The Geometric Structure and the p-Rank of an Affine Triple System Derived from a Nonassociative Moufang Loop with the Maximum Associative Center*

Noboru Hamada
Department of Mathematics, Faculty of Science, Hiroshima University, Hiroshima, Japan
Communicated by the Managing Editors

Received March 25, 1979

Abstract

H. P. Young showed that there is a one-to-one correspondence between affine triple systems (or Hall triple systems) and exp. 3-Moufang loops (ML). Recently, L. Beneteau showed that (i) for any non-associative exp. 3-ML (E, \cdot) with $|E|=3^{n}, 3 \leqslant|Z(E)| \leqslant 3^{n-3}$, where $n \geqslant 4$ and $Z(E)$ is an associative center of (E, \cdot), and (ii) there exists exactly one exp. 3-ML, denoted by (E_{n}, \cdot), such that $\left|E_{n}\right|=3^{n}$ and $\left|Z\left(E_{n}\right)\right|=3^{n-3}$ for any integer $n \geqslant 4$. The purpose of this paper is to investigate the geometric structure of the affine triple system derived from the exp. 3-ML($\left.E_{n}, \cdot\right)$ in detail and to compare with the structure of an affine geometry $A G(n, 3)$. We shall obtain (a) a necessary and sufficient condition for three lines L_{1}, L_{2} and L_{3} in $\left(E_{n}, \cdot\right)$ that the transitivity of the parallelism holds for given three lines L_{1}, L_{2} and L_{3} in ($\left.E_{n}, \cdot\right)$ such that $L_{1} \| L_{2}$ and $L_{2} \| L_{3}$ and (b) a necessary and sufficient condition for $m+1$ points in $E_{n}(1 \leqslant m<n)$ so that the subsystem generated by those $m+1$ points consists of 3^{m} points. Using the structure of hyperplanes in ($\left.E_{n}, \cdot\right)$, the p-rank of the incidence matrix of the affine triple system derived from the exp. 3-ML($\left.E_{n},-\right)$ is given.

1. Introduction

A Steiner system $S(t, k, v)$ is a set E of cardinality v whose elements are called points, provided with a collection \mathscr{B} of distinguished k-subsets called blocks such that every t-subset of E is contained in one and only one block where t, k and v are integers such that $2 \leqslant t<k<v$. In the special case $k=3$, it is also called a Steiner triple system. A Hall triple (HT) system (or an affine triple system) is a Steiner triple system $S(2,3, v)$ in which any

[^0]triangle generates an affine plane. Such a system contains 3^{n} elements for some integer $n \geqslant 3$. For any integer $n \geqslant 3$, we can construct a $H T$ system (denoted by $A G(n, 3): 1$) by identifying 3^{n} points of an affine geometry $A G(n, 3)$ with 3^{n} points of the system and identifying the lines (or 1-flats) of $A G(n, 3)$ with blocks of the system. Such a system $A G(n, 3): 1$ is called an affine $H T$ system and a $H T$ system except for $A G(n, 3): 1$, is called a nonaffine HT system. Hall, Jr., [4-6] showed that (i) a Steiner triple system $S(2,3, v)$ is a $H T$ system if and only if for every point w there is an involutionary automorphism of $S(2,3, v)$ fixing exactly w, and (ii) there exists exactly one non-affine $H T$ system in the case $n=4$.

A set E together with a commutative binary operation denoted by • is said to be a commutative loop if it has a unit and every equation of the form $a \cdot x=b$, with a and b in E, has a unique solution x. A commutative Moufang loop (ML for short) is a commutative loop in which the following weak associativity is fulfilled: $(x \cdot x) \cdot(y \cdot z)=(x \cdot y) \cdot(x \cdot z)$ for all x, y and z in E. An exponent $3-M L(E, \cdot)$ (or $\exp .3-M L$) is a $M L$ in which $x \cdot x=x^{-1}$ holds for all x and $|E|=3^{n}$ for some positive integer n.

Young [14] investigated Hall triple systems in order to construct a perfect matroid design with rank 4 from a given perfect matroid design with rank 3 and showed that (i) there is a one-to-one correspondence between Hall triple systems and exp. 3-MLs and (ii) if an exp. 3-ML (E, \cdot) is associative (i.e., an abelian 3 -group), then the corresponding $H T$ system is isomorphic with the $H T$ system $A G(n, 3): 1$ for some integer $n \geqslant 3$. Recently, Beneteau [2] showed that (i) if an exp. 3-ML (E, \cdot) with $|E|=3^{n}$ is non-associative, then $3 \leqslant|Z(E)| \leqslant 3^{n-3}$ where $n \geqslant 4$ and $Z(E)$ is an associative center of (E, \cdot), i.e., $Z(E)=\{z: z \in E, \forall x, y \in E,(x \cdot y) \cdot z=x \cdot(y \cdot z)\}$ and (ii) there exists exactly one exp. 3-ML, denoted by ($\left.E_{n}, \cdot\right)$, such that $\left|E_{n}\right|=3^{n}$ and $\left|Z\left(E_{n}\right)\right|=3^{n-3}$ for any integer $n \geqslant 4$ and (iii) there is no non-associative exp. 3-ML except for (E_{n}, \cdot) in the case $n=5$.

An affine geometry has many interesting combinatorial structures and it is applicable to various combinatorial problems. It seems that the larger the cardinality of the associative center $Z(E)$ of a non-associative exp. 3-ML (E, \cdot) with $|E|=3^{n}$ is, the more the geometric structure of the corresponding $H T$ system is beautiful and similar to the structure of an affine geometry $A G(n, 3)$. Hence it is necessary to investigate, at first, the geometric structure of the Hall triple system (denoted by $H T S_{n}$) derived from the unique exp. 3$M L\left(E_{n}, \cdot\right)$ with the maximum associative center. The purpose of this paper is to investigate the geometric structure of the $H T S_{n}$ in detail and to compare with the structure of an affine geometry $A G(n, 3)$ using the concept of the parallelism and the flat and to obtain the p-rank of the incidence matrix of the $H T S_{n}$ using the structure of hyperplanes in $\left(E_{n}, \cdot\right)$.

2. Definition of Flats and the Transitivity of the Parallelism in $\left(E_{n}, \cdot\right)$

A triple $\left\{a, b,(a \cdot b)^{2}\right\}$ in an \exp. 3-ML (E, \cdot) is called a line in (E, \cdot) for any two points a and b in E. Two lines L_{1} and L_{2} in ($\left.E, \cdot\right)$ are said to be parallel (denoted by $L_{1} \| L_{2}$) if L_{1} and L_{2} are coplanar and either $L_{1}=L_{2}$ or $L_{1} \cap L_{2}=\varnothing$. Beneteau [1] showed that the transitivity of the parallelism holds for any three lines L_{1}, L_{2} and L_{3} in ($\left.E, \cdot\right)$ such that $L_{1} \| L_{2}$ and $L_{2} \| L_{3}$ if and only if (E, \cdot) is associative. This shows that for any nonassociative exp. 3-ML (E, \cdot), there exist three lines L_{1}, L_{2} and L_{3} in (E, \cdot) such that (a) $L_{1} \| L_{2}$ and $L_{2} \| L_{3}$ but (b) L_{1} and L_{3} are not parallel. This suggests that the transitivity of the parallelism may play an important role in characterizing the structure of an affine triple system derived from a nonassociative exp. 3-ML (E, \cdot). In this section, we shall obtain a necessary and sufficient condition for three lines L_{1}, L_{2} and L_{3} in $\left(E_{n}, \cdot\right)$ that the transitivity of the parallelism holds for given three lines L_{1}, L_{2} and L_{3} in $\left(E_{n}, \cdot\right)$ such that $L_{1} \| L_{2}$ and $L_{2} \| L_{3}$.

