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H. P. Young showed that there is a one-to-one correspondence between affine 
triple systems (or Hall triple systems) and exp. 3-Moufang loops (ML). Recently, 
L. Beneteau showed that (i) for any non-associative exp. 3-ML (I?, . ) with 
lEl=3”, 3<1Z(E)I<3”-3, where n > 4 and Z(E) is an associative center of 
(E, ), and (ii) there exists exactly one exp. 3-M& denoted by (E,, . ), such that 
IE.I= 3” and lZ(E,)I = 3”m3 for any integer n > 4. The purpose of this paper is to 
investigate the geometric structure of the aftine triple system derived from the 
exp. 3-ML(E,, ) in detail and to compare with the structure of an afline geometry 
AG(n, 3). We shall obtain (a) a necessary and sufficient condition for three lines 
L,, L, and L, in (E,, ) that the transitivity of the parallelism holds for given three 
lines L, ,L, and L, in (E,, ) such that L,IILL, and L,IIL, and (b) a necessary and 
sufficient condition for m + 1 points in E, (1 < m < n) so that the subsystem 
generated by those m + 1 points consists of 3” points. Using the structure of hyper- 
planes in (E,, ), the p-rank of the incidence matrix of the aftine triple system 
derived from the exp. 3-ML(E,, . ) is given. 

1. IN730DucT10~ 

A Steiner system S(t, k, v) is a set E of cardinality v whose elements are 
called points, provided with a collection 9 of distinguished k-subsets called 
blocks such that every t-subset of E is contained in one and only one block 
where t, k and u are integers such that 2 < t < k < v. In the special case 
k = 3, it is also called a Steiner triple system. A Hall triple (H7’) system (or 
an affine triple system) is a Steiner triple system S(2, 3, v) in which any 
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triangle generates an affine plane. Such a system contains 3” elements for 
some integer 12 > 3. For any integer n > 3, we can construct a HT system 
(denoted by AG(n, 3):l) by identifying 3” points of an afine geometry 
AG(n, 3) with 3” points of the system and identifying the lines (or l-flats) of 
AG(n, 3) with blocks of the system. Such a system AG(n, 3):l is called an 
aflne HT system and a HT system except for AG(n, 3):1, is called a non- 
affine HT system. Hall, Jr., [4-61 showed that (i) a Steiner triple system 
S(2, 3, v) is a HT system if and only if for every point w there is an 
involutionary automorphism of S(2, 3, v) fixing exactly W, and (ii) there 
exists exactly one non-afftne HT system in the case n = 4. 

A set E together with a commutative binary operation denoted by . is 
said to be a commutative loop if it has a unit and every equation of the form 
a . x = 6, with a and b in E, has a unique solution x. A commutative 
Moufang loop (ML for short) is a commutative loop in which the following 
weak associativity is fulfilled: (x . x) . (y . z) = (x . y) . (x . z) for all x, y 
and z in E. An exponent 3-ML (E, . ) (or exp. 3-ML) is a ML in which 
x . x = x-’ holds for all x and 1 E ] = 3” for some positive integer n. 

Young [ 141 investigated Hall triple systems in order to construct a perfect 
matroid design with rank 4 from a given perfect matroid design with rank 3 
and showed that (i) there is a one-to-one correspondence between Hall triple 
systems and exp. 3-MLs and (ii) if an exp. 3-ML (E, . ) is associative (i.e., 
an abelian 3-group), then the corresponding HT system is isomorphic with 
the HT system AG(n, 3): 1 for some integer n > 3. Recently, Beneteau [2] 
showed that (i) if an exp. 3-ML (E, . ) with ]E] = 3” is non-associative, then 
3 < [Z(E)1 < 3”-3 where n > 4 and Z(E) is an associative center of (E, . ), 
i.e., Z(E) = {z : z E E, Vx, y E E, (x . y) . z =x . (y . z)} and (ii) there 
exists exactly one exp. 3-ML, denoted by (E,, . ), such that lEnl = 3” and 
I Z(E,,)I = 3”-3 f or any integer n 2 4 and (iii) there is no non-associative 
exp. 3-ML except for (E,, . ) in the case n = 5. 

