
JOURNAL OF ALGEBRA 65,  8 4 - 9 4  (1980) 

Some Finite Solvable Groups with No Outer Automorphisms 

TERENCE M. GAGEN* 

Department of Pure Mathematics, University of Sydney, Sydney, N S W  2006 Australia 

Communicated by B. Huppert 

Received July 5, 1979 

A group G is complete if the center Z(G)  of G is trivial and if every auto- 
morphism of G is inner. In  [3], all complete metabelian finite groups were 
determined. They  are either of order 2 or direct products of holomorphs  of 
cyclic groups of different odd prime power orders. Here we will determine all 
finite groups G which have a normal abelian subgroup A with G/A nilpotent and 
which have no outer automorphisms.  All  groups considered here will be finite. 
We  write G c ~ J f  if G has an abelian normal subgroup A with G/A nilpotent.  
Our  notation will be quite standard; see, for example, [5] or [7]. 

The  main result is as follows. 

THEOREM 0. Let G ~ ~dU with Out G = Aut G/Inn  G = 1. Then either 

[ G ] <~ 2 or G is a direct product of  groups A i X  i with the following properties: 

A i is a homocyclic p-group of  odd order, A i  ~_ A i X i ,  d i  c3 X i = 1, X i is the 

normalizer of  a Sylow 2-subgroup of Aut A i . Finally d i ~ A t only i f  i = j .  
Conversely, every such group has no outer automorphisms. 

The  structure of the groups X i will be completely determined.  We can 
immediately assert that N A u t A ( X i ) =  X i and so X i contains the unique 
involutory automorphism which inverts d i , whenever I d i ]  is odd. Nforeover 
we will see that X i is a direct product  of a Sylow 2-subgroup of Aut  A i and a 
diagonal, even scalar on d i , group. Since a Sylow 2-subgroup of Aut  A i is also 
a Sylow 2-subgroup of GL(n, p), for some n, the structure and the action of X i on 
A i is completely determined. 

Now suppose that G ~ ~dV" with Out G = 1. I f  Z(G)  v a 1, it  follows from 
Theorem 0 that I G]  = 2. Thus  the complete groups in 6~dg" are exactly the 
groups of order > 2  described in the theorem. I t  is also interesting to note that, 
because every abelian group of odd order has an involutory automorphism, 
viz., inversion, it follows that the groups Xi  in Theorem 0 are always of even 
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order. Thus  any complete group in ~JV" has even order. This can be compared 
with [2, 6]. 

Before commencing the proof we begin with some elementary lemmas. 

LEMMA 1. Let G ~ ~JIP, A a maximal abelian normal subgroup of G with 
G/A nilpotent. 

(i) I f  Out G = 1, then G is a semidirect product A X  with X nilpotent and 
Cx(A) = 1. Also NAutA(X) = X and H'(X,  A) = O. 

(ii) I f  G satisfies the properties in (i) and A char G, then Out G = 1. 

Proof. (i) First Co(A) -- A ~ G because A is a maximal abelian normal 
subgroup of G. It  is well known that HI(G/A, A) is isomorphic with a subgroup 
of Out G (see, for example, [7, p. 119]). I t  follows that HI(G/A, A) ----- 0. By 
Lemma 2 [3], H2(G/A, A ) =  0 and the extension splits. Let G = A X ,  
A r ~ X ~ I .  

Any element in NAut a(X) - -  X induces an automorphism of G in a natural 
way. I f  Out G = 1 this automorphism is inner and, because A is abelian, must 
be induced by an element of X. Hence NAut A(X) = X. 

(ii) Let  ~ E O u t G  and H ~ G ( @ .  Because A charG,  A<2_H and 
A C_ Cn(A) ~ H. I f  Cu(A ) = A, then H/A C Aut A and contains X A / A  as a 
normal subgroup. Because Hi(X,  A)  = O, there is one class of complements to 
A in X A  and so Nn(X)  covers H/A. I t  follows that NH/A(X) ~- X covers H/A 
and c~ = 1. 

If  Cn(A) D A, we can assume that ~ ~ CG(A) ~___ H. Then [~, G] C A and so 
E Hi(X,  A) = 0. This completes the proof of Lemma 1. 

LEMMA 2. Let A be abelian, X a nilpotent subgroup of Aut A. Then X = 
NAut A(X) if  and only if  A = @~ A(p), X = @~ X(p),  where A(p) is a Sylow 
p-subgroup of A and X(p)  = X/Cx(A(p)). Finally NAut ~(~)(X(p)) = X(p)for  all 
primes p. 