Let $E_{n}=\left(Z_{3}\right)^{n}=Z_{3} \times Z_{3} \times \cdots \times Z_{3}$ and the binary operation ". " is defined for any two points $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ in E_{n} as follows:

$$
\begin{align*}
\mathbf{a} \cdot \mathbf{b}=\left(a_{1}\right. & +b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, a_{4}+b_{4} \\
& \left.+\theta(\mathbf{a}, \mathbf{b}), a_{5}+b_{5}, \ldots, a_{n}+b_{n}\right), \tag{2.1}
\end{align*}
$$

where $n \geqslant 4$ and $\theta(\mathbf{a}, \mathbf{b})=\left(a_{3}-b_{3}\right)\left(a_{1} b_{2}-b_{1} a_{2}\right)$ and the notation + in each component of $\mathbf{a} \cdot \mathbf{b}$ denotes the usual addition of modulo 3. Then it is easy to see that (E_{n}, \cdot) defined above is an exp. 3-ML such that $\left|E_{n}\right|=3^{n}$ and $\left|Z\left(E_{n}\right)\right|=3^{n-3}$ for any integer $n \geqslant 4$. An element of E_{n} is called a point (or a 0 -flat) and a triple $\left\{\mathbf{a}, \mathbf{b},(\mathbf{a} \cdot \mathbf{b})^{2}\right\}$ is called a line (or a 1-flat) in (E_{n}, \cdot) for $\mathbf{a} \neq \mathbf{b}$. The point $(\mathbf{a} \cdot \mathbf{b})^{2}$ is denoted by $\mathbf{a} \circ \mathbf{b}$.

More generally, we shall define an m-flat in ($\left.E_{n}, \cdot\right)$, step by step, for any integer m such that $2 \leqslant m<n$ using 1-flats (i.e., lines) as follows: A set S of points in E_{n} is called a subsystem of $\left(E_{n}, \cdot\right)$ if $\mathbf{a} \circ \mathbf{b}$ is contained in S for any distinct points \mathbf{a} and \mathbf{b} in S. The intersection of all subsystems containing a subset A in E_{n} is called the subsystem generated by A. The subsystem S generated by $m+1$ independent points in E_{n} (i.e., there is no set of m points which generates S) is called an m-flat in (E_{n}, \cdot) if $|S|=3^{m}$ and those $m+1$ points are called a generator of the m-flat. Especially, a 2 -flat and an $(n-1)$-flat in $\left(E_{n}, \cdot\right)$ are also called a plane and a hyperplane in $\left(E_{n}, \cdot\right)$, respectively. A plane generated by three noncolinear points \mathbf{a}, \mathbf{b} and \mathbf{c} is denoted by $H(\mathbf{a}, \mathbf{b}, \mathbf{c})$. For any point $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in E_{n}, we define two projections $\rho_{1}(\mathbf{a})$ and $\rho_{2}(\mathbf{a})$ as follows:

$$
\begin{equation*}
\rho_{1}(\mathbf{a})=\left(a_{1}, a_{2}, a_{3}\right) \quad \text { and } \quad \rho_{2}(\mathbf{a})=\left(a_{1}, a_{2}, a_{3}, a_{5}, a_{6}, \ldots, a_{n}\right) \tag{2.2}
\end{equation*}
$$

and let $\sigma_{1}(S)=\left\{\rho_{1}(\mathbf{a}): \mathbf{a} \in S\right\}$ and $\sigma_{2}(S)=\left\{\rho_{2}(\mathbf{a}): \mathbf{a} \in S\right\}$ for any set S of points in E_{n}. If S is an m-flat in $\left(E_{n}, \cdot\right)$, it is obvious that (a) $\sigma_{1}(S)$ and $\sigma_{2}(S)$ are flats in $A G(3,3)$ and $A G(n-1,3)$, respectively, and (b) $\left|\sigma_{1}(S)\right|=3^{i}$ for some integer i such that $\max \{0, m-(n-3)\} \leqslant i \leqslant \min \{3, m\}$. An m-flat $S(1 \leqslant m<n)$ in $\left(E_{n}, \cdot\right)$ is said to be of Type i if $\left|\sigma_{1}(S)\right|=3^{i}$. Let $\mathscr{B}(n, m)$ be a set of all m-flats in $\left(E_{n}, \cdot\right)$ and let $\mathscr{B}_{i}(n, m)$ be a set of all m flats of Type i in ($\left.E_{n}, \cdot\right)$. In the special case $m=1$, any line in $\left(E_{n}, \cdot\right)$ is of Type 0 or 1 for any integer $n \geqslant 4$ and any line of Type 0 in ($\left.E_{n}, \cdot\right)$ can be expressed as follows:
$L=\left\{\left(a_{1}, a_{2}, a_{3}, \alpha_{4}, \ldots, \alpha_{n}\right),\left(a_{1}, a_{2}, a_{3}, \beta_{4}, \ldots, \beta_{n}\right),\left(a_{1}, a_{2}, a_{3}, \gamma_{4}, \ldots, \gamma_{n}\right)\right\}$,
where $\left(a_{1}, a_{2}, a_{3}\right) \in\left(Z_{3}\right)^{3}$ and $\gamma_{j} \equiv 2\left(\alpha_{j}+\beta_{j}\right) \bmod 3$ for $j=4,5, \ldots, n$. In this case, $\left\{\left(\alpha_{4}, \alpha_{5}, \ldots, \alpha_{n}\right),\left(\beta_{4}, \beta_{5}, \ldots, \beta_{n}\right),\left(\gamma_{4}, \gamma_{5}, \ldots, \gamma_{n}\right)\right\}$ can be regarded as a line in $A G(n-3,3)$.

The following theorem is one of the characterizations of the exp. 3-ML (E_{n}, \cdot) by the parallelism and it plays an important role in investigating the structure of flats in (E_{n}, \cdot) and in obtaining the p-rank of the incidence matrix of the Hall triple system $H T S_{n}$.

