t − a)B(a) da, t �a+,∫ t

t−a+ K(t − a)B(a) da, t > a+,
(2.4)
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where F(t) and K(a) are given, non-negative functions

K(a) = �(a)�(a),

F(t) =
∫ a+

t

�(a)p0(a − t)
�(a)

�(a − t)
da (F (t) = 0 for t �a+). (2.5)

The function K is called maternity function and synthesizes the dynamics of the population. In fact it is related to the
parameter

R =
∫ a+

0
�(a)�(a) da,

the so-called net reproduction rate, which shows the number of the offspring that an individual is expected to produce
during his reproductive period.

Finding the solution of this equation we get the value of B(t) for t ∈ [0, T ] and then substituting it in (2.1), we can
obtain the solution of our problem.

The main reason to study the problem in such a way is that many analytical properties of Lotka–McKendrick’s model
can be investigated via the Renewal equation (2.4). In fact, it can be proved that the solution of the Renewal equation
has the following asymptotic behavior (see for instance [9]):

B(t) = b0e�∗t (1 + O(t)), (2.6)

where b0 �0, limt→inf O(t) = 0 and �∗ is the (unique real) solution of the characteristic equation

K̂(�) = 1. (2.7)

Thus the Lotka characteristic equation (2.7) and �∗—the intrinsic Malthusian parameter—determine the growth of the
population through the birth rate B(t).

Another way to look at the solution of Lotka–McKendrick’s equation is via the equation with the age profile. Let us
consider the following variables:⎧⎨⎩w(a, t) = p(a, t)

P (t)
(age profile),

P (t) = ∫ a+
0 p(a, t) da (total population).

(2.8)

These two variables are very important when describing the evolution of the population. By the definition of w(a, t)

and P(t) itself and by differentiating the expression p(a, t) = w(a, t)P (t) and then substituting it in model (1.1) we
get the following sets of equations:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wt(a, t) + wa(a, t) + �(a)w(a, t) + w(a, t)
∫ a+

0 [�(�) − �(�)]w(�, t) d� = 0,

w(0, t) = ∫ a+
0 �(a)w(a, t) da,∫ a+

0 w(a, t) da = 1,

w(a, 0) = w0(a),

(2.9)

{ d

dt
P (t) = �(t)P (t),

P (0) = P0,

(2.10)

where

w0(a) = p0(a)∫ a+
0 p0(�) d�

, P0 =
∫ a+

0
p0(�) d� (2.11)
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and

�(t) =
∫ a+

0
[�(�) − �(�)]w(�, t) d�. (2.12)

One can find the solution w(a, t) of (2.9) and P(t) of (2.10), then multiply them obtaining p(a, t) or the solution of
Lotka–McKendrick’s equation.

From the review presented above we see that we can follow three ways for approximating the solution of our model:

• Direct solving the Lotka–McKendrick’s equation as an hyperbolic PDE with a non-local boundary condition.
• Treating the problem by means of the Renewal equation.
• Looking at the equation with the age profile—splitting the problem into two parts.

The advantage of an “indirect investigation” of model (1.1) in terms of the Volterra integral equation (2.4) is that higher
order methods can be developed. Of course, the problem with the exponential growth of the birth rate B(t) cannot be
prevented, but in a compact time interval we can get a high accuracy of the approximation.

On the other hand, almost no attention has been paid to the numerical study of Eq. (2.9). The profit of the numerical
approach of the equation with the age profile is not obvious. The reason of this approach is hidden in one of the
analytical properties of Eq. (2.9), i.e., the boundedness of its solution (see [9]). It follows that by the use of robust low
order methods we can obtain both accuracy and efficiency in a long time interval.

During the last years many numerical methods from the first category have been proposed but no approaches via the
Renewal equation and the equation with the age profile have been studied. In the next sections we will give an insight
on the direct methods for solving our problem and will propose different ways to adopt the other two approaches.

3. The method of characteristics

Here we describe the method of characteristics and some of the approximation schemes that have been used in
connection with problem (1.1).

Let h > 0 be the discretization step and h = a+/N , where N is the total number of subintervals (we assume that the
mesh size in time and in age is equal), i.e., we have {(xi, t

n) : xi = ih, i = 0, . . . , M; tn = nh, n = 0, . . . , N} (see
the grid in Fig. 1).

Let P n
i be an approximation of the solution of (1.1) at time level tn at the grid point ai , namely an approximation of

p(ai, t
n).

Fig. 1. The discretization grid.
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Since the differential operator in Eq. (1.1) has constant coefficients, it can be treated as an ODE in the characteristic
variable t. Namely we approximate the directional derivative �/�t + �/�a, setting (see the figure above)(

�

�t
+ �

�a

)
p(ai, t

n) ≈ P n+1
i+1 − P n

i

h
. (3.1)

Thus, we have the following possible first order schemes:

• explicit Euler scheme: (P n+1
i+1 − P n

i )/h + �iP
n
i = 0, i.e., P n+1

i+1 = P n
i (1 − h�i ), i, n�0;

• implicit Euler scheme: (P n+1
i+1 − P n

i )/h + �i+1P
n+1
i+1 = 0, i.e., P n+1

i+1 = P n
i /(1 + h�i+1), i, n�0;

• mixed scheme: (“ explicit” + “ implicit” )/2 = 0, i.e., P n+1
i+1 = (P n

i (1 − h�i ) + P n
i /(1 + h�i+1))/2, i, n�0.

Moreover, we can combine each of them with trapezoidal rule for the birth integral

P n
0 = h

N−1∑
i=1

�iP
n
i + h

2
(�0P

n
0 + �NP n

N)

and the given initial density distribution P 0
i =P0 in order to obtain a first order algorithm. More details on the effective

order of convergence and the stability of the explicit and the implicit Euler schemes can be seen in [11]. Another first
order method could be found in [15].

The same procedure may be adopted for the higher order schemes. The example we present is first proposed by
Milner and Rabbiolo in [18], namely⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P n
i − P n−1

i−1

h
= −�i−1/2

P n
i + P n−1

i−1

2
, 1� i�n; 1�n�N

P n
0 = h

n−1∑
i=1

�iP
n
i + h

2
(�0P

n
0 + �NP n

n ), 1�n�N,

P 0
i = Pi, 0� i�N.

(3.2)

In the same article it is proven that this explicit algorithm converges with second order accuracy.
Another finite difference second order method based on the Crank–Nicolson centered scheme is given in [11].
A fourth order, explicit, Runge–Kutta scheme was presented by Milner and Rabbiolo:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P n+1
i+1 = P n

i + 1
6 [K1 + 2K2 + 2K3 + K4], i, n�0,

K1 = hF(tn, P n
i ) = −h�(ai)P

n
i ,

K2 = hF

(
tn + h

2 , P n
i + K1

2

)
= −h�

(
ai + h

2

) (
P n

i + K1

2

)
,

K3 = hF

(
tn + h

2 , P n
i + K2

2

)
= −h�

(
ai + h

2

) (
P n

i + K2

2

)
,

K4 = hF(tn + h, P n
i + K3) = −h�(ai + h)(P n

i + K3),

P n+1
0 = h

(3 − �0h)
[4�1P

n+1
1 + 2�2P

n+1
2 + · · · + 2�N−2P

n+1
N−2 + 4�N−1P

n+1
N−1 + �NP n+1

N ],

P 0
i = P(ai, 0).