Proof. 

Since X = NAut A(X) 
Now it is clear that Nau  t 

The  nilpotent group X is a subgroup of 

@ X(p)  C @ Aut A(p) C a u t  A. 
~o ~0 

and @~ X(p)  is nilpotent, we have X - ~  @~ X(p). 
A(~)(X(p)) ~= X(p).  The converse is clear. 

LEMMA 3. Let R be an r-Sylow subgroup of H = GL(n, q), n > 1, q = p~, p 
a prime. Then Nn(R) -= RCH(R) only if  r = 2, and when r = p = 2, even q -~ 2 
and NH(R) = R. 

Proof. I f  r = p, then R is a normal subgroup of the group of all triangular 
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matrices over GF(q). I t  follows that 2VH(R ) ~ RCH(R) unless q = 2. When 
r = p -~ q = 2, Nn(R) = R by [7, p. 381], for example. 

Suppose r @p.  Let  m be the exponent of q modulo r. Then  r ] (q~ - -  1), but 
r y q l - - 1  for l < m .  Write s=[n /m]  = a o + a l r + ' ' '  with 0 ~ a ~ < r ,  
the r-adic representation of the integral part  of n/m. Our Sylow r-subgroup can 
be seen as a direct product of Sylow r-subgroups of GL(mr i, q) as follows: 

GL(m, q) × ... × GL(m, q) × GL(mr, q) × "" × GL(mr, q) × . . ' .  

a o a l  
I 

A Sylow r-subgroup R of GL(mr i, q) is either a wreath product R = 
2~r, w r Z  r w r ' ' ' w r ~ 7 ~ ,  with q ~ - -  1 ~- ras, (r,s) = 1, or r = 2 ,  q ~ - - i  
(mod 4), m ~- 1, and R = D wr~7~ wr -"  w r Z  2 and D is a quasidihedral Sylow 
2-subgroup of GL(2, q). 

When r > 2, NH(R) D RCn(R). When r = 2, NH(R ) = RCH(R) and 
Nn(R) is a direct product of R and cyclic (diagonal) groups of order (q - -  1). 
We can find these facts in [1, 8]. 

LEMMA 4. Let A = A 1 @ A2 be an abelian p-group, p > 2, T = T 1 @ T 2 _C 
Aut A, where Ti is a Sylow 2-subgroup of Aut A i . I f  Ai  is indecomposable as a 
Ti-module and A 1 ~ A ~ , then T is a Sylow 2-subgroup of Aut A and NAut A (T) = 
NAutAI(T1) @ NAutA2(T2) is nilpotent. 

Proof. We show that every automorphism of A which normalizes T must 
also normalize A1 and A 2 . The  lemma will then follow quickly. 

Because A i is indecomposable as a Ti-module, it follows from 5.2.2 [5] that 
Ai is homocyclic. 

I f  Aa ~ As but T 1 ~_ T2, then we must have `rl  --~- ̀ r~, where `ri = 
Ai/¢(Ai),  but exp A 1 < exp As without loss of generality. Then  every auto- 
morphism of A stabilizes the chain ,riD__ g~ D 1 because A I ¢ ( A  ) char A. Also 
any automorphism of A which is trivial on `r/A× and `r~ lies in a normal p-sub-  
group of Aut A. Thus  Aut A has a normal p-subgroup K with Aut A / K  
GL(&) @ GL(&) because Aut A D Aut A~ @ Aut A s . 

I t  follows that in this case NAutA(T) has a normal p-subgroup NK(T)C_ 
Chat A( T) and 

NAutA(T)/N~z(T) ~ NAutZl(T1) @ NAut&(Ts)- 

Now NAut&(Ti) = Ti × Di ,  where / ) i  is the group of scalar automorphisms 
of_all by [1]. Note that Ai is indecomposable as Ti -= Ti-module. 

I f  Aa ~¢~ A 2 and T1 ~ 1"2 , then T1 @ Tz is a Sylow 2-subgroup of Aut 
(-~1 @ ~i2) = Aut ~i by [1] again. Thus  T 1 @ T~ is a Sylow 2-subgroup of Aut A, 
because T acts faithfully on A ~ A/~(A).  