Theorem 2.1. Let L, L_{1} and L_{2} be three lines in $\left(E_{n}, \cdot\right)$ such that (a) $L_{1} \| L$ and $L \| L_{2}$ and (b) they are not coplanar.
(i) The transitivity of the parallelism holds for given three lines L, L_{1} and L_{2} (i.e., $L_{1} \| L_{2}$) if and only if $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \equiv 0 \bmod 3$ for some four points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} in E_{n} such that $\mathbf{a}, \mathbf{b} \in L(\mathbf{a} \neq \mathbf{b}), \mathbf{c} \in L_{1}$ and $\mathbf{d} \in L_{2}$, where

$$
\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})=\left|\begin{array}{llll}
1 & a_{1} & a_{2} & a_{3} \tag{2.4}\\
1 & b_{1} & b_{2} & b_{3} \\
1 & c_{1} & c_{2} & c_{3} \\
1 & d_{1} & d_{2} & d_{3}
\end{array}\right|
$$

and $|A|$ denotes the determinant of the matrix A.
(ii) If $L_{1} \| L_{2}$, then $L_{1}\left\|L \circ L_{2}, L \circ L_{1}\right\| L_{2}$ and $L \circ L_{1} \| L \circ L_{2}$, where $L \circ L_{i}(i=1,2)$ denotes the unique third line parallel to and coplanar with L and L_{i}.

Remark 2.1. If $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \equiv 0 \bmod 3$ for some four points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} such that $\mathbf{a}, \mathbf{b} \in L(\mathbf{a} \neq \mathbf{b}), \mathbf{c} \in L_{1}$ and $\mathbf{d} \in L_{2}$, then $\Delta\left(\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{d}^{*}\right) \equiv 0$ $\bmod 3$ for any four points $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}$ and \mathbf{d}^{*} such that $\mathbf{a}^{*}, \mathbf{b}^{*} \in L\left(\mathbf{a}^{*} \neq \mathbf{b}^{*}\right)$, $\mathbf{c}^{*} \in L_{1}$ and $\mathbf{d}^{*} \in L_{2}$.

Proof. (i) Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} be any four points in E_{n} such that $\mathbf{a}, \mathbf{b} \in L$ $(\mathbf{a} \neq \mathbf{b}), \mathbf{c} \in L_{1}$ and $\mathbf{d} \in L_{2}$ and let $H_{1}=H(\mathbf{a}, \mathbf{b}, \mathbf{c})$ and $H_{2}=H(\mathbf{a}, \mathbf{b}, \mathbf{d})$. Then $L=\{\mathbf{a}, \mathbf{b}, \mathbf{a} \circ \mathbf{b}\}, L_{1}=\left\{\mathbf{c}, \mathbf{e}_{1}, \mathbf{c} \circ \mathbf{e}_{1}\right\}, L_{2}=\left\{\mathbf{d}, \mathbf{e}_{2}, \mathbf{d} \circ \mathbf{e}_{2}\right\}$ and $H_{i}(i=1,2)$ can be expressed as follows:

$$
H_{1}=\left\{\begin{array}{ccc}
\mathbf{a}, & \mathbf{c}, & \mathbf{a} \circ \mathbf{c} \\
\mathbf{b}, & \mathbf{\mathbf { e } _ { 1 }}, & \mathbf{b} \circ \mathbf{e}_{1} \\
\mathbf{a} \circ \mathbf{b}, & \mathbf{c} \circ \mathbf{e}_{1}, & \mathbf{a} \circ \mathbf{e}_{1}
\end{array}\right\}
$$

and

$$
H_{2}=\left\{\begin{array}{ccc}
\mathbf{a}, & \mathbf{d}, & \mathbf{a} \circ \mathbf{d} \tag{2.5}\\
\mathbf{b}, & \mathbf{e}_{2}, & \mathbf{b} \circ \mathbf{e}_{2} \\
\mathbf{a} \circ \mathbf{b}, & \mathbf{d} \circ \mathbf{e}_{2}, & \mathbf{a} \circ \mathbf{e}_{2}
\end{array}\right\},
$$

where $\mathbf{e}_{1}=(\mathbf{a} \circ \mathbf{b}) \circ(\mathbf{a} \circ \mathbf{c})$ and $\mathbf{e}_{2}=(\mathbf{a} \circ \mathbf{b}) \circ(\mathbf{a} \circ \mathbf{d})$. Let $H_{3}=H\left(\mathbf{c}, \mathbf{e}_{1}, \mathbf{d}\right)$. Then $L_{1} \| L_{2}$ if and only if $\mathbf{e}_{2} \in H_{3}$. Let $\mathbf{f}=\left(\mathbf{c} \circ \mathbf{e}_{1}\right) \circ(\mathrm{c} \circ \mathrm{d})$.
Then

$$
\begin{aligned}
\mathbf{f}=\left(2 a_{1}+b_{1}+d_{1}, \ldots,\right. & 2 a_{3}+b_{3}+d_{3}, 2 a_{4}+b_{4}+d_{4}+\xi \\
& \left.2 a_{5}+b_{5}+d_{5}, \ldots, 2 a_{n}+b_{n}+d_{n}\right) \\
\mathbf{e}_{2}=\left(2 a_{1}+b_{1}+d_{1}, \ldots,\right. & 2 a_{3}+b_{3}+d_{3}, 2 a_{4}+b_{4}+d_{4}+\zeta \\
& \left.2 a_{5}+b_{5}+d_{5}, \ldots, 2 a_{n}+b_{n}+d_{n}\right)
\end{aligned}
$$

where ξ and ζ are nonnegative integers less than 3 and given by

$$
\begin{aligned}
\xi \equiv & \left(a_{3}+b_{3}+c_{3}\right)\left(a_{1} b_{2}-b_{1} a_{2}\right)+\left(a_{3}-d_{3}\right)\left(b_{1} c_{2}-c_{1} b_{2}\right) \\
& +\left(b_{3}-d_{3}\right)\left(c_{1} a_{2}-a_{1} c_{2}\right)-\left(a_{3}-b_{3}\right)\left(d_{1} c_{2}-c_{1} d_{2}\right) \\
& -\left(a_{3}-b_{3}-c_{3}+d_{3}\right)\left\{\left(d_{1} a_{2}-a_{1} d_{2}\right)-\left(d_{1} b_{2}-b_{1} d_{2}\right)\right\} \\
\zeta \equiv & \left(a_{3}+b_{3}+d_{3}\right)\left(a_{1} b_{2}-b_{1} a_{2}\right)-\left(a_{3}+b_{3}+d_{3}\right)\left(d_{1} a_{2}-a_{1} d_{2}\right) \\
& -\left(b_{3}-d_{3}\right)\left(d_{1} b_{2}-b_{1} d_{2}\right) \quad \bmod 3 .
\end{aligned}
$$