(3.3)

In [18] is proven that the described scheme converges to fourth order.
An implicit second order method (Box method) for solving the nonlinear equivalent of (1.1) was presented by

Fairweather and Lopez-Marcos. The scheme could be seen in the section for the equation with the age profile. A
description of a variation of the box method (an explicit extrapolated box scheme) and its application to the nonlinear
problem can be found in [8]. In [1] are given more general approaches based on RK methods of different order and a
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fourth order implicit RK method based on the integration along characteristic lines with collocation points—the zeroes
of the Legendre polynomial are presented in [13]. Some more references could be seen also in [5,10,14].

4. Methods based on the Renewal equation

In this section we discuss methods involving the Renewal equation (2.4). The numerical approximation of such
Volterra integral equation has been extensively investigated (for example [2,4]) and we select some methods in view
of their use in connection with the main problem (1.1).

The first methods we use are based on the direct application of different quadrature formulas on the integral term of
this equation. Here we have only one variable—t, so that we discretize a given interval [0, T ] as shown in Fig. 2 and,
in view of the connection with the two variable problem, we take T as a multiple of a+ so that, for any given step size
h = a+/M , we have

T = La+ = LMh = Nh,

where L, M and N are integers (see Fig. 2). Then we have the following approximation:∫ t

0
K(t − s)B(s) ds ≈

n∑
i=0

ci,nK((n − i)h)B(ih), (4.1)

where (ci,n) are the coefficients of the quadrature formula. Thus, if Bn denotes a numerical approximation to the exact
solution B(nh), we obtain the following numerical scheme:

Bn = Fn + h

n∑
i=0

wi,nKn−iB
i, n = l, . . . , N , (4.2)

where

wi,n = ci,n

h
,

Fn = F(nh),

Ki = K(ih) (4.3)

and B0 = F 0, B1, . . . , Bl−1 are given starting values with l depending on the concrete quadrature formula.
In particular, in the next section we will present an algorithm based on the application of different quadratures each

one leading to the use of different respective (4.2).

4.1. A hybrid quadrature method

We now consider a numerical procedure based on the alternate use of different quadrature rules. Namely we use
different versions of (4.2), according to the different steps we are performing. Of course we start with

B0 = F 0. (4.4)

t=nh

a+
=Mh0

h

T=LMh=Nh

Fig. 2. The discretization of the interval [0, T ].



540 G. Pelovska, M. Iannelli / Journal of Computational and Applied Mathematics 197 (2006) 534–557

Then, as a first step, we compute B1 by applying a modified version of the trapezoidal rule. Namely, according to the
following quadrature formula:∫ �

�
f (x) dx ≈ h

2
[f (�) + f (�)] + h2

12
[f ′(�) − f ′(�)] (4.5)

which is similar to that of the trapezoidal rule, but it has one complementary term which leads to a higher degree
of precision.

The numerical scheme that we obtain in this way is more elaborated than (4.2). In fact, when (4.5) is applied to our
equation, in the first step of discretization, we have

B(h) = F(h) + h

2
[K(h)B(0) + K(0)B(h)] + h2

12
[Z(0) − Z(h)], (4.6)

where

Z(s) = −K ′(h − s)B(s) + K(h − s)B ′(s). (4.7)

Thus we need to approximate B ′(0) and B ′(h) which can be computed by using the formula

B ′(t) = F ′(t) + K(0)B(t) +
∫ t

0
K ′(t − a)B(a) da (4.8)

derived by Eq. (2.4). For t = 0 we get

B ′(0) = F ′(0) + K(0)B(0), (4.9)

and by applying the trapezoidal rule to the last term of (4.8), we obtain

B ′(h) ≈ F ′(h) + K(0)B(h) + h

2
[K ′(h)B(0) + K ′(0)B(h)]. (4.10)

Finally, substituting (4.9)–(4.10) into (4.7)–(4.6), and solving for B1, we get

B1 = F 1 + (h/2)K1B
0 + (h2/12)[−K ′

1B
0 + K1(F

′0 + K0B
0) − K0(F

′1 + (h/2)K ′
1B

0)]
1 − (h/2)K0 − (h2/12)K ′

0 + (h2/12)K2
0 − (h3/24)K ′

0K0
. (4.11)

After this first step we continue applying (4.2) with the Simpson rule:

Bn = Fn + h

3
[KnB

0 + 4Kn−1B
1 + 2Kn−2B

2 + · · · + 2K2B
n−2 + 4K1B

n−1 + K0B
n], (4.12)

jointly with the 3
8 Simpson rule:

Bn = Fn + 3h

8
[KnB

0 + 3Kn−1B
1 + 3Kn−2B

2 + 2Kn−3B
3

+ . . . + 2K3B
n−3 + 3K2B

n−2 + 3K1B
n−1 + K0B

n]. (4.13)

As a matter of fact formula (4.12) requires that n be even, while (4.13) needs n = 3k, for k = 1, 2, . . . , q; moreover,
each of the described quadrature formulas is fourth order, thus the main idea of our method is to combine these three
quadratures in order to obtain a “hybrid” fourth order method. Namely the previous considerations lead to the following
algorithm:

• for the first step n = 1 we use the modified trapezoidal rule obtaining (4.11);
• for n = 2 we apply Simpson’s rule:

B2 = F 2 + (h/3)[4K1B
1 + K2B

0]
1 − (h/3)K0

; (4.14)
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t0 t1 t2 t3

s m s

t5
2

t4 t6

s

q

m s

t3q-3 t3q-2 t3q-1 t3q

sms

1

h 5h 5h 5

Fig. 3. Lobatto’s partition.

ms s

5-1 h
2

5-1 h
2

h

Fig. 4. “Big’s” interval partition.