Thus  in both cases NAutA(T) has a normal p-subgroup NK(T)C CAutA(T) 
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and 2VAutA(T)/NK(T)_~_ T × D where D is a diagonal group which induces 
scalar automorphisms on Ai , i -~ 1, 2. 

We show now that NK(T) stabilizes the modules d l ,  A2.  The  groups Ti are 
either of type Z2~ wr 77 3 wr --" wr 77 3 or D wr 77 3 wr "- wr 77 3 with D quasi- 
dihedral. I t  follows that Z(Ti) is cyclic in either case and so 121(Z(Ti) ) = Zi is 
the unique involution which inverts Ai • 

Every automorphism in NK(T)C CAutA(T) centralizes Zi and so normalizes 
[d, Zi] ---- d i .  I t  is clear now that N~(T) C_ JVAllt AI(T1) @ NAut A~(T3) and also 
that NAut A(T) -~ NAut AI(Ta) @ NAut.%(T2). These groups are both nilpotent. 
Lemma 4 is done. 

COROLLARY 5. Let A ~- A 1 @ "" @ d~ be an abelian p-group, p > 2, Ti a 
Sylow 2-subgroup of Aut As, and suppose that A i is indeeomposable as Ti-module 

for i = 1 ..... k. Suppose A i ~ Aj  only when i -~ j. Then T is a Sylow 2-subgroup 
of Aut A and NAut A (T)  ---- @i NAut A, (Ti) is nilpotent. 

Proof. Clear from Lemma 4. 

THEOREM 6. Let X be a nilpotent subgroup of GL(n, q) and suppose 
2VcL(n.q)(X ) ---- X.  Then X is a direct product of a 2-group and a diagonal group of 
odd order. 

Proof. We use induction on n. I f  n = 1, everything is true. 
Let  V = V(n, q) be the natural module on which X acts. I f  V is decomposable 

as an X-module ,  then V = V 1 @ V3, where V i is X-invariant .  
Now X C  X/Cx(V1) @ X/Cx(V2) C_ GL(V). Since X is nilpotent and self- 

normalizing in GL(V), it follows that X - ~  X/Cx(V1)@X/Cx(V3).  Now 
X/Cx(Vi) is self-normalizing in GL(Vi) because otherwise NcL(v)(X)~ X.  By 
induction X is a direct product  of a 2-group and diagonal group of odd order. 
This  is our theorem. 

Thus  we may assume that V is indecomposable as an X-module .  Hence Z(X)  
is cyclic. 

We write X = P × Q where P is a p-group,  Q is a p ' -g roup  and q = pk for 
some prime p. I f  Q acts diagonally on V, then first Q is abelian and then even 
scalar, because V is X-indecomposable.  Thus  Q C Z(GL(V)). But then 

x = p o  = N ~ , . ) ( P Q )  = N ~ , . ) ( P )  

and P is a Sylow p-subgroup of GL(V). By Lemma 3, r ---- p ---- q ---- 2 and our 
theorem is true in this case. 

Thus  Q does not act on V as diagonal matrices. Thus  there is an r-Sylow sub- 
group R of Q which acts on V is a nondiagonal way. For  if each Sylow subgroup 
of Q could be diagonalized, Q would be abelian and could itself be diagonalized 
by elementary linear algebra. I t  is also clear that V is homogeneous as R-module.  
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For  we could take an irreducible R-module  V 1 of V and then ~.w~_vl W is a 
direct component of V as X-module .  

We put  V = V 1 @ ".  @ Va,  with Vi ~ V 1 irreducible R-modules.  Write 
X = R ;4 S. Then  matrices representing R have the form 

(i ;) 
while those representing Z(R)S have the form 

with Xi~A = AX~j. The  matrices Xij  lie in HomR(V 1 , //'1), a finite field. Let  
F be the subring (and so subfield) of HomR(V1, //'1) generated by the X i j ,  for 
possible i,j. I t  follows that Z(R)S C_ GL(m,F) where m deg V 1 = n. Because R 
is not diagonable, deg V 1 ~ 1 and so m < n. 

I f  Z(R)S is not self-normalizing in GL(m, F), RS is not self-normalizing in 
GL(n, q) because every matrix in GL(m, F) commutes with R. By induction we 
have Z(R)S as a direct product  of a 2-group T and a diagonal U group of odd 
order. Remember  this group U is diagonal over F.  

I f  R could be chosen as a 2-group, then X is a direct sum of a 2-group T and a 
group U of diagonal matrices over F.  But every such group U is abelian and 
because Z(X) is cyclic, U is itself cyclic. 