An afine geometry has many interesting combinatorial structures and it is 
applicable to various combinatorial problems. It seems that the larger the 
cardinality of the associative center Z(E) of a non-associative exp. 3-ML 
(E, . ) with IE ] = 3” is, the more the geometric structure of the corresponding 
HT system is beautiful and similar to the structure of an affine geometry 
AG(n, 3). Hence it is necessary to investigate, at first, the geometric structure 
of the Hall triple system (denoted by HTS,) derived from the unique exp. 3- 
ML (E,, . ) with the maximum associative center. The purpose of this paper 
is to investigate the geometric structure of the HTS, in detail and to 
compare with the structure of an afine geometry AG(n, 3) using the concept 
of the parallelism and the flat and to obtain the p-rank of the incidence 
matrix of the HTS, using the structure of hyperplanes in (E,, . ). 
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2. DEFINITION OF FLATS AND THE TRANSITIVITY 
OF THE PARALLELISM IN (E,,. ) 

A triple {a, b, (a . b)*} in an exp. 3-ML (E, . ) is called a line in (E, . ) for 
any two points a and b in E. Two lines L, and L, in (E, . ) are said to be 
parallel (denoted by L, ]I LJ if L, and L, are coplanar and either L, = L, or 
L, ~7 L, = 0. Beneteau [l] showed that the transitivity of the parallelism 
holds for any three lines L,, L, and L, in (E, . ) such that L, ]I L, and 
L, ]I L, if and only if (E, . ) is associative. This shows that for any non- 
associative exp. 3-ML (E, . ), there exist three lines L,, L, and L, in (E, . ) 
such that (a) L, 1) L, and L, I] L, but (b) L, and L, are not parallel. This 
suggests that the transitivity of the parallelism may play an important role in 
characterizing the structure of an afline triple system derived from a non- 
associative exp. 3-ML (E, . ). In this section, we shall obtain a necessary and 
sufficient condition for three lines L,, L, and L, in (E,, . ) that the tran- 
sitivity of the parallelism holds for given three lines L,, L, and L, in (E,, . ) 
such that L, 1) L, and L, If L,. 

Let E,=(Z3)n=Z3xZ3x... X Z, and the binary operation “ . ” is 
defined for any two points a = (a,, a2 ,..., a,,) and b = (b,, b, ,..., 6,) in E, as 
follows: 

+ @(a, b), a, + b, ,..., a, + b,), (2-l) 

where n > 4 and e(a, b) = (a3 - b,)(a, b2 - b, al) and the notation + in each 
component of a . b denotes the usual addition of modulo 3. Then it is easy to 
see that (E,, . ) defined b a ove is an exp. 3-ML such that lEnI = 3” and 
I Z(E,)I = 3”- 3 f or any integer n > 4. An element of E, is called a point (or a 
O-&t) and a triple {a, b, (a - b)*} is called a line (or a l-flat) in (E,, . ) for 
a f b. The point (a . b)* is denoted by a 0 b. 

More generally, we shall define an m-flat in (E,, . ), step by step, for any 
integer m such that 2 < m < n using l-flats (i.e., lines) as follows: A set S of 
points in E, is called a subsystem of (E,, . ) if a o b is contained in S for any 
distinct points a and b in S. The intersection of all subsystems containing a 
subset A in E, is called the subsystem generated by A. The subsystem S 
generated by m + 1 independent points in E, (i.e., there is no set of m points 
which generates S) is called an m-pat in (E, , . ) if ] S ] = 3” and those m + 1 
points are called a generator of the m-flat. Especially, a 2-flat and an 
(n - 1 )-flat in (E,, . ) are also called a plane and a hyperplane in (E,, . ), 
respectively. A plane generated by three noncolinear points a, b and c is 
denoted by H(a, b, c). For any point a = (a,, a, ,..., a,,) in E,, we define two 
projections p,(a) and p*(a) as follows: 

pAa>=(a,,a,,a,) and p2(a)=(a,,a2,a3,a5,a,,...,a,), P-2) 

5RW30/3-6 



288 NOBORU HAMADA 

and let o,(S) = {pi(a) : a E S} and a,(S) = {p*(a) : a E S} for any set S of 
points in E,. If S is an m-flat in (E,, . ), it is obvious that (a) a,(S) and 
a,(S) are flats in AG(3, 3) and AG(n - 1, 3), respectively, and (b) 
ia,(S)I = 3’ for some integer i such that max{O, m - (n - 3)) < i < min(3, m}. 
An m-flat S (1 ,< m < n) in (E,, + ) is said to be of Type i if la,(S)] = 3’. Let 
B’(n, m) be a set of all m-flats in (E,, . ) and let Si(n, m) be a set of all m- 
flats of Type i in (E,, . ). In the special case m = 1, any line in (E,, a ) is of 
Type 0 or 1 for any integer n > 4 and any line of Type 0 in (E,, . ) can be 
expressed as follows: 

L = {(a,, a,, a3, ad,..., a,), (a,, a,, a3,P4,...,PJ, (a,, a2,a3, Y ~ Y T  YJl9 C2e3) 

where (a,, a2, a3) E (Z,)” and yj 3 2(aj + jIj) mod 3 for j = 4,5,..., n. In this 
case, {(a,, as,..., a,), (P4, &,..., P,), (y4, Ye,..., r,)} can be regarded as a line 
in AG(n - 3, 3). 