• for n = 3 we use 3
8 Simpson’s rule:

B3 = F 3 + (3h/8)(3K1B
2 + 3K2B

1 + K3B
0)

1 − (3h/8)K0
; (4.15)

• for n�4 and even, we use Simpson’s rule:

Bn = Fn + h

3
[K0B

n + 4K1B
n−1 + 2K2B

n−2 + · · · + 2Kn−2B
2 + 4Kn−1B

1 + KnB
0]; (4.16)

• for n�4 and odd, we apply 3
8 Simpson’s rule to the last four nodes (i = n − 3, n − 2, n − 1, n), and for the rest of

them (which are now even number) we use Simpson’s rule:

Bn = Fn + h

3
[KnB

0 + 4Kn−1B
1 + 2Kn−2B

2 + · · · + 2K5B
n−5 + 4K4B

n−4 + K3B
n−3]

+ 3h

8
[K3B

n−3 + 3K2B
n−2 + 3K1B

n−1 + K0B
n]. (4.17)

The “hybrid” method is better than the “pure” modified trapezoidal rule in sense that by using modified trapezoidal rule
only for the first interval we lessen the truncation error induced by the complex calculations that we need for applying
the method to the whole interval. Moreover, Simpson’s and 3

8 Simpson’s rules have better theoretical error estimates
than the modified trapezoidal rule which is another benefit.

The procedure above is applicable for t �a+. Furthermore, in the case when t > a+, we have

Bn = Fn +
∫ tn

tn−a+
K(tn − a)B(a) da =

∫ a+

0
K(a)B(tn − a) da. (4.18)

We note that in this case the length of the interval on which we integrate is always a+ which implies the use of the
previous formulas is even simpler and we are not going to discuss it in details.

4.2. Using Lobatto points

In the previous methods we have used a grid where all the points were equally spaced. Now we use a non-uniform
mesh with Lobatto points, which are symmetric. The whole interval [0, a+] can be divided as shown in Fig. 3.

Here we have q “big” subintervals and each of them is partitioned into another three parts—one “middle” and two
“small” as shown in Fig. 4

where
h is the length of the “middle” part “m” of one “big” interval;
(
√

5 − 1/2)h is the length of the “small” part “s” of one “big” interval;
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h
√

5 = H = (t3q − t0)/q is the length of one “big” interval.
Namely, we have partitioned the whole interval [0, a+] using the rule:

t0 = 0,

t1 = t0 +
√

5 − 1

2
h,

t2 = t0 +
√

5 + 1

2
h,

t3 = t0 + h
√

5,

t4 = t1 + h
√

5,

t5 = t2 + h
√

5,

. . .

ti = ti−3 + h
√

5 for i = 6, . . . , 3q − 1,

· · ·
t3q = a+. (4.19)

Let i = 3k(k = 1, 2, . . . , q). Then, in connection with both partitions we consider the following quadrature formulas:

• In each “big” subinterval we use the four-point Lobatto quadrature formula∫ ti

t0

�(t) dt ≈ h
√

5

24
[2�0 + 10�1 + 10�2 + 4�3 + 10�4 + 10�5 + 4�6

+ . . . + 4�i−3 + 10�i−2 + 10�i−1 + 2�i], (4.20)

where �i = �(ti).
• For one “s” subinterval we have two possibilities:
• forward formula:∫ ti+1

ti

�(t) dt ≈ h
√

5

24
[v0�i−3 + v1�i−2 + v2�i−1 + v3�i + v4�i+1]; (4.21)

• backward formula:∫ ti

ti−1

�(t) dt ≈ h
√

5

24

[
v4�i−1 + v3�i + v2�i+1 + v1�i+2 + v0�i+3

]
; (4.22)

• For one “s + m” subinterval we again have two cases, namely
• forward formula:∫ ti+2

ti

�(t) dt ≈ h
√

5

24
[w0�i−2 + w1�i−1 + w2�i + w3�i+1 + w4�i+2]; (4.23)

• backward formula:∫ ti

ti−2

�(t) dt ≈ h
√

5

24
[w4�i−2 + w3�i−1 + w2�i + w1�i+1 + w0�i+2]. (4.24)

Formulas (4.21), . . ., (4.24) are extrapolation formulas with errors compatible with the error of the Lobatto’s rule (4.20).
Their weights are listed in Table 1.
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Table 1
Table with values of vj and wj

v0 −0.119473775300143 w0 −0.261114561800008
v1 0.449194269498781 w1 2.636919426949720
v2 −1.682104898799400 w2 −4.293250516799280
v3 5.607462045101100 w3 15.945123359449500
v4 2.378359213500060 w4 3.338885438199970

We note that the given formulas are not applicable in the intervals [t0, t1] and [t0, t2] because we do not have a sufficient
number of nodes in order to use them. To initiate the algorithm we need to provide the first six Bi (i = 1, . . . , 6). We
will get these values as the solution of a linear system that we set up as follows:

For i = 0, i.e., B0 = B(0) = F(0).
For i = 1 we present the current integral as a difference of the following two integrals:∫ t1

t0

�(t) dt =
∫ t3

t0

�(t) dt −
∫ t3

t1

�(t) dt (4.25)

or we have

B(t1) = F(t1) +
∫ t1

0
K(t1 − s)B(s) ds = F 1 +

∫ t3

0
K(t3 − s)B(s) ds −

∫ t3

t1

K(t3 − s)B(s) ds. (4.26)

So for the first integral we use Lobatto’s rule (4.20) and for the second integral, formula (4.24) obtaining

B1 ≈ F 1 + h
√

5

24
[2K1

0B0 + (10 − w4)K
1
1B1 + (10 − w3)K

1
2B2

+ (2 − w2)K
1
3B3 − w1K

1
4B4 − w0K

1
5B5], (4.27)

where we have used the notation K
j
i = K(tj − ti ).

For i = 2 we proceed in an analogous way∫ t2

t0

�(t) dt =
∫ t3

t0

�(t) dt −
∫ t3

t2

�(t) dt . (4.28)

Consequently, to the first integral we apply Lobatto’s rule (4.20) and to the second one, backward formula (4.22),
providing

B2 ≈ F 2 + h
√

5

24
[2K2

0 B0 + 10K2
1 B1 + (10 − v4)K

2
2 B2 + (2 − v3)K

2
3 B3

− v2K
2
4 B4 − v1K

2
5 B2 − v0K

2
6 B6]. (4.29)

For i = 3 we can use the Lobatto’s rule (4.20):

B3 ≈ F 3 + h
√

5

24
[2K3

0B0 + 10K3
1B1 + 10K3

2B2 + 2K3
3B3]. (4.30)

For i = 4 we do the following:∫ t4

t0

�(t) dt =
∫ t3

t0

�(t) dt +
∫ t4

t3

�(t) dt (4.31)

and thus we use the Lobatto’s rule (4.20) for the first integral and the forward formula (4.21) for the second one

B4 ≈ F 4 + h
√

5

24
[(2 + v0)K

4
0 B0 + (10 + v1)K

4
1 B1 + (10 + v2)K

4
2 B2 + (2 + v3)K

4
3 B3 + v4K

4
4 B4]. (4.32)
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For i = 5 we split the integral as follows:∫ t5

t0

�(t) dt =
∫ t3

t0

�(t) dt +
∫ t5

t3

�(t) dt (4.33)

and so we can apply the Lobatto’s rule (4.20) to the first one and the forward formula (4.23) to the second integral,
obtaining

B5 ≈ F 5 + h
√

5

24
[2K5

0B0 + (10 + w0)K
5
1B1 + (10 + w1)K

5
2B2

+ (2 + w2)K
5
3B3 + w3K

5
4B4 + w4K

5
5B5]. (4.34)

For i = 6 we use Lobatto’s rule (4.20) two times and we get

B6 ≈ F 6 + h
√

5

24
[2K6

0B0 + 10K6
1B1 + 10K6

2B2 + 4K6
3B3 + 10K6

4B4 + 10K6
5B5 + 2K6

6B6]. (4.35)

Thus we have obtained a system of six equation (4.27), (4.29), (4.30), (4.32), (4.34) and (4.35). This system is with
dominating diagonal and there are well known, fast converging methods for solving such kind of systems.