I f  U were diagonable over GF(q)there is nothing to do. I f  Uis  not diagonal over 
GF(q), we can apply Lemma 5 [3] and find NOL(,,a)(U)D CGL(~,q)(U ). 

Now NGL(n,a)(X) : X and 

TU = NCL(~,q)(T ) n NGL<.,q)(U) 

Hence T is a Sylow 2-subgroup of NaL(n,a)(U) contained in COL(n,a)(U). The  
Frat t ini  argument leads to the contradiction 

~- TU. 

Hence a Sylow 2-subgroup of G acts on V diagonally and Z(R)S consists of 
diagonal (over F )  transformations. Thus  X = RS where R is a nondiagonable 
Sylow subgroup of X and S is an abelian group diagonable over F, an extension 
field of GF(q). Because Z(X) is cyclic, S is cyclic. 
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I f  S were not diagonal over GF(q) we could apply Lemma 5 [3] again and get 
NcL(~,q)(S) D CCL(~,q)(S). This leads to the same contradiction as before via the 
Frattini argument. 

Hence S acts on V as diagonal matrices. Now because V is indecomposable, 
S is scalar and central in GL(n, q). But then R S  ~ NcL(n.q)(RS ) ~ NcL(~.q)(R) 
and R is a Sylow r-subgroup with r > 2. This is a contradiction to Lemma 3 and 
we are done. 

Remark. It  follows from here that the groups GL(n, q) always have a single 
conjugacy class of Carter subgroups, unless q = 2% m > 1 and n > 1, when 
they have no nilpotent self-normalizing subgroups. For by Theorem 6, such a 
subgroup has the form X ~ T × D, where T is a 2-group and D is a diagonal 
subgroup. Write V as a direct sum of eigenspaces V = @i Vi ,  where D acts 
on Vi as scalar transformations for each i. Now X = @i Xi , where Xi  
X /Cx (~ ) ,  because again X _C @i X a nilpotent subgroup of GL(V) and X is 
self-normalizing. It  follows that Xi is nilpotent and self-normalizing in GL(Vi) 
and clearly 2£~ = Ti × Di where Ti is a 2-group and Di is the full group of 
scalar transformations of Vi,  for each i. Thus  T i is a Sylow 2-subgroup of 
GL(Vi) because NcL(v)(X 0 = X~ : NcL(v)(Ti). 

I f  T~ ~ Tj ,  it follows from [1] that V / ~  Vj and if i ~ j, there is an auto- 
morphism of V interchanging V~ and Vj and X i and X~, which normalizes X 
and of course does not lie in it. Thus  T i ~ Tj and also V i ~ Vj,  i f - / : / : j .  

I f  q is odd, it is immediate from Lemma 3 that X is a Sylow 2-normalizer. 
I f  q ~ 2, then D ~ 1 and X ~ T is a Sylow 2-subgroup of GL(n, q), and also 

a 2-Sylow normalizer. 
I f  q = 2% m > l, then NaL(v)(Xi) = NaL(V,)(Ti) is not nilpotent unless V; 

is one dimensional, for each i. But then V itself is one dimensional and GL(1, 2 ~) 
is cyclic and, of course, has a Carter subgroup. 

THEOREM 7. Let A be an abelian p-group, X a nilpotent subgroup of Aut A 
with J~TAutA(X ) ~ X .  T h e n  

(i) A = A 1 @ " " @  Ak ,  where Ai are indecomposable ),'-modules and 
Ai -~x Aj only if i = j. 

(ii) X = X 1 0  "" Q Xs with Xi  = X/Cx(Ai) and Xi  = Ti × Di with 
Ti a 2-group and D i a group of scalar automorphisms of Ai . 

Remark. It  follows that the groups Ai are indeeomposable Ti-modules. 
Hence Ai -~x Aj if and only if Ai ~_ Aj as groups. By 5.2.2 [5], the groups Ai 
are homocyclic. 

Proof. I f  A is decomposable as X-module, then A ~ A1 O A2 with Ai 
X-invariant. Again 

X C_ X/Cx(Aa) ~) X/Cx(Az) , a nilpotent group. 
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Since X is self-normalizing, X = X/Cx(A1)@ X/Cx(A2). Thus X/Cx(Ai)  
is self-normalizing in Aut Ai C_ Aut A and by induction X is of the required 
type. We write Ai = Ail @ ""@ Air~, i = 1, 2, with Aij indecomposable 
X-modules. I f  Aij ~---x Ak~ for some i, j, k, l, we can interchange Aij with Akz by 
an automorphism of A which normalizes X. This is impossible. 