The following theorem is one of the characterizations of the exp. 3-ML 
(E,, . ) by the parallelism and it plays an important role in investigating the 
structure of flats in (E,, . ) and in obtaining the p-rank of the incidence 
matrix of the Hall triple system HTS,. 

THEOREM 2.1. Let L, L, and L, be three lines in (E,, . ) such that (a) 
L, (( L and L (( L, and (b) they are not coplanar. 

(i) The transitivity of the parallelism holds for given three lines L, L, 
and L, (i.e., L, (1 L2) t$ and only tf A(a, b, c, d) E 0 mod 3 for some four 
points a,b,c and d in E, such that a,bEL (a#b), cEL, and dEL,, 
where 

(2.4) 

and IA 1 denotes the determinant of the matrix A. 

(ii) If L,IIL,, then L,llLoL,, Lo.L,IIL2 and LoL,llLoL,, 
where L 0 Li (i = 1,2) denotes the unique third line parallel to and coplanar 
with L and Li. 

Remark 2.1. If A(a, b, c, d) E 0 mod 3 for some four points a, b, c and d 
such that a, bE L (a#b), c E L, and dE L,, then A(a*, b*,c*,d*)=O 
mod 3 for any four points a*, b*, c* and d* such that a*, b* E L (a* #b*), 
c*EL, andd*EL,. 
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Proof (i) Let a, b, c and d be any four points in E, such that a, b E L 
(a # b), c E L, and d E L, and let H, = H(a, b, c) and H, = H(a, b, d). Then 
L = (a, b, a 0 b), L, = {c, e,, c 0 e,}, L, = id, e,, d o e,} and Hi (i = 1,2) can 
be expressed as follows: 

i 

a, C, 
H, = b, 5, 

a 0 b, c 0 e,, 

and 

4 
e2, 

sob, doez, aoe, 
(2.5) 

where e, = (a o b) o (a o c) and e, = (a o b) 0 (a o d). Let H, = H(c, e, , d). 
Then L, 11 L, if and only if e2 E H,. Let f = (c o e,) 0 (c o d). 
Then 

f = (24 + b, + d, )...) 2a,+b,+d,,2a,+b,+d,fr, 

2a, + b, + d, ,..., 2a, + b, + d,), 

e, = (2a, + b, + d ,,..., 2a, + b, + d,, 2a, + b, + d, + C, 

2a, + 6, + d, ,..., 2a, + b, + d,), 

where c and [ are nonnegative integers less than 3 and given by 

6= (a3 + b3 + c,)(a,b, -b,a,) + (a3 -d,)(b,c, -c,b,) 

+ (b3 - d3)(c,a2 - alc2) - (a3 -b3)(4c2 -cd,) 

-(a3-b3-c3+d3)((d,a2-a,d2)-(d,b2-b,d2)}, 

~-(a3+b3+d3)(a,b2-b,a2)-(a3+b3+d3)(d,a2-a,d2) 

- (63 - d,W,b, - b,dd mod 3. 

This implies that L, 11 L, if and only if f = e,, i.e., < = [. From the above 
equations, it is easy to see that < = [ if and only if four points a, b, c and d 
satisfy the following condition: 

h,d, - h,d, + h,d, = g mod 3, (2.6) 

where h,, h,, h, and g are nonnegative integers less than 3 and given by 

h, = (a,b, - b,a,) + (b,c, - c2b3) + (c2a3 - a2c3), 

h2= (a,b3-b,a3)+(b,c3-c,b3)+ (c,a3-a,c3h (2.7) 

h,=(a,b,-b,a,)+(b,c,-c,b,)+(c,a,-a,c,) 
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and g = (a,b, - b,a,)c, + (b,c, - cib,)a, + (~,a* - a,c,)b, mod 3. Since 
d(a, b, c, d) = h, d, - h,d, + h,d, - g mod 3, it follows that (i) holds. 