In other words, we have to observe the following procedure:

• To start the process we solve a system with the six unknowns, namely: B1, B2, B3, B4, B5, B6.
• For B3k+1, where k = 2, . . . , q − 1, we use k times Lobatto’s rule (4.20) and one time the forward formula (4.21).
• For B3k+2, where k = 2, . . . , q − 1, we use k times Lobatto’s rule (4.20) and one time the forward formula (4.23).
• For B3k , where k = 3, . . . , q, we directly apply Lobatto’s rule (4.20) k times.

Thus we complete the process in the case when t �a+.
In the other case, i.e., when t > a+, the integral equation takes the form

B(t) =
∫ t

t−a+
K(t − a)B(a) da, t > a+ (4.36)

i.e., all the integrals should be calculated on an interval with length a+. As the application of the used formulas is not
trivial we will discuss it in details, namely:

Let us present all the mesh points after a+ = 3q as 3q + p, where p = 1, 2, . . . . Thus, we have the following three
cases:

• p = 1, 4, 7, 10, . . . .

Then we proceed as follows:

B3q+p =
∫ t3q+p

tp

K(t3q+p − a)B(a) da

=
∫ tp+2

tp

K(tp+2 − a)B(a) da +
∫ t3q+p−1

tp+2

K(t3q+p−1 − a)B(a) da

+
∫ t3q+p

t3q+p−1

K(t3q+p − a)B(a) da. (4.37)

Splitting the integral in such a way we can apply the backward formula (4.24) to the first integral, Lobatto’s rule (4.20)
to the second one and the forward formula (4.21) to the last of them.

• p = 2, 5, 8, 11, . . . .
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Then we obtain

B3q+p =
∫ t3q+p

tp

K(t3q+p − a)B(a) da

=
∫ tp+1

tp

K(tp+1 − a)B(a) da +
∫ t3q+p−2

tp+1

K(t3q+p−2 − a)B(a) da

+
∫ t3q+p

t3q+p−2

K(t3q+p − a)B(a) da. (4.38)

Proceeding like that, we can consecutively apply the backward formula (4.22), Lobatto’s rule (4.20) and the forward
formula (4.23), respectively.

• p = 3, 6, 9, 12, . . . .

So we have

B3q+p =
∫ t3q+p

tp

K(t3q+p − a)B(a) da (4.39)

and this implies we can directly use Lobatto’s rule (4.20).
Lobatto formulas belong to the class of Gauss–Legendre formulas which in general are open formulas because the

end points a and b are not involved in the set of the chosen nodes. However, in the construction of Volterra equations
solvers, it is often desirable to include either one or both end points in the set of abscissas (nodes) ti and then to choose
the remaining points in such a way that the degree of precision is as large as possible. One such choice was done in
our case.

Some notes about the described procedure could be found in [4,12].

4.3. Runge–Kutta methods

Another way to solve Eq. (2.4) is by using Runge–Kutta-type methods, which have been developed in the mid-1960s.
The idea of these methods is the following:

Let us consider the discretization mesh as given in Fig. 2 and let us rewrite Eq. (2.4) in the consequent form

B(t) = F(t) +
∫ tn

0
K(t − s)B(s) ds +

∫ t

tn

K(t − s)B(s) ds = Fn(t) +
∫ t

tn

K(t − s)B(s) ds, (4.40)

where Fn(t) is called the lag (tail) term and

Fn(t) = F(t) +
∫ tn

0
K(t − s)B(s) ds, n = 0, . . . , M − 1. (4.41)

Moreover, we define

h	n(t) =
∫ t

tn

K(t − s)B(s) ds, t ∈ [tn, T ], n = 0, . . . , M − 1. (4.42)

Here 	n(t) is the increment function (with respect to the subinterval [tn, tn+1]).
A Runge–Kutta method is based on two approximation processes:

• An approximation scheme for the increment function 	n(t). The resulting discrete increment function, denoted by
	̃

n
(t) is called Volterra–Runge–Kutta (VRK) formula;

• An approximation scheme for the lag term Fn(t). The discrete lag term is denoted by F̃ n(t) and will be referred to
as lag term formula.
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Thus, we obtain an approximation of Eq. (4.40) at t = tn+1 = tn + h:

Bn+1 = F̃ n(tn + h) + h	̃
n
(tn + h), n = 0, . . . , M − 1. (4.43)

We will call this equation a VRK method if both the VRK formula and the lag term has been specified. Various
Runge–Kutta–Methods can be constructed—of different types, orders and different number of stages (see for example
[3,4]).

In the following we will present an explicit, four-stage and fourth order VRK formula of Pouzet type (it is analogues
to the fourth order one that is most used for ODEs) where its Butcher’s array and Pouzet conditions could be seen
in [4].

The scheme of the method is the consequent one:

Yn
1 = F̃ n(tn),

Yn
2 = F̃ n

(
tn + h

2

)
+ h

2

[
K

(
tn + h

2
, tn

)
Yn

1

]
,

Yn
3 = F̃ n

(
tn + h

2

)
+ h

2

[
K

(
tn + h

2
, tn + h

2

)
Yn

2

]
,

Yn
4 = F̃ n(tn + h) + h

[
K

(
tn + h, tn + h

2

)
Yn

3

]
,

Bn+1 = F̃ n(tn + h) + h

6

[
K(tn + h, tn)Y

n
1 + 2K

(
tn + h, tn + h

2

)
Yn

2

+2K

(
tn + h, tn + h

2

)
Yn

3 + K(tn + h, tn + h)Y n
4

]
. (4.44)

Up to now, we have described the approximation of the VRK formula. In order to complete the VRK method we have
to specify the lag term formula (4.41).

The second term on the right-hand side of this formula can be approximated by different quadrature rules involv-
ing both intermediate and step points. In our concrete case we have used quadrature rules which include only step
points—modified trapezoidal rule, Simpson’s rule and 3

8 Simpson’s rule—since each of them is of fourth order and
they all have already been discussed in the same section. Some other techniques could be found in the book of Brunner
and van der Houwen [4].

In the case t > a+ we apply the same algorithm considering that

B(t) =
∫ t

t−a+
K(t − s)B(s) ds =

∫ t

0
K(t − s)B(s) ds, (4.45)

where K(t − s) = 0 for t − s < 0 or t − s > 1.