Thus  A is indecomposable as X-module. 
I t  follows that A is a p-group for some prime p and that Z(X)  is cyclic. 
Write X ~ P × Q with P a p-group and Q a p '-group. 
Every scalar automorphism of A is central in Aut A and so lies in NAut A(X) = 

X. Since the group of all scalar automorphisms of A has order divisible by 
(p - -  1), it follows that (p - -  1) ]l Q 1. 

I f  Q = i, then p ~- 2 and X is a 2-group. This is our assertion in this case. 
Thus  we may assume Q #= 1. 

I f Q  acts on A diagonally, Q is abelian and as before cyclic, even scalar because 
A is indecomposable as X = P × Q module. But then Q c Z (Aut A) and 

PQ = NAut A(PQ) = NAut A(P) 

and P is a Sylow p-subgroup of Aut A. 
The  group Aut A has a normal subgroup 

K = {o~ ~ Aut A : a ~ 1 (mod q~(A))}. 

I t  follows that Naut  A(P) has a normal subgroup K and NAut(P)/K is a subgroup 
of the group of triangular matrices in GL(n, p). Also K is a p-group. Because 
NAut A(P) = PZ(Aut  A), this can only occur if Aut A = PZ(Aut  A) or i fp  = 2 
and P is a Sylow 2-subgroup of Aut A. 

I f  Aut A ----- PZ (Aut A), p > 2, it follows that A = ~0al @ "'" @ 7~a k with 
al < a2 < "'" < ak • Otherwise GL(2, 77~,,) C Aut A for some a, and this is 
impossible if Aut A ~ PZ  (Aut A). By Theorem 2 [3], we know that the group 
of diagonal automorphisms of such an abelian p-group A is self-normalizing in 
Aut  A. Since Aut A --- P Z  (Aut A) is nilpotent, it follows that Aut A consists 
entirely of diagonal automorphisms and this is our theorem. Of course because A 
is indecomposable, k = 1 in this case and A is cyclic. 

I f  P is a Sylow 2-subgroup of A u t A ,  X = P × Q and by our present 
assumption, Q is diagonal on A. This is again our theorem and so we may from 
now on assume that Q is not diagonal on A. 

If  P ~ 1, A is indecomposable as X ----- Q-module and it is easy to see, because 
A is homocyclic by 5.2.2 [5], that -d = A/q~(A) is indecomposable and irreducible 
as X-module. Write Q for the image of Q on A. Then  ~) ~ Q. It  is easy to see 
that/VAutA(Q ) = ~). This follows quickly by the Frattini argument. By Theorem 
6, ~) ~ Q = X is a direct product of a 2-group T and a group D which acts 
diagonally on A. Naturally ([ D [, p) ~ 1. It  is easy to see that D must act 
diagonally on A. This fact can be found in the proof of Lemma 4(ii), [3]. 
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Thus we may assume P @ 1. 
Our proof proceeds by showing that either the theorem holds or N'au t A(Q) D 

pCAut A(Q). 
I f  Q is abelian, it is cyclic because Q c_ Z(X). Now by Lemma 5 [3], 

NA.t~(Q) D CAut.,(O). 
Thus we assume Q is non-abelian. 
I f  A is indecomposable as a Q-module, then A is homocyclic by 5.2.2 [5] and 

Aut A ~ GL(n, 71~). Again A = A/eb(A) is irreducible as Q-module and because 
[P, A] C .~ and is Q-invariant, we have [P, .~] = 1. 

Then X ~ Q, where X is the image of X in its action on .4. It  is clear that 
CAutA((~) _C ~. Otherwise we have & e C A u t A ( 0  ) - -  0 ,  H ~- KQ(.) C Aut A 
where H ~ {aEAut  A: a ~ 1 (mod ¢(A))}. Note here that every automor- 
phism & ~ Aut A determines a unique coset a K  in Aut A. 

Now [a, Q] _c K. But X = Nn(X) is a nilpotent self-normalizing subgroup of 
the soluble group H. Since X C_ KQ ~ H, we have a contradiction to VI. 12.2 [7]. 
Hence 

c,,,.,t.~(~)) c g. 