This implies that $L_{1} \| L_{2}$ if and only if $\mathbf{f}=\mathbf{e}_{2}$, i.e., $\boldsymbol{\xi}=\zeta$. From the above equations, it is easy to see that $\xi=\zeta$ if and only if four points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} satisfy the following condition:

$$
\begin{equation*}
h_{1} d_{1}-h_{2} d_{2}+h_{3} d_{3} \equiv g \quad \bmod 3 \tag{2.6}
\end{equation*}
$$

where h_{1}, h_{2}, h_{3} and g are nonnegative integers less than 3 and given by

$$
\begin{align*}
& h_{1} \equiv\left(a_{2} b_{3}-b_{2} a_{3}\right)+\left(b_{2} c_{3}-c_{2} b_{3}\right)+\left(c_{2} a_{3}-a_{2} c_{3}\right) \\
& h_{2} \equiv\left(a_{1} b_{3}-b_{1} a_{3}\right)+\left(b_{1} c_{3}-c_{1} b_{3}\right)+\left(c_{1} a_{3}-a_{1} c_{3}\right) \tag{2.7}\\
& h_{3} \equiv\left(a_{1} b_{2}-b_{1} a_{2}\right)+\left(b_{1} c_{2}-c_{1} b_{2}\right)+\left(c_{1} a_{2}-a_{1} c_{2}\right)
\end{align*}
$$

and $g \equiv\left(a_{1} b_{2}-b_{1} a_{2}\right) c_{3}+\left(b_{1} c_{2}-c_{1} b_{2}\right) a_{3}+\left(c_{1} a_{2}-a_{1} c_{2}\right) b_{3} \bmod 3$. Since $\Delta(\boldsymbol{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \equiv h_{1} d_{1}-h_{2} d_{2}+h_{3} d_{3}-g \bmod 3$, it follows that (i) holds.
(ii) In order to show that "if $L_{1} \| L_{2}$, then $L_{1} \| L \circ L_{2}$," it is sufficient to show from (i) and $L \circ L_{2}=\left\{\mathbf{a} \circ \mathbf{d}, \mathbf{b} \circ \mathbf{e}_{2}, \mathbf{a} \circ \mathbf{e}_{2}\right\}$ that "if $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \equiv 0$ $\bmod 3$, then $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{a} \circ \mathbf{d}) \equiv 0 \bmod 3 . " \quad$ Since $\rho_{1}(\mathbf{a} \circ \mathbf{d})=\left(2\left(a_{1}+d_{1}\right)\right.$, $\left.2\left(a_{2}+d_{2}\right), \quad 2\left(a_{3}+d_{3}\right)\right)$, we have $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{a} \circ \mathbf{d})=2 \Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$. Hence $L_{1} \| L \circ L_{2}$ if $L_{1} \| L_{2}$. Similarly, we can show that if $L_{1} \| L_{2}$, then $L_{2} \| L \circ L_{1}$ and $L \circ L_{1} \| L \circ L_{2}$. This completes the proof.

Any two points in E_{n} generate a l-flat (i.e., a line) and any any three noncolinear points in E_{n} generate a 2-flat (i.e., an affine plane). But four noncoplanar points in E_{n} do not necessarily generate a 3-flat. The following corollary shows that four noncoplanar points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} in E_{n} generate a 3 -flat if and only if $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \equiv 0 \bmod 3$.

Corollary 2.1. Let $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} be four noncoplanar points in E_{n} and let S be the subsystem in $\left(E_{n}, \cdot\right)$ generated by four points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d}.
(i) If $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \equiv 0 \bmod 3$, then (a) $|S|=3^{3}$ (i.e., S is a 3 flat $)$ and S consists of 9 lines that are pairwise parallel and (b) the transitivity of parallelism holds for any three lines L_{1}, L_{2} and L_{3} in S such that $L_{1} \| L_{2}$ and $L_{2} \| L_{3}$.
(ii) If $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \not \equiv 0$ mod 3 , then $|S|=3^{4}$ and S consists of 27 lines $\{L(\mathbf{x}\}: \mathbf{x} \in A\}$ where A denotes the 3-flat in $A G(n-1,3)$ generated by four noncoplanar points $\rho_{2}(\mathbf{a}), \rho_{2}(\mathbf{b}), \rho_{2}(\mathbf{c})$ and $\rho_{2}(\mathbf{d})$ and $L(\mathbf{x})$ denotes a line defined by

$$
\begin{equation*}
L(\mathbf{x})=\left\{\left(x_{1}, x_{2}, x_{3}, u, x_{4}, \ldots, x_{n-1}\right): u=0,1,2\right\} \tag{2.8}
\end{equation*}
$$

for a point $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots, x_{n-1}\right)$ in A.
Proof. (i) Let $H_{1}=H(\mathbf{a}, \mathbf{b}, \mathbf{c})$ and $H_{2}=H(\mathbf{a}, \mathbf{b}, \mathbf{d})$. Then H_{1} and H_{2} can be expressed as (2.5). Let $L_{11}=\{\mathbf{a}, \mathbf{b}, \mathbf{a} \circ \mathbf{b}\}, L_{12}=\left\{\mathbf{c}, \mathbf{e}_{1}, \mathbf{c} \circ \mathbf{e}_{1}\right\}, L_{13}=$ $\left\{\mathbf{a} \circ \mathbf{c}, \mathbf{b} \circ \mathbf{e}_{1}, \mathbf{a} \circ \mathbf{e}_{1}\right\}, L_{21}=\left\{\mathbf{d}, \mathbf{e}_{2}, \mathbf{d} \circ \mathbf{e}_{2}\right\} \quad$ and $L_{31}=\left\{\mathbf{a} \circ \mathbf{d}, \mathbf{b} \circ \mathbf{e}_{2}, \mathbf{a} \circ \mathbf{e}_{2}\right\}$. Then $H_{1}=\left\{L_{11}, L_{12}, L_{13}\right\}$ and $H_{2}=\left\{L_{11}, L_{21}, L_{31}\right\}$.

If $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \equiv 0 \bmod 3$, it follows from Theorem 2.1 that $L_{i 1} \| L_{1 j}$ for $i, j=2,3$. Let $\quad L_{22}=L_{31} \circ L_{13}, \quad L_{23}=L_{31} \circ L_{12}, \quad L_{32}=L_{21} \circ L_{13}$, $L_{33}=L_{21} \circ L_{12}$ and $T=\left\{L_{i j}: i=1,2,3, j=1,2,3\right\}$. Then it is easy to see that any two lines M_{1} and M_{2} in T are parallel and the third line $M_{1} \circ M_{2}$ is contained in T. This implies that a set of 27 points in T is a subsystem S generated by four points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and d. Hence we have (a) of (i).