5. Methods for the equation with the age profile

In this section we consider Eq. (2.9) to approximate the model with a second order methods. This implies that we
have to use a second order method for the approximation of the integral terms. For example this could be the trapezoidal
rule which is a second order accurate. It requires an evaluation of the integrated function at the right end point a+
of the interval. This represents a problem for model (2.9) since lima→a+ �(a) = ∞. To avoid this problem we make
the substitution

v(a, t) = �−1(a)w(a, t) (5.1)

and we assume that

sup
a∈[0,a+]

�(a)�(a)��∗ < ∞. (5.2)
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Following [11], we need the product above to be bounded, because without this condition we have intrinsic problems
with the order of convergence of the numerical methods.

After substitution (5.1), (2.9) transforms into⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1) vt (a, t) + va(a, t) = −v(a, t)A(t),

(2) v(0, t) = ∫ a+
0 �(a)�(a)v(a, t) da

(3)
∫ a+

0 �(a)v(a, t) da = 1,

(4) v(a, 0) = �−1(a)w0(a) = v0(a),

(5.3)

where we have denoted

A(t) =
∫ a+

0
[�(�) − �(�)]�(�)v(�, t) d�. (5.4)

The penalty condition
∫ a+

0 �(a)v(a, t) da = 1 could be dropped and we can approximate the first two equations only.
Since that condition is automatically satisfied for the solution of (1), (2), (4) and if V n

i ≈ v(ai, t
n) with any order,

then (3) will be satisfied for V n
i with the same order. Numerical method of first order where the scheme automatically

satisfies the algebraic condition is created in [16].
Let us consider the same discretization grid as in Section 3 and let V n

i be an approximation of v(ai, t
n). Then, we

propose an explicit second order RK scheme combined with the use of trapezoidal rule and midpoint rule as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
V n+1

i+1 = V n
i + K2, i = 0, . . . , M − 1; n�0

K1 = −hAnV n
i , i, n�0,

K2 = −A
n+ 1

2

(
V n

i + K1

2

)
, i, n�0,

(5.5)

where An, given by

An = h

2

[
(�0 − �0)�0V

n
0 + 2

M−1∑
i=1

(�i − �i )�iV
n
i + (�M − �M)�MV n

M

]
(5.6)

is an approximation of A(t) defined at tn and we have assumed that �M�M is a finite number. The approximation of
A(t) at time tn+1/2 will be further defined.

By these formulas we find the solution at the new time level tn+1 at the grid points a1, . . . , aM . For the boundary
points we apply the trapezoidal rule:

V n+1
0 = h

(2 − h�0�0)
[2�1�1V

n+1
1 + 2�2�2V

n+1
2 + · · · + 2�M−1�M−1V

n+1
M−1 + �M�MV n+1

M ]. (5.7)

Concerning An+1/2, we can notice that the second multiplier in the third equation in (5.5) is in fact an approximation
of our solution for time (tn + h/2), found by making a half step of Euler’s method for ODEs. It implies we know
all the “inner” points at level (tn + h/2). Thus, we can use the midpoint rule in order to calculate the integral at this
time level

An+1/2 = h

M−1∑
i=0

(
V n

i + K1

2

)
(�i+1/2 − �i+1/2)�i+1/2. (5.8)

Now putting together (5.5), (5.6), (5.7), (5.8) we complete our method.
This procedure is applicable to second order RK schemes, but it may be adapted also for higher order RK schemes.

Relative algorithms differ in the way of calculation the values of A(tn + cih), for ci ∈ Q. In fact, to find An+1/2,
we have not used extrapolations (as in [1]) but another quadrature formula of the same order which is much better
because otherwise we need “starting points” to initiate the procedure which increases the computational time and cost.
Other methods to solve numerically problem (5.3) can be inspired by similar works on Gurtin MacCamy’s equation
mentioned already in Section 3 of the present paper.
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In particular, the next method we propose is an implicit second order method (Box method) that has been first
presented in 1991 by Fairweather and Lopez-Marcos. Its consistency, stability and convergence are studied in [7].

The method is based on the following second order approximations:

V n+1
i − V n

i

h
+ V n+1

i−1 − V n
i−1

h
≈ 2

�v

�t
(ai−1/2, t

n+1/2) + O(h2), (5.9)

V n+1
i − V n+1

i−1

h
+ V n

i − V n
i−1

h
≈ 2

�v

�a
(ai− 1

2
, tn+1/2) + O(h2), (5.10)

V n+1
i−1 + V n

i−1

2
+ V n+1

i + V n
i

2
≈ 2v(ai−1/2, t

n+1/2) + O(h2). (5.11)

Substituting with these formulas in (5.3-1) we obtain

h

2
An+1/2V n+1

i−1 +
[
h

2
An+1/2 + 2

]
V n+1

i = 2V n
i−1 − h

2
An+1/2(V n

i−1 + V n
i ) for i = 1, . . . , M. (5.12)

These equations can be rewritten in the following form:

b(1)V n+1
0 + c(1)V n+1

1 = d(1),

b(2)V n+1
1 + c(2)V n+1

2 = d(2),

. . .

b(M)V n+1
M−1 + c(M)V n+1

M = d(M),

(5.13)

where the coefficients b(i), c(i) and d(i) for i = 1, . . . , M are given by

b(i) = h

2
An+1/2,

c(i) = 2 + h

2
An+1/2,

d(i) = 2V n
i−1 − h

2
An+1/2(V n

i−1 + V n
i )

(5.14)

and the approximation of A(t) in tn+1/2 time level is the following one:

An+1/2 = h

2

[
V n

0 + V n+1
0

2
(�0 − �0)�0 +

M−1∑
i=1

(V n
i + V n+1

i )(�i − �i )�i + V n
M + V n+1

M

2
(�M − �M)�M

]
.

(5.15)

Thus, we have a system of “M” equations that involves “M + 1” unknowns. In order to solve it we add the further
equation arising from (5.3-2):

V n+1
0 = h

2
[�0�0V

n+1
0 + 2�1�1V

n+1
1 + 2�2�2V

n+1
2 + · · · + 2�M−1�M−1V

n+1
M−1 + �M�MV n+1

M ]. (5.16)

Or, rewriting it in a suitable form we have

a(0)V n+1
0 + a(1)V n+1

1 + · · · + a(M)V n+1
M = 0, (5.17)

where a(0) = 1 − (h/2)�0�0, a(i) = −h�i�i for i = 1, . . . , M − 1, a(M) = −(h/2)�M�M .
Consequently, when joining (5.13) and (5.17) we obtain a system of “M + 1” equations withh “M + 1” unknowns.