If  ] ~ A u t A ( 0 )  = Q, Q is a direct product of a 2-group and a diagonal group of 
odd order by Theorem 6. We get then X -~ Q × N'K(Q). Write Q ~ T × U 
with T a 2-group and U a group of odd order which acts diagonally on ./i and 
also on A. Since Nx(Q) C_ C~(Q) and 

QD-Q1 ~- I  

0 

0 [ 
, .--~ --1 

0 

' ° ' "  / '  

/ 
1 

it is clear that CcL(n.z~)(Q) C CoL(n.z k)(Q~) consists only of diagonal matrices. 
Note that if p ~ 2, in this case, we are through. Thus Y = Q × Nx(Q) is 
direct product of a 2-group and a diagonal group. 

Thus XAutd(O)D~ QCautd(O ) and even N,~utA(Q)~QCAut.4(Q) using the 
Frattini argument again. 

Now we assume that A is decomposable as a Q-module. 
We remark at this stage that if B is an indeeomposable Q-module, then B is 

homocyclic and uniserial. It  follows that if C is any Q-submodule of B, then 

C = C / ~ ( C ) ~ B = B / ~ ( B ) .  

Write A ~ A 1 0 "'" OAk ,  with Ai indecomposable Q-module. Write 
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_/1" = ~f'~i A i ,  the sum of those A~ such that Ag =~-A ~i~. By the above remark A* 
is a X-submodule of A and, of course, a direct factor. Hence A* = A. 

Thus A is homogeneous as Q-module. Assume exp A1 >~ "'" >~ exp AI~ • 
Thus  ~) ~- Q acts on A in the form 

and because P commutes with Q, P is represented in the form 

with Xi~W = WXij. 
Let F be the subring of HomA(A 1 , A1) generated by the matrices Xi~- and W 

(from Z(Q)). As before F is a field, and P C_ GL(n/deg A1, F). Every p-subgroup 
of GL(m, F) is a proper subgroup of its normalizer by Lemma 3, unless p = 2 
and P is a Sylow 2-subgroup of GL(m,F) with [F[  = 2. Every matrix in 
GL(n/deg A1, F) commutes with Q and so NCL(n/degArF)(P___Q) ~ PQ, if p @ 2. 
But then there exists an automorphism & which normalizes PQ and whose matrix 
is also triangular. This automorphism lifts to an automorphism ~ of A which 
normalizes PQK. By VI  12.2 [7] again we have a contradiction, because X is a 
Carter subgroup of the solvable group P Q K @ ) .  

I f P i s  a 2-group, thenp  = 2, IF  [ = 2, and PZ(Q) c_ GL(n, 2). But by Lemma 
3, Z(Q) = 1 and so ~) = Q = 1 and X is a 2-group. 

Thus in every case NAut A(Q)D QCAut A(Q). 
We reach a final contradiction quickly now. Because P C CAutA(Q ) and 

PQ = NAutA(P)(3 NAu~A(Q), it follows that P is a Sylow p-subgroup of 
NAut A(Q) lying in QCAut A(Q). Since P vL 1, we have the following: 

QChut A(Q) C NAut A(Q) = QChut A(Q)(NAut A(P) (3 NAut A(Q)) 

= OCA.t  A(Q). 

This completes the proof of Theorem 7. 

COROLLARY 8. Let X be a nilpotent subgroup of Aut A with A an indecom- 
posable X-module and X = NAut A(X ). Then X = NAut A( T), and T is a Sylow 
2-subgroup of Aut A. 

Proof. By Theorem 7, X ~ T × D, where T is a 2-group and D is a diagonal 
group. Thus X _C N'Aut A(T). 
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Because A is indecomposable as X-module, D consists of scalar transforma- 
tions and so D _C Z(Aut A). T h u s  X = ArAUtA(X ) = NAutA(T). Hence T is a 
Sylow 2-subgroup of Aut A. 

Remark. We can observe here that Aut A has a unique conjugaey class of 
Carter subgroups C for every abelian p-subgroup A. Such a subgroup C is always 
a normalizer of a Sylow 2-subgroup. For by Corollary 5, a Sylow 2-normalizer 
is always nilpotent and, of course, self-normalizing. But Theorem 6 shows that 
every Carter subgroup has the form X = T × D where T is a 2-group and D is 
a diagonal group. By Corollary 8, X is a normalizer of a Sylow 2-subgroup of 
Aut A. This gives a further infinite collection of generally nonsolvable groups 
which have quite well-behaved Carter subgroups. 