It is obvious that if $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \equiv 0 \bmod 3$, then $\left|\sigma_{1}(S)\right|=1,3$ or 9 and $\Delta\left(\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{d}^{*}\right) \equiv 0 \bmod 3$ for any four noncoplanar points $\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}$ and d^{*} in S. Hence it follows from Theorem 3.1 that (b) holds.
(ii) If $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \not \equiv 0 \bmod 3$, then $\left|\sigma_{1}(S)\right|=27$. Let A be the 3-flat in $A G(n-1,3)$ generated by four noncoplanar points $\rho_{2}(\mathbf{a}), \rho_{2}(\mathbf{b}), \rho_{2}(\mathbf{c})$ and $\rho_{2}(\mathbf{d})$. Let $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ be any point in S such that $\rho_{2}(\delta) \in A$ and let H be any plane in S such that $\Delta(\alpha, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}) \not \equiv 0 \bmod 3$ for some noncolinear points $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\gamma}$ in H. Let $L_{1}=\{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\alpha} \circ \boldsymbol{\beta}\}, L_{2}=\left\{\boldsymbol{\gamma}, \varepsilon_{1}, \boldsymbol{\gamma} \circ \varepsilon_{1}\right\}$ and $L_{3}=$ $\left\{\boldsymbol{\alpha} \circ \boldsymbol{\gamma}, \boldsymbol{\beta} \circ \boldsymbol{\varepsilon}_{1}, \boldsymbol{\alpha} \circ \boldsymbol{\varepsilon}_{1}\right\}$ where $\boldsymbol{\varepsilon}_{1}=(\boldsymbol{\alpha} \circ \boldsymbol{\beta}) \circ(\boldsymbol{\alpha} \circ \boldsymbol{\gamma})$. Then $H=\left\{L_{1}, L_{2}, L_{3}\right\}$. Let $\omega(\neq \boldsymbol{\delta})$ be a point on the line M_{1} in S passing through the point δ and being parallel to L_{1}, and let $M_{i}(i=2,3)$ be the line in S passing through the point ω and being parallel to L_{i}. Since $\Delta(\boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma, \boldsymbol{\delta}) \not \equiv 0 \bmod 3$, it follows from Theorem 2.1 that three lines M_{1}, M_{2} and M_{3} passing through the point ω are all distinct. On the other hand, $\sigma_{2}\left(M_{1}\right)=\sigma_{2}\left(M_{2}\right)=\sigma_{2}\left(M_{3}\right)$ since the transitivity of the parallelism holds for any three lines N_{1}, N_{2} and N_{3} in $A G(n-1,3)$ such that $N_{1} \| N_{2}$ and $N_{2} \| N_{3}$. This implies that any point in $L\left(\rho_{2}(\delta)\right)=\left\{\left(\delta_{1}, \delta_{2}, \delta_{3}, u, \delta_{5}, \ldots, \delta_{n}\right): u=0,1,2\right\}$ is containcd in cither M_{1}, M_{2} or M_{3}. Since $M_{1}, M_{2}, M_{3} \in S$ and δ is any point in S such that $\rho_{2}(\delta) \in A, S$ must contain 27 lines $\{L(\mathbf{x}): \mathbf{x} \in A\}$. Since any two lines X_{1} and X_{2} in $\{L(\mathbf{x}): \mathbf{x} \in A\}$ are parallel and the third line $X_{1} \circ X_{2}$ is contained in $\{L(\mathbf{x}): \mathbf{x} \in A\}$, it follows that $S=\{L(\mathbf{x}): \mathbf{x} \in A\}$.

Two planes H_{1} and H_{2} in $\mathscr{B}(n, 2)$ such that $\left|H_{1} \cap H_{2}\right|=3$ are said to be the Δ-associate if $\Delta(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}) \equiv 0 \bmod 3$ for some four points $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} such that $\mathbf{a}, \mathbf{b} \in H_{1} \cap H_{2}(\mathbf{a} \neq \mathbf{b}), \mathbf{c} \in H_{1}-H_{2}$ and $\mathbf{d} \in H_{2}-H_{1}$. It is easy to see that any plane (i.e., 2 -flat) in (E_{n}, \cdot) is of Type 1 or 2 in the case $n-4$ and is of Type 0,1 or 2 in the case $n \geqslant 5$. The following two corollaries play an important role in investigating the structure of a perfect matroid design $\left(E_{n}, \mathscr{B}(n, 2)\right)$ with rank 4 and in obtaining a new association scheme. (In detail, refer to our paper [11].)

Corollary 2.2. Let H_{1} be any plane in $\mathscr{B}(n, 2)$ and let L be any line in H_{1}.
(i) If H_{1} is of Type 0 or 1, any plane H_{2} in $\mathscr{B}(n, 2)$ such that $\left|H_{1} \cap H_{2}\right|=3$ is the Δ-associate of H_{1} and there are π_{1} planes H_{2} in $\mathscr{B}(n, 2)$ such that $H_{1} \cap H_{2}=L$ and H_{2} is the Δ-associate of H_{1} where $\pi_{1}=\left(3^{n-1}-3\right) /(3-1)$.
(ii) If H_{1} is of Type 2, there are π_{2} planes H_{2} in $\mathscr{B}(n, 2)$ such that $H_{1} \cap H_{2}=L$ and H_{2} is the Δ-associate of H_{1}, and there are 3^{n-2} planes H_{2} in $\mathscr{B}(n, 2)$ such that $H_{1} \cap H_{2}=L$ but H_{2} is not the Δ-associate of H_{1} where $\pi_{2}=\left(3^{n-2}-3\right) /(3-1)$.

Proof. Let \mathbf{a}, \mathbf{b} and \mathbf{c} be any points in H_{1} such that $\mathbf{a}, \mathbf{b} \in L(\mathbf{a} \neq \mathbf{b})$ and $\mathbf{c} \notin L$ and let h_{1}, h_{2} and h_{3} be integers given by (2.7) for \mathbf{a}, \mathbf{b} and \mathbf{c}.
(i) It is easy to see that if H_{1} is of Type 0 or 1 (i.e., $\left|\sigma_{1}\left(H_{1}\right)\right|=1$ or 3), then $\left(h_{1}, h_{2}, h_{3}\right)=(0,0,0)$. From the definition of g and $h_{i}(i=1,2,3)$, it
follows that $g \equiv c_{1} h_{1}-c_{2} h_{2}+c_{3} h_{3} \bmod 3$. This implies that if $\left(h_{1}, h_{2}, h_{3}\right)=$ $(0,0,0)$, then $g=0$, that is, Eq. (2.6) holds for any point d in E_{n}. Hence any plane H_{2} in $\mathscr{P}(n, 2)$ such that $H_{2}=H(\mathbf{a}, \mathbf{b}, d)$ (i.e., $H_{1} \cap H_{2}=L$) is the Δ associate of H_{1}. Since there are $\left(3^{n}-3\right) /\left(3^{2}-3\right)$ planes in $\mathscr{B}(n, 2)$ which contain a given line L, there are $\left\{\left(3^{n}-3\right) /\left(3^{2}-3\right)-1\right\}$ planes H_{2} in $\mathscr{B}(n, 2)$ such that $H_{1} \cap H_{2}=L$ and H_{2} is the Δ-associate of H_{1}.
(ii) If H_{1} is of Type 2 (i.e., $\left.\left|\sigma_{1}\left(H_{1}\right)\right|=9\right)$, then $\left(h_{1}, h_{2}, h_{3}\right) \neq(0,0,0)$ and there are 3^{n-1} solutions $\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ in E_{n} which satisfy condition (2.6) for given three points \mathbf{a}, \mathbf{b} and \mathbf{c}. Three (or nine) of those 3^{n-1} solutions are points in L (or H_{1}). If a point d in $E_{n}-L$ satisfies condition (2.6), then any point in $H(\mathbf{a}, \mathbf{b}, \mathbf{d})-L$ satisfies condition (2.6). Hence there are $\left\{\left(3^{n-1}-3\right) /\left(3^{2}-3\right)-1\right\}$ planes H_{2} in $\mathscr{P}(n, 2)$ such that $H_{1} \cap H_{2}=L$ and H_{2} is the Δ-associate of H_{1}. Since $\pi_{1}-\pi_{2}=3^{n-2}$, there are 3^{n-2} planes H_{2} in $\mathscr{B}(n, 2)$ such that $H_{1} \cap H_{2}=L$ but H_{2} is not the Δ-associate of H_{1}.