To solve this system we use a forward and a backward substitution.
To start the process we take V n+1

i = V n
i as an initial approximation. Then, we substitute it in (5.15) and afterwards

we solve system (5.13)–(5.17). Thus, we find a “new” approximation to V n+1
i which is “better” than the old one. This

iterative procedure continues until we obtain the required accuracy for the discrete approximation of v(a, t) at the new
time level n + 1. It means that we have resolved the nonlinearity by means of an iteration with needed tolerance (in
our case h3 because of the second order accuracy of the applied algorithm).
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6. Test examples

In this section we will give two test examples in order to compare obtained approximate solutions and evaluate the
method’s efficiency.

We assume the maximum age a+ = 1; the mortality �(a)= 1/(1 − a) so that the survival probability is �(a)= 1 − a.
The initial values are chosen in such a way that compatibility condition (1.3) is satisfied which provides continuity of
the solution.

Example 1. In the first example we take �(a)=2. Then we have that the net reproduction rate R=∫ a+
0 �(a)�(a) da=1,

so we obtain �∗ = 0 (see [9]) that is the intrinsic Malthusian parameter which determines the population growth via the
birth rate B(t). Since Eq. (2.6) and �∗ = 0, the population remains stable, i.e., it does not grow exponentially. We have
chosen the following initial conditions:

p0(a) =
{

(1 − 2a)3(1 − a), a ∈ [0, 1
2 ],

31(2a − 1)3(1 − a), a ∈ [ 1
2 , 1].

(6.1)

In order to skip the troubles with the unboundedness of �(a+) (see Section 5), we set

u(a, t) = �−1(a)p(a, t) (6.2)

or for u0(a) we have

u0(a) =
{

(1 − 2a)3, a ∈ [0, 1
2 ],

31(2a − 1)3, a ∈ [ 1
2 , 1].

(6.3)

Considering (5.1) and formula (2.11) we can calculate v0(a) for the profile

v0(a) =
{

2(1 − 2a)3, a ∈ [0, 1
2 ],

62(2a − 1)3, a ∈ [ 1
2 , 1].

(6.4)

It follows that for the functions F(t) and K(a) we have

K(a) = 2(1 − a),

F (t) = 2
∫ 1
t
(1 − a)u0(a − t) da, t ∈ [0, 1],

F (t) = 0, t > 1.

(6.5)

Then substituting with that data into the integral (2.4) and differentiating it two times in t we obtain the following
differential equation in the interval t ∈ [0, 1]:

B ′′(t) − 2B ′(t) + 2B(t) = 2u0(1 − t) (6.6)

with initial conditions

B(0) = 2
∫ 1

0
(1 − a)u0(a) da = 1,

B ′(0) = − 2
∫ 1

0
u0(a) da + 2B(0) = −6.

Furthermore, for t �1 we get the following differential delay equation:

B ′′(t) − 2B ′(t) + 2B(t) = 2B(t − 1). (6.7)
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Fig. 5. Case without exponential growth, �∗ = 0, calculated in t ∈ [0, 3]. (a) The birth rate B(t), �(a) = 2. (b) The age density p(a, t), �(a) = 2.

To obtain the solution of (6.6) and (6.7) we have developed a solver for delay equations by using Mathematica. More
precisely, we have

B(t) = −216et cos(t) + 396et sin(t) + 31(7 − 6t − 12t2 − 8t3), t ∈ [0, 1
2 ], (6.8)

B(t) = [(−216 + 768e1/2 sin( 1
2 )) cos(t) + (396 − 768e1/2 cos( 1

2 )) sin(t)]et

− 7 + 6t + 12t2 + 8t3, t ∈ [ 1
2 , 1], (6.9)

B(t) = [m cos(t) + n sin(t)]et + [p sin(t) − q cos(t)]tet + 31(15 − 6t − 12t2 − 8t3), t ∈ [1, 1.5], (6.10)

where m, n, p, q are the following suitable constants:

p = 216 cos(1) + 396 sin(1)

e
; q = 396 cos(1) − 216 sin(1)

e
,

m = c + q − [q cos(1) − p sin(1)] sin(1) + 36
10 cos(1) − 38 sin(1)

e
,

n = d − p + [q cos(1) − p sin(1)] cos(1) + 36
38 cos(1) + 10 sin(1)

e
. (6.11)

For t > 1, 5 we can take B(t) ≈ 0, 5 because of the fact that B(t) tends to the constant value 0,5 (see Fig. 5a).
It is obvious that in this case p(a, t) will not grow exponentially too (see Fig. 5(b)) or we are in the banal case where

the solution of Lotka–McKendrick’s equation is bounded. However, we are much more interested in the case with the
exponential growth.

Example 2. In this example we take �(a) = 6 in order to obtain exponential population growth, i.e., we have R =∫ a+
0 �(a)�(a) da = 3, which implies �∗ > 0 and therefore the birth rate B(t) increases exponentially (see 2.6).

In this case we have the following initial conditions:

p0(a) =
{

(1 − 2a)3(1 − a), a ∈ [0, 1
2 ],

13
3 (2a − 1)3(1 − a), a ∈ [ 1

2 , 1].
(6.12)
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Considering substitutions (5.1) and (6.2), for u0(a) and v0(a) we obtain

u0(a) =
{

(1 − 2a)3, a ∈ [0, 1
2 ],

13
3 (2a − 1)3, a ∈ [ 1

2 , 1],
(6.13)

v0(a) =
{

6(1 − 2a)3, a ∈ [0, 1
2 ],

26(2a − 1)3, a ∈ [ 1
2 , 1].

(6.14)

For the functions F(t) and K(a) we have

K(a) = 6(1 − a),

F(t) = 6
∫ 1

t

(1 − a)u0(a − t) da, t ∈ [0, 1],

F(t) = 0, t > 1. (6.15)

Proceeding as in Example 1—substituting in Eq. (2.4) and then differentiating it two times in t we obtain the following
differential equation in the interval [0, 1]:

B ′′(t) − 6B ′(t) + 6B(t) = 6u0(1 − t) (6.16)

with initial conditions

B(0) = 6
∫ 1

0
(1 − a)u0(a) da = 1,

B ′(0) = − 6
∫ 1

0
u0(a) da + 6B(0) = 2.

Furthermore, for t �1 we get the following differential delay equation:

B ′′(t) − 6B ′(t) + 6B(t) = 6B(t − 1). (6.17)

Running our solver we can obtain the exact solution of (6.16) and (6.17) for a long time but here we give the solution
of these equations only in the interval [0,2], namely

• in [0, 1
2 ]:

B(t) = −663 + ae(3−√
3)t + b e(3+√

3)t − 858 t − 468 t2 − 312 t3

9
, (6.18)

where

a = 336 + 190
√

3,

b = 336 − 190
√

3. (6.19)

• in [ 1
2 , 1]:

B(t) = B1(t) + B2(t),

B1(t) = 1

9m
(ae3+√

3/2+(3−√
3)t − be3/2+√

3+(3−√
3)t + ce3/2+(3+√

3)t + de3+√
3/2+(3+√

3)t ),

B2(t) = 17 + 22 t + 12 t2 + 8 t3, (6.20)

where

m = e3+√
3/2,

a = 2(168 + 95
√

3), b = 64(12 + 7
√

3),

c = 64(−12 + 7
√

3), d = 336 − 190
√

3. (6.21)
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Fig. 6. The exponential growth when �∗ < 0, calculated for t ∈ [0, 3]. (a) The birth rate B(t),�(a) = 6. (b) The age density p(a, t), �(a) = 6.