COROLLARY 9. Let A -  @~ A~ be an abelian p-group for p > 2, X = 
@i X i  C @i Aut Ai C A with X i  a Sylow 2-normalizer of Aut A i . I f  A i is inde- 
eomposable as X-module and Ai  ~ x  A j  when i ~ j, then @i X i  is a Sylow 2-nor- 
malizer of Aut A. 

Pro@ Corollary 9 is exactly Corollary 5 in view of Theorem 7. For by 
Theorem 7 we know now that indecomposability as Xi-module implies inde- 
composability as Ti-module, where Xi  = Ti × D~ with Ti a Sylow 2-subgroup 
of Aut Ai  and Di a group of automorphisms of A which are scalar on A i .  
Corollary 9 is now immediate. 

The next lemma is a slight generalization of Lemma 6 [3]. The proof is 
almost identical now in view of Theorem 7. 

LEMMA 10. Let A be an abelian group of odd order and let X -= NAutA(X) be 
a nilpotent subgroup o f A u t  A. Then Hi (X ,  ./1) = O. 

Proof. By Theorem 7, A = @i Ai  , X = @i X~ with Az indecomposable 
X-modules and Ai  ~ Aj  only when i = j. 

As usual X~ = X/Cx(A i )  = T i × D i . By Corollary 8, X i is a Sylow 2-nor- 
malizer of Aut Ai • Because the unique involution in Z(Ti)  inverts the module 
Ai  , it follows that [Ti , Ai] --  Ai  and CA~(Ti) = 1. 

Let Yi = @J~i X i .  
From 1 - -+Xi - -+X-~  Yi--+ 1 weget  

(*) 0--~ HI(Y~,  A x') ~ Ha(X, Ai)  --+ Ha(Xi ,  A~) Y', 

an exact sequence. Here B r denotes the set of elements in the Z-module B which 
are centralized by T. 

Because [A, X;] = [A, T~] = A i ,  Ha(X i ,A~)  = O. Moreover A x~_C 
CA,(Ti) = 0. Hence Ha(X, A~) = 0, because (*) is exact. Now Ha(X, A)  = 
@i Ha( X ,  Ai)  = O. This is the lemma. 
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Proof of Theorem O. Let  G e ~ J U  with Out G = 1. Choose A a maximal 
abelian normal subgroup of A with G/A nilpotent. I t  follows from Lemma 1 
that G splits over A and G = A X ,  A n X  = 1. Also Cx(A) = 1 and 

NAut A(X) = X .  
Now A = ( ~  A(p) ,  X = Q~ X(p )  with X(p)  ~ X /Cx(A(p ) )  by Lemma 2. 

By Theorem 7, A(p)  ~- A1 0 "" (~) A~ ,  X (p )  = X 1 0 "" G .,V~ with Xi  ---- 
X(p)/Cx(~)(Ai) : NAutA,(Xi) and A i ~ Aj  only if i = j .  Also X i = Ti × D i 
with T i a 2-group and D i a group of diagonal maps of A i . 

Because the group of diagonal automorphisms of A(2) is a 2-group, it follows 
that A(2) X(2) is itself a 2-group. But then we know that Out(A(2) X(2)) @ 1 by 
Gaschutz [4] whenever ] A(2) X(2)T > 2. Of course, if Out(A(2) X(2)) @ 1, 
Out G @ 1 since A(2) ,¥(2) is a direct factor of G. 

I f [  A(2) X(2)[ = [ A(2)] - -  2, we have Horn (X(p),  A(2)) v~ 0 f o r p  > 2 and 

Out  G ~ 1 in this case. 
Thus  if [ G[  > 2, [ A  [ is odd. 
By Corollary 8, Xi  is a Sylow 2-normalizer of Aut A i . Hence G has exactly 

the structure predicted by Theorem 0. 
Conversely, if G has order > 2  and the structure given in Theorem 0. X is a 

Sylow 2-normalizer by Corollary 9. By Lemma 10, HI(X,  A) z 0. 
Finally, if K~(G) denotes the nth term of the descending central series of G, 

K, (G)  C_ A for some n because X is nilpotent. Because [A, X] = A, when [ A [ 
is odd, we have also A = K,~(G) for all m ~ n. I t  follows if A char G and by 
Lemma l(ii)  we have Out G = 1. This  completes the proof. 
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