(ii) In order to show that “if L, 11 L,, then L, (1 L 0 L2,” it is sufficient to 
show from (i) and L~L~={a~d,boe,,aoe,} that “if d(a,b,c,d)zO 
mod 3, then d(a, b, c, a 0 d) = 0 mod 3.” Since p,(a 0 d) = (2(a, + d,), 
w, + d*), w, + d3)h we have d(a, b, c, a 0 d) = 2A(a, b, c, d). Hence 
L, (1 L o L, if L I 11 L,. Similarly, we can show that if L, 11 L,, then 
L, I/L o L, and L 0 L, II L 0 L,. This completes the proof. 

Any two points in E, generate a l-flat (i.e., a line) and any any three 
noncolinear points in E, generate a 2-flat (i.e., an affine plane). But four 
noncoplanar points in E, do not necessarily generate a 3-flat. The following 
corollary shows that four noncoplanar points a, b, c and d in E, generate a 
3-flat if and only if d(a, b, c, d) = 0 mod 3. 

COROLLARY 2.1. Let a, b, c and d be four noncoplunur points in E, and 
let S be the subsystem in (E,, . ) g eneruted by four points a, b, c and d. 

(i) Zfd(a, b, c, d) = 0 mod 3, then (a) JSI = 33 (i.e., S is a 3-flat) and 
S consists of 9 lines that are puirwise parallel and (b) the transitivity of 
parallelism holds for any three lines L,, L, and L, in S such that L, I[ L, 
and L, I( L,. 

(ii) Zfd(a, b, c, d) f 0 mod 3, then ) S) = 34 and S consists of 27 lines 
{L(x) : x E A} where A denotes the 3-Jlut in AG(n - 1,3) generated by four 
noncoplunur points p*(a), p,(b), p2( c and p,(d) and L(x) denotes a line ) 
defined by 

L(x)={(x,,x*,x3,u,x4 ,..., X”-1): u=O,1,2} 

forupointx=(x,,x,,x,,x, ,..., x,_,)inA. 

(2.8) 

Proof. (i) Let H, = H(a, b, c) and H, = H(a, b, d). Then H, and H, can 
be expressed as (2.5). Let L,, = {a,b,ao b}, L,, = {c,e,,c 0 e,}, L,, = 
{aoc, boe,,aoe,], Lzl={d,ez,doe,} and L31={aod,boez,aoe,}. 
Then HI = {L,,,L,2,L,31 and HI= {Lll,L21,L31j. 

If d(a, b, c, d) = 0 mod 3, it follows from Theorem 2.1 that Li, 1) L,j for 
i, j = 2, 3. Let L=L31 OL139 L23 = L3, O LIZ, L32 =L,, oL13, 

L33 =L,, oL,z and T = (Lij : i = 1,2,3, j = 1,2,3}. Then it is easy to see 
that any two lines M, and M, in T are parallel and the third line M, 0 M, is 
contained in T. This implies that a set of 27 points in T is a subsystem S 
generated by four points a, b, c and d. Hence we have (a) of (i). 

It is obvious that if d(a, b, c, d) = 0 mod 3, then lo,(S)I = 1, 3 or 9 and 
d(a*, b*, c*, d*) = 0 mod 3 for any four noncoplanar points a*, b*, c* and 
d* in S. Hence it follows from Theorem 3.1 that (b) holds. 
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(ii) If d(a, b, c, d) f 0 mod 3, then la,(S)1 = 27. Let A be the 3-flat in 
AG(n - 1,3) generated by four noncoplanar points p*(a), p,(b), pz(c) and 
p,(d). Let 6 = (6,) 6, ,..., S,) be any point in S such that p,(6) E A and let H 
be any plane in S such that A(a, p, y, 6) f 0 mod 3 for some noncolinear 
pointsa,pandyinH.LetL,={a,p,aoP},L,={y,~i,yo~i} andL,= 
(aoy,poEl,aoEl}whereEl=(aop)o(aoy).ThenH={L,,L,,L,}.Let 
o (# 6) be a point on the line M, in S passing through the point 6 and being 
parallel to L, , and let Mi (i = 2,3) be the line in S passing through the point 
o and being parallel to Li. Since d(a, p, y, 6) z 0 mod 3, it follows from 
Theorem 2.1 that three lines M, , M, and M, passing through the point o are 
all distinct. On the other hand, a,(M,) = a,(M,) = u2(M3) since the tran- 
sitivity of the parallelism holds for any three lines N,, N, and N, in 
AG(n - 1, 3) such that N, ]] N, and N, ]] N,. This implies that any point in 
UP,(W) = {Cd,, a,, 63, u, 6, ,***, 4J : u = 0, 1, 2) is contained in either 
M,, M, or M,. Since M, , M,, M, E S and 6 is any point in S such that 
p,(6) E A, S must contain 27 lines (L(x): x E A }. Since any two lines X, and 
X, in (L(x): x E A } are parallel and the third line X, o X, is contained in 
(L(x): x E A }, it follows that S = {L(x): x E A }. 