Corollary 2.3. Let H_{1} and H_{2} be any planes in $\mathscr{B}(n, 2)$ such that $\left|H_{1} \cap H_{2}\right|=3$.
(i) If H_{1} and H_{2} are the Δ-associate, there are 4 planes H_{3} in $\mathscr{B}(n, 2)$ such that $\left(H_{1} \cap H_{2}\right) \cap H_{3}=\varnothing$ and $\left|H_{1} \cap H_{3}\right|=\left|H_{2} \cap H_{3}\right|=3$.
(ii) If H_{1} and H_{2} are not the Δ-associate, there is no plane H_{3} in $\mathscr{B}(n, 2)$ such that $\left(H_{1} \cap H_{2}\right) \cap H_{3}=\varnothing$ and $\left|H_{1} \cap H_{3}\right|=\left|H_{2} \cap H_{3}\right|=3$.

Proof. Let $L=H_{1} \cap H_{2}$ and let $L_{i j}(\neq L, j=1,2)$ be two lines in H_{i} such that $L\left\|L_{i 1}\right\| L_{i 2}$ (i.e., $H_{i}=\left\{L, L_{i 1}, L_{i 2}\right\}$) for each $i=1$, 2. If H_{3} is a plane in $\mathscr{B}(n, 2)$ such that $\left(H_{1} \cap H_{2}\right) \cap H_{3}=\varnothing$ and $\left|H_{1} \cap H_{3}\right|=$ $\left|H_{2} \cap H_{3}\right|=3$, then $H_{3}=\left\{L_{1 j}, L_{2 k}, L_{1 j} \circ L_{2 k}\right\}$ for some integers j and k since $\left(H_{1} \cap H_{3}\right) \| L$ and $\left(H_{2} \cap H_{3}\right) \| L$.
(i) If H_{1} and H_{2} are the Δ-associate, then $L_{1 j} \| L_{2 k}$ for $j, k=1,2$. Hence there are 4 planes H_{3} in $\mathscr{B}(n, 2)$ such that $\left(H_{1} \cap H_{2}\right) \cap H_{3}=\varnothing$ and $\left|H_{1} \cap H_{3}\right|=\left|H_{2} \cap H_{3}\right|=3$.
(ii) If H_{1} and H_{2} are not the Δ-associate, then $L_{1 j}$ and $L_{2 k}$ are not parallel for any integers j and k. Hence there is no plane H_{3} in $\mathscr{B}(n, 2)$ such that $\left(H_{1} \cap H_{2}\right) \cap H_{3}=\varnothing$ and $\left|H_{1} \cap H_{3}\right|=\left|H_{2} \cap H_{3}\right|=3$.

3. The Structure of Subsystems and m-Flats in $\left(E_{n}, \cdot\right)$

Any $m+1$ points $(1 \leqslant m<n)$ in $A G(n, 3)$ generate an m-flat in $A G(n, 3)$ if there is no ($m-1$)-flat in $A G(n, 3)$ containing those $m+1$ points. But $m+1$ points ($3 \leqslant m<n$) in (E_{n}, \cdot) do not necessarily generate an m-flat in $\left(E_{n}, \cdot\right)$ even if there is no ($m-1$) flat in $\left(E_{n}, \cdot\right)$ containing those $m+1$
points. In this section, by investigating the structure of the subsystem generated by $m+1$ independent points in ($\left.E_{n}, \cdot\right)$, we shall obtain a necessary and sufficient condition that those $m+1$ points generate an m-flat in (E_{n}, \cdot).

Theorem 3.1. Let $\xi_{i}(i=1,2, \ldots, m+1)$ be any $m+1$ independent points in $\left(E_{n}, \cdot\right)$ and let A_{1} and A_{2} be a flat in $A G(3,3)$ generated by $\left\{\rho_{1}\left(\xi_{i}\right): i=1,2, \ldots, m+1\right\}$ and a flat in $A G(n-1,3)$ generated by $\left\{\rho_{2}\left(\xi_{i}\right): i=1,2, \ldots, m+1\right\}$, respectively, where $n \geqslant 4$ and $3 \leqslant m<n-3+$ $\log _{3}\left|A_{1}\right|$. Then $\left|A_{1}\right|=1,3,3^{2}$ or 3^{3} and $\left|A_{2}\right|=3^{m-1}$ or 3^{m}.
(i) In the case $\left|A_{1}\right|=1,3$ or 3^{2}, (a) those $m+1$ points generate an m flat which consists of 3^{m-1} lines that are pairwise parallel and (b) the transitivity of the parallelism holds for any three lines L_{1}, L_{2} and L_{3} in the m flat such that $L_{1} \| L_{2}$ and $L_{2} \| L_{3}$.
(ii) In the case $\left|A_{1}\right|=3^{3}$, (a) the subsystem S generated by those $m \mid 1$ points consists of 3^{m-1} or 3^{m} lines $\left\{L(\mathbf{x}): \mathbf{x} \in A_{2}\right\}$ that are pairwise parallel (i.e., $|S|=3^{m}$ or 3^{m+1}) and (b) those $m+1$ points generate an m flat in $\left(E_{n}, \cdot\right)$ (i.e., $|S|=3^{m}$) if and only if A_{2} is an $(m-1)$-flat in $A G(n-1,3)$.

Proof. If $\xi_{i}(i=1,2, \ldots, m+1)$ are $m+1$ independent points in $\left(E_{n}, \cdot\right)$, then it is obvious that $\left|A_{1}\right|=1,3,3^{2}$ or 3^{3} and $\left|A_{2}\right|=3^{m-1}$ or 3^{m} and $m<n-3+\log _{3}\left|A_{1}\right|$. Let S be the subsystem in $\left(E_{n}, \cdot\right)$ generated by those $m+1$ points.
(i) In the case $m=3$ and $\left|A_{1}\right|=1,3$ or $3^{2}, \Delta\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \equiv 0 \bmod 3$. Hence it follows from Corollary 2.1 that (i) holds in the case $m=3$.