• in [1, 3
2 ]:

B(t) = 1
9 e−3−√

3−√
3t [B1(t) + B2(t)],

B1(t) = ae3(1+√
3+2t)/2 + be3+√

3+3t + ce3+√
3+3t+2

√
3t + de(3+√

3(6+4
√

3)t/2),

B2(t) = 2e(3+2
√

3)t (m + nt) + e2
√

3+3t (p − qt) − 39e3+√
3+√

3t (33 + 38t + 12t2 + 8t3), (6.22)

where

a = − 64(12 + 7
√

3), b = 2(168 + 95
√

3),

c = (336 − 190
√

3), d = 64(−12 + 7
√

3),

m = 1305 − 761
√

3, n = 3(−95 + 56
√

3),

p = 2610 + 1522
√

3, q = 6(95 + 56
√

3). (6.23)

• in [ 3
2 , 2]:

B(t) = 1
9 e−3(9+√

3)/2−√
3t [B1(t) + B2(t) + B3(t)],

B1(t) = ae3(9+√
3+2t)/2 − be12+2

√
3+3t + ce12+√

3+3t+2
√

3t + de27/2+3
√

3/2+3t+2
√

3t ,

B2(t) = − 32e9+3t+2
√

3t (l + kt) + 32e3(3+√
3+t)(m + nt) + 2e21+√

3+(6+4
√

3)t/2(p + qt),

B3(t) = e21/2+5
√

3/2+3t (v − wt) + 9e3(9+√
3)/2+√

3t (33 + 38t + 12t2 + 8t3), (6.24)

where

a = 2(168 + 95
√

3), b = 64(12 + 7
√

3),

c = 64(−12 + 7
√

3), d = (336 − 190
√

3),

l = 171 − 98
√

3, k = 6(−7 + 4
√

3),

m = − 171 − 98
√

3, n = 6(7 + 4
√

3),

p = 1305 − 761
√

3, q = 3(−95 + 56
√

3),

v = 2610 + 1522
√

3, w = 6(95 + 56
√

3). (6.25)

The basic difference with the previous case is that B(t) grows exponentially and consequently the age density of
the population p(a, t) too, which can be seen from Fig. 6.

As it was already mentioned the age profile w(a, t) remains bounded no matter if p(a, t) grows exponentially or
not. In Fig. 7 the exact age profile in t ∈ [0, 3] is drawn.
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In order to obtain the solution w(a, t) of (2.9), we have used formula (2.8) to calculate p(a, t) and (2.10), (2.11)
and (2.12) for the whole population P(t). In the case �(a) = 6, by substituting with the given data in (2.12) we have
obtained

�(t) =
∫ 1

0
(5 − 6a)v(a, t) da. (6.26)

Then we use the value of �(t) in order to find the solution P(t) of (2.10) as follows:

P(t) = P0e
∫ t

0 �(s) ds . (6.27)

We have obtained P0 = 1
6 and we have approximated both integrals in (6.26) and (6.27) by trapezoidal rule because we

have developed only second order algorithms for Eq. (5.3).

7. Numerical results

In the following we give the results from the algorithms described above. In all tests we computed the effective order
of convergence of the schemes by the well-known formula

� = ln(Eh/Eh/2)

ln(2)
, (7.1)

where Eh is the approximation error defined by

Eh =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ep = max

n�1,j �0
|pn

j − p(aj , t
n)| for the age density,

Ew = max
n�1,j �0

|wn
j − w(aj , t

n)| for the age profile,

EB = max
n�1

|Bn − B(tn)| for the birth integrals.

(7.2)

In the tables below we have listed some results as follows:

• In Table 2 we show results for the absolute maximum error Eh of the different methods. In the first three columns
we give EB for the Hybrid (H), Lobatto (L) and Runge–Kutta (RK) methods for the integral equation. In the next
two columns Ew for the Box (Box) and Runge–Kutta (RK) methods for the equation with the age profile. Finally, in
the last two columns we give Ep for the Box (Box) and Runge–Kutta (RK) methods for the Lotka–McKendrick’s
equation. The results are for the case �(a) = 2 and calculated in t = 1.



554 G. Pelovska, M. Iannelli / Journal of Computational and Applied Mathematics 197 (2006) 534–557

Table 2
Comparison of the absolute maximum error for all the methods, �(a) = 2

h EB (H) EB (L) EB (RK) Ew(Box) Ew(RK) Ep(Box) Ep(RK)

1
30 5.02E − 006 3.69E − 007 1.13E − 005 7.61E − 003 1.43E − 002 4.34E − 003 3.31E − 003
1

60 2.68E − 007 7.32E − 009 1.72E − 006 1.91E − 003 3.31E − 003 1.11E − 003 9.66E − 004
1

120 1.47E − 008 9.23E − 010 2.36E − 007 4.79E − 004 7.91E − 004 2.76E − 004 2.59E − 004
1

240 8.42E − 010 1.32E − 010 3.02E − 008 1.19E − 004 1.93E − 004 6.93E − 005 6.71E − 005

Table 3
Comparison of the absolute maximum error for all the methods, �(a) = 6

h EB (H) EB (L) EB (RK) Ew(Box) Ew(RK) Ep(Box) Ep(RK)

1
30 1.35E − 002 4.61E − 004 3.18E − 002 1.66E − 002 1.79E − 002 2.297 2.73E − 001
1

60 9.25E − 004 9.95E − 006 4.83E − 003 4.46E − 003 4.69E − 003 5.69E − 001 6.79E − 002
1

120 6.07E − 005 9.16E − 007 6.64E − 004 1.11E − 003 1.25E − 003 1.42E − 001 1.69E − 002
1

240 3.89E − 006 1.14E − 007 8.69E − 005 2.78E − 004 3.22E − 004 3.55E − 002 4.24E − 003

Table 4
Comparison of the absolute maximum error Ep for all the methods, �(a) = 6

t EB
p (H) EB

p (L) EB
p (RK) Ew

p (Box) Ew
p (RK) Ep(Box) Ep(RK)

1 9.25E − 004 8.20E − 006 3.47E − 003 0.135 0.610 0.569 6.79E − 002
2 0.137 1.87E − 003 0.675 42.398 171.167 121.49 7.86
3 19.446 0.322 112.07 7976.302 21454.825 20474.186 909.378

Table 5
Effective order of convergence for the different methods

h h
2 �B (H) �B (L) �B (RK) �w(Box) �w(RK) �p(Box) �p(RK)

1
30

1
60 3.86 5.23 2.71 2.01 1.83 2.00 1.98

1
60

1
120 3.93 3.44 2.86 2.00 1.91 2.00 2.01

1
120

1
240 3.96 3.00 2.93 2.00 1.95 2.00 1.99

• In Table 3 the results for the same methods are listed, structured in the same order. We consider the case �(a) = 6
calculated in t = 1.