Two planes H, and H, in 3(n, 2) such that ] H, n H, ] = 3 are said to be 
the A-associate if A(a, b, c, d) = 0 mod 3 for some four points a, b, c and d 
such that a,bEH,nH, (a#b), cEH,-HH, and dEH,-HI. It is easy 
to see that any plane (i.e., 2-flat) in (E,, . ) is of Type 1 or 2 in the case 
n = 4 and is of Type 0, 1 or 2 in the case n > 5. The following two 
corollaries play an important role in investigating the structure of a perfect 
matroid design (E,, A?(n, 2)) with rank 4 and in obtaining a new association 
scheme. (In detail, refer to our paper [ 11 I.) 

COROLLARY 2.2. Let H, be any plane in 9(n, 2) and let L be any line in 
H,* 

(i) If H, is of Type 0 or 1, any plane H, in .5?(n, 2) such that 
(H, n H, I= 3 is the A-associate of H, and there are x, planes H, in .58(n, 2) 
such that H, (7 H, = L and H, is the A-associate of H, where 
7z1 = (3n-l- 3)/(3 - 1). 

(ii) If H, is of Type 2, there are z2 planes H, in 5?(n, 2) such that 
H, ~7 H, = L and H, is the A-associate of H, , and there are 3”-’ planes H, 
in 9(n, 2) such that H, ~7 H, = L but H, is not the A-associate’of H, where 
7c2 = (3”-* - 3)/(3 - 1). 

ProoJ Let a, b and c be any points in H, such that a, b E L (a # b) and 
c 6Z L and let h,, h, and h, be integers given by (2.7) for a, b and c. 

(i) It is easy to see that if H, is of Type 0 or 1 (i.e., Ia, = 1 or 3), 
then (h, , h,, h3) = (0, 0,O). From the definition of g and hi (i = 1,2, 3), it 
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follows that g = c, h, - c,h, + cjh, mod 3. This implies that if (h,, h,, h3) = 
(0, 0, 0), then g = 0, that is, Eq. (2.6) holds for any point d in E,. Hence any 
plane H, in 5?‘(n, 2) such that H, = H(a, b, d) (i.e., H, n H, = L) is the A- 
associate of H,. Since there are (3” - 3)/(3* - 3) planes in B(n, 2) which 
contain a given line L, there are {(3” - 3)/(3* - 3) - I} planes H, in 
J8(n, 2) such that H, n H, = L and H, is the A-associate of H,. 

(ii) If H, is of Type 2 (i.e., la,(H,)I = 9), then (h,, h,, h,) # (0, 0,O) 
and there are 3”-’ solutions d = (d,, d, ,..., d,) in E, which satisfy condition 
(2.6) for given three points a, b and c. Three (or nine) of those 3”-’ solutions 
are points in L (or H,). If a point d in E, -L satisfies condition (2.6), then 
any point in H(a, b, d) -L satisfies condition (2.6). Hence there are 
((3”-’ - 3)/(3* - 3) - I} planes H, in s(n, 2) such that H, n H, = L and 
H, is the A-associate of H,. Since rt, - 71, = 3n-2, there are 3”-* planes H, 
in 55’(n, 2) such that H, f7 H, = L but H, is not the A-associate of H,. 

COROLLARY 2.3. Let H, and H, be any planes in .%‘(n, 2) such that 
IH,nH,l=3. 

(i) If H, and H, are the A-associate, there are 4 planes H, in 9(n, 2) 
such that (H,nH2)nH,=0and(H,nH,)=IH2nH,I=3. 

(ii) If H, and H, are not the A-associate, there is no plane H, in 
9(n,2) such that (H,nH,)nH,=QI and IH,nH,I=(H,nH,(=3. 