Consider the case $4 \leqslant m<n-3+\log _{3}\left|A_{1}\right|$ and $\left|A_{1}\right|=1,3$ or 3^{2}. Suppose that (a) holds for m points $\xi_{i}(i=1,2, \ldots, m)$ and let S_{1} be the subsystem in ($\left.E_{n}, \cdot\right)$ generated by those m points and let $\left\{L_{i}: i=1,2, \ldots, 3^{m-2}\right\}$ be 3^{m-2} lines in S_{1} that are pairwise parallel, i.e., $S_{1}=$ $\left\{L_{i}: i=1,2, \ldots, 3^{m-2}\right\}$. Let N_{1} be the line in S passing through the point ξ_{m+1}, parallel to each line L_{i} in S_{1}, and let $S_{2}=\left\{N_{1} \circ L_{i}: i=1,2, \ldots, 3^{m-2}\right\}$ and $S_{3}=\left\{\left(L_{1} \circ N_{1}\right) \circ L_{i}: i=1,2, \ldots, 3^{m-2}\right\}$. Then it is easy to see that $S=S_{1}+S_{2}+S_{3}$. Hence it follows from the induction on m that (a) holds for any integer m such that $3 \leqslant m<n-3+\log _{3}\left|A_{1}\right|$. Since $\sigma_{1}(S)-A_{1}$, it is obvious from Theorem 2.1 that (b) holds.
(ii) In the case $\left|A_{1}\right|=3^{3}$, it can be shown that S must contain a line $L\left(\rho_{2}(\mathbf{a})\right)$ for any point \mathbf{a} in E_{n} such that $\rho_{2}(\mathbf{a}) \in A_{2}$ using a similar method of the proof in Corollary 2.1. This implies that S contains all lines in $\left\{L(\mathbf{x}): \mathbf{x} \in A_{2}\right\}$. Since any two lines M_{1} and M_{2} in $\left\{L(\mathbf{x}): \mathbf{x} \in A_{2}\right\}$ are parallel and the third line $M_{1} \circ M_{2}$ is contained in $\left\{L(\mathbf{x}): \mathbf{x} \in A_{2}\right\}, S$ consists of lines $\left\{L(\mathbf{x}): \mathbf{x} \in A_{2}\right\}$ that are pairwise parallel. Hence we have (ii).

In the special case $m=n-1$, we have the following two theorems from Theorem 3.1 which play an important role in obtaining the p-rank of the incidence matrix of the Hall triple system HTS $_{n}$.

Theorem 3.2. In the case $n=4$, any hyperplane (i.e., 3-flat) in (E_{4}, \cdot) is of Type 2 and a set F of points in E_{4} is a hyperplane in $\left(E_{4}, \cdot\right)$ if and only if F can be expressed as follows:

$$
\begin{equation*}
F=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right):\left(a_{1}, a_{2}, a_{3}\right) \in A, a_{4}=0,1,2\right\} \tag{3.1}
\end{equation*}
$$

using a hyperplane (i.e., 2-flat) A in $A G(3,3)$, i.e., $F=A \times Z_{3}$.
The following result is essentially due to Young [14].

Corollary 3.1. (i) There are 39 hyperplanes in $\left(E_{4}, \cdot\right)$.
(ii) $\left(E_{4}, \mathscr{B}(4,3)\right)$ is a group divisible type PBIB design with two associate classes and parameters $v=81, b=39, r=13, k=27, \lambda_{1}=13$, $\lambda_{2}=4, n_{1}=3$ and $n_{2}=78$ where two points $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ are said to be the first associate or the second associate depending upon whether or not $\left(a_{1}, a_{2}, a_{3}\right)=\left(b_{1}, b_{2}, b_{3}\right)$.

Theorem 3.3. In the case $n \geqslant 5$, any hyperplane in $\left(E_{n}, \cdot\right)$ is of Type 2 or 3.
(i) Any hyperplane consists of 3^{n-2} line $\{L(\mathbf{x}): \mathrm{x} \in A\}$ where A is a hyperplane in $A G(n-1,3)$ and $L(\mathbf{x})$ is a line in $\left(E_{n}, \cdot\right)$ defined by (2.8).
(ii) The number of hyperplanes in $\left(E_{n}, \cdot\right)$ is equal to the number of hyperplanes in $A G(n-1,3)$.

4. The p-Rank of the Incidence Matrix of the Hall Triple System HTS_{n}

It is well known that by identifying the points of a finite projective geometry $P G(t, q)$ (or an affine geometry $A G(t, q)$) with treatments and identifying the d-flats ($1 \leqslant d<t$) of $P G(t, q)$ (or $A G(t, q)$) with blocks, we can obtain a BIB design, denoted by $P G(t, q): d$ (or $A G(t, q): d$) where q is a prime power, say $q=p^{m}(m \geqslant 1)$. At first, the p-rank (i.e., the rank over a Galois field $G F(p)$) of the incidence matrix of the BIB design $P G(t, q): d$ or $A G(t, q): d$ has been investigated by several authors at the coding theoretical point of view and a complete solution for this problem has been given by Hamada [7, 8]. Next, the p-rank of the incidence matrix of any BIB design has been investigated for any prime p by Hamada [8]. Hamada showed that
(i) the p-rank of the incidence matrix N of a BIB design with parameters (v, b, r, k, λ) is never less than $v-1$ unless p is a factor of $r-\lambda$ and (ii)for a prime p which is a factor of $r-\lambda$, the p-rank of N may be less than $v-1$ but it depends, in general, on the block structure of the design and conjectured that the p-rank of the incidence matrix of the BIB design $P G(t, q): d$ or $A G(t, q): d$ is minimum among BIB designs with the same parameters, that is, for any BIB design D with the same parameters as the BIB design $P G(t, q): d$ (or $A G(t, q): d$), the p-rank of the incidence matrix N of D is greater than or equal to the p-rank (denoted by $R_{d}(t, q)$ (or $r_{d}(t, q)$)) of the incidence matrix of the BIB design $P G(t, q): d$ (or $A G(t, q): d$), i.e.,

$$
\begin{equation*}
\operatorname{Rank}_{p}(N) \geqslant R_{d}(t, q) \quad\left(\operatorname{or~}_{\operatorname{Rank}}^{p}(N) \geqslant r_{d}(t, q)\right) \tag{4.1}
\end{equation*}
$$

and the equality holds if and only if the BIB design D is isomorphic with the BIB design $P G(t, q): d$ (or $A G(t, q): d$). (In detail, refer to [10].) Hamada and Ohmori [9] showed that this conjecture is true in the case $q=2, t \geqslant 2$ and $d=t-1$. Recently, Doyen et al. [3] showed that this conjecture is also true in the case where the BIB design is a Steiner triple system (i.e., in the case $q=2$ or $3, t \geqslant 2$ and $d=1$). The p-rank of the incidence matrix of the Hall triple system HTS_{n} can be obtained by using their method and Theorems 3.2 and 3.3. Before we describe their result, we must define several concepts.

A subsystem $S_{1}(\neq S)$ of a Steiner triple system S is called a projective hyperplane if every block of S has a nonempty intersection with S_{1}. Equivalently, a subsystem S_{1} of a Steiner triple system $S(2,3, v)$ is a projective hyperplane if and only if $\left|S_{1}\right|=(v-1) / 2$. It is known $[3,12,13]$ that the set of all projective hyperplanes of S has the structure of a finite projective geometry $P G(t, 2)$ for some integer t. The dimension t of this projective geometry is called the projective dimension (denoted by d_{p}) of S. In the special case where there is no projective hyperplane in S, we make a promise that $d_{\mathrm{P}}=-1$.