• In Table 4 we have given results for the maximum absolute error Ep found by means of each of the already mentioned
methods. The results are arranged in the same order as in the previous tables. As we are much more interested in the
case with exponential growth, we have calculated Ep only for the case �(a) = 6. The results are for time t = 1, 2, 3
and total number of intervals N = 60.

• In Table 5 we have shown the effective order of convergence of all the methods.
• In Table 6 we give the CPU time (in seconds) needed to calculate p(a, t) in terms of the different methods applied

to the equations we have discussed. We have done several experiments with different times, namely t = 1, 2, 3 and
different number of intervals—N = 300 and N = 600.

From Table 2 we can see that all the methods give good results because of the small values of the solution when
�(a) = 2. However, as we already mentioned the more interesting case is the one with exponential growth when the
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Table 6
CPU = � time (in seconds) needed to calculate p(a, t) by the different methods and for different times

t
N

�B
p (H) �B

p (L) �B
p (RK) �w

p (Box) �w
p (RK) �p(Box) �p(RK)

1
300 0.015 0.016 0.016 0.047 0.015 0.024 0.062

2
300 0.016 0.031 0.029 0.094 0.057 0.047 0.15

5
300 0.041 0.078 0.071 0.20 0.12 0.12 0.41

7
300 0.062 0.104 0.096 0.26 0.18 0.17 0.63

1
600 0.031 0.047 0.047 0.20 0.078 0.094 0.31

2
600 0.062 0.094 0.094 0.41 0.18 0.19 0.59

5
600 0.15 0.23 0.19 0.84 0.51 0.48 1.55

7
600 0.21 0.33 0.28 1.16 0.75 0.69 2.11

solution increases very fast. We can see from Table 3 that the error Ep is bigger than the error EB . Both functions
p(a, t) and B(t) grow with an equal rate (see Fig. 6). This means that the fourth and fifth order methods—(H),(RK)
and (L)—that we have applied are more accurate than the second and fourth order (Box) and (RK) methods in the case
with exponential growth. Of course the accuracy of these methods is relative to the compact time interval. Concerning
the age profile, we can see that second order methods—(Box) and (RK)—work well in both cases, i.e., �(a) = 2 and
�(a)=6, because of the boundedness of the solution w(a, t) (see Fig. 7). We can also notice that the difference between
the errors Ew(Box) and Ew(RK) is very slight even though Box method is an implicit method and Runge–Kutta is
explicit. It follows that when dealing with the equation with the age profile we can apply explicit methods and obtain
almost the same accuracy as when using an implicit schemes, but gain numerical efficiency (see Table 6). However,
the main advantage here is that the error when calculating w(a, t) remains stable in a long time interval and thus we
can apply different methods without loosing accuracy.

In Table 4 we can see a comparison of the error Ep of all the algorithms for different t. Here we can observe the fast
growth of the error because of the large values of the solution (for t=3, a=0 the exact solution p(0, 3)=1259062.86067).
Of course the smallest errors are EB

p (L) because Lobatto’s method is a fifth order method. If we compare all the fourth
order methods, i.e., EB

p (H), EB
p (L) and Ep(RK) we see that the worst results are for Ep(RK) while the Runge–Kutta

and especially the Hybrid methods for the integral equation are much more precise. The error accumulated by some of
the second order methods increases so fast that for t =5 it blows up. The most inaccurate is Ew

p (RK) in comparison with
Ep(Box) and Ew

p (Box). One can explain it with the bigger number of approximations we need in order to calculate
p(a, t) by means of w(a, t) (see (6.26) and (6.27)) and of course with the explicity of the scheme. While in the case of
the age profile the difference between an explicit and an implicit method was not so important for the accuracy, here
we can see very well the need of applying implicit schemes instead of explicit ones, namely Ew

p (Box) is much smaller
than Ew

p (Box). It is also clear that finding p(a, t) by w(a, t) when using an implicit scheme is much better than the
direct calculation of p(a, t) with the same scheme. It follows that in this case the best decision in terms of numerical
accuracy is to use a high order explicit methods for the integral equation or implicit methods for the equation with the
age profile.

Our comments can be confirmed by Fig. 8. Here, in case (a), we have drawn the absolute error for t = 2 and N = 20
for all the second order methods as follows:

• dashed line—Box method applied to the Lotka–McKendrick’s equation:
• dashed line—Box method applied to the equation with the age profile;
• thick line—Box method applied to the Lotka–McKendrick’s equation;
• thin line—RK method applied to the equation with the age profile.

While the thick and the thin lines are “almost” coinciding, the dashed line is much beneath them which confirms the
better accuracy of the Box method for the age profile.
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In case (b) we have the following graphics:

• dashed thin line—Lobatto’s method for the integral equation;
• thin line—Hybrid method for the integral equation;
• thick line—RK method for the integral equation;
• dashed thick line—RK method for the Lotka–McKendrick’s equation.

As we see the first three lines are much below the dashed thick line (the dashed thin line “almost” coincides with the
x-axes), which implies the methods for the integral equation are much more precise than the fourth order Runge–Kutta
method applied directly to the Lotka–McKendrick’s equation.

Some results about the effective order of convergence of the methods can be found in Table 5. The effective order
of convergence �B(H), �w(Box), �w(RK) and �p(Box) coincides with the theoretical order of convergence of the
respective methods. In the case of Lobatto’s method we do not see fifth order of effective convergence because of the
lack of regularity of our test example, i.e., it has not the needed number of continuous derivatives in order to apply
a fifth order method. �p(RK) ≈ 2 instead of 4, for the same reason and because of the fact that the test example we
use does not satisfy compatibility condition (2.3). Both methods were tested with proper test examples and they show
Lobatto-fifth and Runge–Kutta-fourth order of effective convergence. However, we could not specify why �B(RK) ≈ 3
instead of its theoretical rate of convergence 4.

Finally, concerning the numerical efficiency of the methods we can conclude by the results listed in Table 6 that
the fastest are the methods for the integral equation because there we solve a one-dimensional problem. The most
“expensive” as CPU time is the Runge–Kutta method for Lotka–McKendrick’s equation. From all the second order
methods the slowest is the implicit Box method applied to the equation with age profile. But considering the fact that
the given CPU time is in seconds, we can say the difference between CPUw

p (Box), CPUw
p (RK) and CPUp(Box) is not

that big.
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