Proof. Let L = H, n H, and let L, (#L,j= 1,2) be two lines in Hi 
such that L 11 Li, 11 L,, ( i.e., Hi = {L, Li,, Li2}) for each i= 1, 2. If H, is a 
plane in 9(n, 2) such that (H, nH,)n H, =0 and IH, nH,I = 
IH,nH,I=3, then H,={L,j,L2,, L ,j o L,,} for some integers j and k 
since (H, f7 H3)/l L and (H2 n H3) IIL. 

(i) If H, and H, are the A-associate, then L,j II L,, for j, k = 1, 2. Hence 
there are 4 planes H, in 5P(n, 2) such that (H, n H,) f7 H, = 0 and 
JH,nH,I=IH,nH,I=3. 

(ii) If H, and H, are not the A-associate, then L,j and L2k are not parallel 
for any integers j and k. Hence there is no plane H, in 9(n, 2) such that 
(H,nH,)nH,=QJ and IH,nH,)=IH,nH,(=3. 

3. THE STRUCTURE OF SUBSYSTEMS AND m-FLATS IN (E,,.) 

Any m + 1 points (1 Q m < n) in AG(n, 3) generate an m-flat in AG(n, 3) 
if there is no (m - 1)-flat in AG(n, 3) containing those m + 1 points. But 
m + 1 points (3 < m < n) in (E,, a ) d 0 not necessarily generate an m-flat in 
(E,, . ) even if there is no (m - 1)-flat in (E,, . ) containing those m + 1 
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points. In this section, by investigating the structure of the subsystem 
generated by m + 1 independent points in (E,, . ), we shall obtain a 
necessary and sufficient condition that those m + 1 points generate an m-flat 
in (E,,.). 

THEOREM 3.1. Let gi (i = 1, 2,..., m + 1) be any m + 1 independent 
points in (E,, . ) and let A, and A, be a jlat in AG(3,3) generated by 
{p,(&): i = 1, 2 ,..., m + 1) and a flat in AG(n - 1,3) generated by 
(~~(5~): i = 1, 2,..., m + 1 ), respectively, where n 2 4 and 3 < m < n - 3 + 
log,~A,~.Then~A,~=1,3,320r33and~A,l=3m-’or3m. 

(i) In the case IA, I = 1, 3 or 32, (a) those m + 1 points generate an m- 
flat which consists of 3m-’ lines that are pairwise parallel and (b) the tran- 
sitivity of the parallelism holds for any three lines L, , L, and L, in the m-flat 
such that L, 11 L, and L, II L,. 

(ii) In the case IA, I= 33, (a) the subsystem S generated by those 
m $ 1 points consists of 3m-’ or 3” lines (L(x): x E A,) that are pairwise 
parallel (i.e., I SI = 3” or 3m+ ’ ) and (b) those m + 1 points generate an m- 
j7at in (E,, . ) (i.e., ISI =3”) if and only if A, is an (m- I);frat in 
AG(n - 1, 3). 

Proof: If i$ (i = 1, 2,..., m + 1) are m + 1 independent points in (E,, . ), 
then it is obvious that [All = 1,3, 32 or 33 and IA,/ = 3m-’ or 3” and 
m < n - 3 + log, I A, I. Let S be the subsystem in (E, , . ) generated by those 
m + 1 points. 

(i) In the case m = 3 and IA,\ = 1, 3 or 3’, d(g,, &, &, 5,) 3 0 mod 3. 
Hence it follows from Corollary 2.1 that (i) holds in the case m = 3. 

Consider the case 4 < m < n - 3 + log, IA,1 and IA, I = 1, 3 or 3*. 
Suppose that (a) holds for m points gi (i = 1, 2,..., m) and let S, be the 
subsystem in (E,, . ) generated by those m points and let 
{Li: i = 1, 2,..., 3”-‘} be 3m-2 lines in S, that are pairwise parallel, i.e., S, = 
{Li:i = 1, 2,..., 3m-2}. Let N, be the line in S passing through the point 
5 m+,, parallel to each line Li in S,, and let S, = {N, 0 Li: i= 1, 2 ,..., 3m--2} 
and S, = {(L, o N,) o Li: i = 1, 2 ,..., 3m-2}. Then it is easy to see that 
S = S, + S, + S,. Hence it follows from the induction on m that (a) holds 
for any integer m such that 3 < m < n - 3 + log, IA, I. Since u,(S) = A,, it is 
obvious from Theorem 2.1 that (b) holds. 