A nonempty subsystem $S_{1}(\neq S)$ of a Steiner triple system S is called an affine hyperplane if for every point $x \notin S_{1}$, the union of all blocks through x disjoint from S_{1} is a subsystem S_{2} and if moreover any block having exactly one point in S_{1} has a point in S_{2}. For every $x \in S$, we denote by A_{x}, the intersection of all affine hyperplanes of S containing x. It is clear that the subsets $A_{x}(x \in S)$ form a partition of S. Consider the lattice of all subsystems of S which are unions of subsets A_{x}. Teirlinck [12, 13] showed that this lattice is isomorphic to the lattice of subspaces of an affine geometry $A G(t, 3)$ for some integer $t \geqslant 0$, whose points and hyperplanes are the subset A_{x} and the affine hyperplanes of S, respectively. The dimension t of this affine geometry is called the affine dimension (denoted by d_{A}) of S. The following theorem is due to Doyen et al. [3].

Theorem 4.1. (i) For any Steiner triple system $S(2,3, v)$ with $v>3$, the p-rank (denoted by $\operatorname{Rank}_{p}(N)$) of the incidence matrix N of $S(2,3, v)$ is given by
$\operatorname{Rank}_{2}(N)=v-\left(d_{\mathbf{P}}+1\right), \quad \operatorname{Rank}_{3}(N)=v-\left(d_{\mathrm{A}}+1\right), \quad \operatorname{Rank}_{p}(N)=v$
for every prime $p \neq 2,3$ where d_{p} and d_{A} are the projective and affine dimensions of the system $S(2,3, v)$, respectively.
(ii) In the special case $v=2^{n+1}-1, d_{\mathrm{P}} \leqslant n$ for any $S(2,3, v)$ and the equality holds if and only if $S(2,3, v)$ is isomorphic with $\operatorname{PG}(n, 2): 1$.
(iii) In the special case $v=3^{n}, d_{\mathrm{A}} \leqslant n$ for any $S(2,3, v)$ and the equality holds if and only if $S(2,3, v)$ is isomorphic with $A G(n, 3): 1$.

Theorem 4.2. Let N be the incidence matrix of the HTS_{n} derived from the unique exp. 3-Moufang loop ($\left.E_{n}, \cdot\right)$ with $\left|E_{n}\right|=3^{n}$ and $\left|Z\left(E_{n}\right)\right|=3^{n-3}$. Then

$$
\begin{equation*}
\operatorname{Rank}_{3}(N)=v-n\left(\text { i.e., } d_{\mathrm{A}}=n-1\right) \quad \text { and } \quad \operatorname{Rank}_{p}(N)=v \tag{4.3}
\end{equation*}
$$

for every prime $p \neq 3$ where $v=3^{n}$.
Proof. From Theorems 3.2 and 3.3, it follows that (i) any hyperplane in (E_{n}, \cdot) is an affine hyperplane and (ii) the intersection A_{b} of all hyperplanes of $\left(E_{n}, \cdot\right)$ containing $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ is a line $L\left(\rho_{2}(\mathbf{b})\right)$ (i.e., $\left.\left|A_{\mathbf{b}}\right|=3\right)$ for any point \mathbf{b}. Hence $d_{\mathrm{A}}-\log _{3}\left|E_{n}\right| /\left|A_{\mathrm{b}}\right|=n-1$.

From Theorem 3.1, it follows that $|S|=3^{m}$ or 3^{m+1} for any subsystem S in $\left(E_{n}, \cdot\right)$ generated by $m+1$ independent points $(3 \leqslant m<n)$. Since $3^{m} \neq\left(3^{n}-1\right) / 2$ for any integer $m(1 \leqslant m<n)$, this implies that there is no projective hyperplane in the HTS_{n}, i.e., $d_{\mathrm{p}}=-1$. Hence we have Theorem 4.2 from Theorem 4.1.

Using a similar method, we can investigate the transitivity of the parallelism, the structure of subsystems and m-flats, and the p-rank for any nonassociative exp. 3-Moufang loop, and their properties may be useful in classifying or characterizing exp. 3-Moufang loops.

Finally, I conjecture that the 3-rank of the incidence matrix N of the Hall triple system derived from any non-associative exp. 3-Moufang loop (E, \cdot) such that $|E|=3^{n}$ and $|Z(E)|=3^{(n-2)-i}$ is equal to $3^{n}-(n+1-i)$, i.e.,

$$
\begin{equation*}
\operatorname{Rank}_{3}(N)=3^{n}-(n+1-i) \quad\left(\text { or } d_{\mathrm{A}}=n-i\right) \tag{4.4}
\end{equation*}
$$

for any integers n and i such that there exists such a nonassociative exp. 3Moufang loop. Theorem 4.2 shows that in the case $i=1$, this conjecture is true for any integer $n \geqslant 4$. If this conjecture is true for any integers n and i, the 3-rank is useful as the associative center of an exp. 3-Moufang loop in classifying exp. 3-Moufang loops.

Acknowledgment

The author expresses his thanks to Dr. M. Deza, CNRS of France, for suggesting this problem to me at the University of Paris.

References

1. L. Beneteau, "Etude algebrique des espaces barycentres et des espaces planairement affines," These de specialite, Toulouse, 1974.
2. L. Beneteau, Topics about 3-Moufang loops and Hall triple systems, Quart. J. Pure Appl. Math. 54 (1980), 107-128.
3. J. Doyen, X. Hubaut, and M. Vandensavel, Ranks of incidence matrices of Steiner triple system, Math. Z. 163 (1978), 251-259.
4. M. Hall, Jr., Automorphisms of Steiner triple systems, in "Finite Groups," Proc. Symp. Pure Math., Vol. VI Amer. Math. Soc., Providence, R.1., 1962.
5. M. Hall, Jr., Group theory and block designs, in "Proceedings, International Conference on Theory of Group, Australian National University, Canberra, 1965."
6. M. Hall, Jr., Incidence axioms for affine geometry, J. Algebra 21 (1972), 535-547.
7. N. Hamada, The rank of the incidence matrix of points and d-flats in finite geometries, J. Sci. Hiroshima Univ. Ser. A-I 32 (1968), 381-396.
8. N. Hamada, On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes, Hiroshima Math. J. 3 (1973), 153-226.
9. N. Hamada and H. Ohmori, On the BIB design having the minimum p-rank, J. Combin. Theory 18 (1975), 131-140.
10. N. Hamada, A note on conjectures for the p-rank of the incidence matrix of a BIB design, submitted for publication.
11. N. Hamada and M. Deza, The geometric structure of a matroid design derived from some commutative Moufang loop and a new association scheme, Technical Report No. 18 (1980) of Statistical Research Group in Hiroshima University.
12. L. Teirlinck, On Steiner spaces, J. Combin. Theory Ser. A 26 (1979), 103-114.
13. L. Teirlinck, On projective and affine hyperplanes, J. Combin. Theory Ser. A 28 (1980), 290-306.
14. H. P. Young, Affine triple systems and matroid designs, Math. Z. 132 (1973), 343-359.

[^0]: * This research was done at the University of Paris and was supported in part by the Japan Society for the Promotion of Science and CNRS of France.