(ii) In the case IA, I = 33, it can be shown that S must contain a line 
L@,(a)) for any point a in E, such that p*(a) E A, using a similar method of 
the proof in Corollary 2.1. This implies that S contains all lines in 
(L(x): x E A,}. Since any two lines M, and M, in {L(x): x E A2} are parallel 
and the third line M, o M, is contained in (L(x): x E A2}, S consists of lines 
{L(x): x E A,} that are pairwise parallel. Hence we have (ii). 
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In the special case m = n - 1, we have the following two theorems from 
Theorem 3.1 which play an important role in obtaining the p-rank of the 
incidence matrix of the Hall triple system HTS,. 

THEOREM 3.2. In the case n = 4, any hyperplane (i.e., 3-flat) in (E4, . ) 
is of Type 2 and a set F of points in E, is a hyperplane in (E4, . ) if and only 
if F can be expressed as follows: 

F= {(al,a2,a3,q) : (a,,a,,a,)E4a,=O, 1,2} 

using a hyperplane (i.e., 2-flat) A in AG(3, 3), i.e., F = A X Z,. 

The following result is essentially due to Young [ 141. 

(3.1) 

COROLLARY 3.1. (i) There are 39 hyperplanes in (Ed, . ). 

(ii) (E4, 9(4,3)) is a group divisible type PBIB design with two 
associate classes and parameters v = 81, b = 39, r = 13, k = 27, 2, = 13, 
L,=4, n,=3 and n,=78 where two points a=(a,,a,,a,,a,) and 
b=(b,,b,,bj,bJ are said to be the Jirst associate or the second associate 
depending upon whether or not (a,, a,, a,) = (b,, b,, b3). 

THEOREM 3.3. In the case n > 5, any hyperplane in (E,, . ) is of Type 2 
or 3. 

(i) Any hyperplane consists of 3”-* line {L(x): x E A} where A is a 
hyperplane in AG(n - 1,3) and L(x) is a line in (E,, . ) defined by (2.8). 

(ii) The number of hyperplanes in (E,, . ) is equal to the number of 
hyperplanes in AG(n - 1, 3). 

4. THEP-RANK OF THE INCIDENCE MATRIX OF THE HALL TRIPLE SYSTEM 
HTS, 

It is well known that by identifying the points of a finite projective 
geometry PG(t, q) (or an affine geometry AG(t, q)) with treatments and iden- 
tifying the d-flats (1 < d < t) of PG(t, q) (or AG(t, q)) with blocks, we can 
obtain a BIB design, denoted by PG(t, q) :d (or AG(t, q) :d) where q is a 
prime power, say q = p” (m > 1). At first, the p-rank (i.e., the rank over a 
Galois field GF(p)) of the incidence matrix of the BIB design PG(t, q) : d or 
A G(t, q) : d has been investigated by several authors at the coding theoretical 
point of view and a complete solution for this problem has been given by 
Hamada [7, 81. Next, the p-rank of the incidence matrix of any BIB design 
has been investigated for any prime p by Hamada [8]. Hamada showed that 
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(i) the p-rank of the incidence matrix N of a BIB design with parameters 
(v,b,r,k,A)is never less than v-l unless p is a factor of r-l and(ii a 
prime p which is a factor of r - 1, the p-rank of N may be less than u - 1 
but it depends, in general, on the block structure of the design and conjec- 
tured that the p-rank of the incidence matrix of the BIB design PG(t, q) : d or 
AG(t, q) : d is minimum among BIB designs with the same parameters, that 
is, for any BIB design D with the same parameters as the BIB design 
PG(t, q) : d (or A G(t, q) : d), the p-rank of the incidence matrix N of D is 
greater than or equal to the p-rank (denoted by R,(t, q) (or rd(t, 4))) of the 
incidence matrix of the BIB design PG(t, q) : d (or A G(t, q) : d), i.e., 

Rank,@9 > RAG s> (or Rank,(N) 2 r& 9)) (4-I) 

and the equality holds if and only if the BIB design D is isomorphic with the 
BIB design PG(t, q):d (or AG(t, q):d). (In detail, refer to [lo].) Hamada 
and Ohmori [9] showed that this conjecture is true in the case q = 2, t > 2 
and d = t - 1. Recently, Doyen et al. [3] showed that this conjecture is also 
true in the case where the BIB design is a Steiner triple system (i.e., in the 
case q = 2 or 3, t > 2 and d = 1). The p-rank of the incidence matrix of the 
Hall triple system HTS, can be obtained by using their method and 
Theorems 3.2 and 3.3. Before we describe their result, we must define several 
concepts. 

A subsystem S, (#S) of a Steiner triple system S is called a projective 
hyperplane if every block of S has a nonempty intersection with S,. 
Equivalently, a subsystem S, of a Steiner triple system S(2,3, v) is a 
projective hyperplane if and only if ] S, ] = (v - 1)/2. It is known [ 3, 12, 131 
that the set of all projective hyperplanes of S has the structure of a finite 
projective geometry PG(t, 2) for some integer t. The dimension t of this 
projective geometry is called the projective dimension (denoted by dp) of S. 
In the special case where there is no projective hyperplane in S, we make a 
promise that d, = -1. 

A nonempty subsystem S, (#S) of a Steiner triple system S is called an 
u$‘?ne hyperplune if for every point x 6$ S i , the union of all blocks through x 
disjoint from S, is a subsystem S, and if moreover any block having exactly 
one point in S, has a point in S,. For every x E S, we denote by A,, the 
intersection of all affine hyperplanes of S containing x. It is clear that the 
subsets A, (x E S) form a partition of S. Consider the lattice of all 
subsystems of S which are unions of subsets A,. Teirlinck [ 12, 131 showed 
that this lattice is isomorphic to the lattice of subspaces of an afftne 
geometry AG(t, 3) for some integer t > 0, whose points and hyperplanes are 
the subset A, and the afftne hyperplanes of S, respectively. The dimension f 
of this afftne geometry is called the aflne dimension (denoted by dA) of S. 
The following theorem is due to Doyen et al. [3]. 
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THEOREM 4.1. (i) For any Steiner triple system S(2, 3, u) with v > 3, 
the p-rank (denoted by Rank,(N)) of the incidence matrix N of S(2, 3, v) is 
given by 

Rank,(N) = v - (d, + l), Rank,(N) = v - (d, + I), Rank,(N) = u (4.2) 

for every prime p # 2, 3 where d, and d, are the projective and afflne 
dimensions of the system S(2,3, v), respectively. 

(ii) In the special case v = 2”’ ’ - 1, d, < n for any S(2,3, v) and the 
equality holds if and only if S(2, 3, v) is isomorphic with PG(n, 2) : 1. 

(iii) In the special case v = 3”, d, < n for any S(2,3, v) and the 
equality holds if and only if S(2, 3, v) is isomorphic with AG(n, 3) : 1. 

THEOREM 4.2. Let N be the incidence matrix of the HTS, derivedfrom 
the unique exp. 3-Moufang loop (E,, . ) with lEnI = 3” and lZ(E,)I = 3”-3. 
Then 

Rank,(N) = v - n (i.e., d, = n - 1) 

for every prime p f 3 where v = 3”. 

and Rank,(N) = v (4.3) 

Proof: From Theorems 3.2 and 3.3, it follows that (i) any hyperplane in 
(E,, . ) is an affme hyperplane and (ii) the intersection A, of all hyperplanes 
of (E,, . > containing b = (b,, b, ,..., 6,) is a line L@,(b)) (i.e., lAbl = 3) for 
any point b. Hence d, = log, (E, [/I A,1 = n - 1. 

From Theorem 3.1, it follows that ISI = 3” or 3m+’ for any subsystem S 
in (E,, . ) generated by m + 1 independent points (3 < m < n). Since 
3” # (3” - 1)/2 for any integer m (1 < m < n), this implies that there is no 
projective hyperplane in the HTS,, i.e., d, = -1. Hence we have 
Theorem 4.2 from Theorem 4.1. 

Using a similar method, we can investigate the transitivity of the 
parallelism, the structure of subsystems and m-flats, and the p-rank for any 
nonassociative exp. 3-Moufang loop, and their properties may be useful in 
classifying or characterizing exp. 3-Moufang loops. 

Finally, I conjecture that the 3-rank of the incidence matrix N of the Hall 
triple system derived from any non-associative exp. 3-Moufang loop (E, . ) 
such that [El = 3” and /Z(E)1 = 3(n-2’-i is equal to 3” - (n + 1 - i), i.e., 

Rank,(N) = 3” - (n + 1 - i) (or d, = n - i) (4.4) 

for any integers n and i such that there exists such a nonassociative exp. 3- 
Moufang loop. Theorem 4.2 shows that in the case i = 1, this conjecture is 
true for any integer n > 4. If this conjecture is true for any integers n and i, 
the 3-rank is useful as the associative center of an exp. 3-Moufang loop in 
classifying exp. 3-Moufang loops. 
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