JOURNAL OF ALGEBRA 65, 84-94 (1980)

Some Finite Solvable Groups with No Outer Automorphisms

TERENCE M. GAGEN*

Department of Pure Mathematics, University of Sydney, Sydney, NSW 2006 Australia Communicated by B. Huppert

Received July 5, 1979

A group G is complete if the center Z(G) of G is trivial and if every automorphism of G is inner. In [3], all complete metabelian finite groups were determined. They are either of order 2 or direct products of holomorphs of cyclic groups of different odd prime power orders. Here we will determine all finite groups G which have a normal abelian subgroup A with G/A nilpotent and which have no outer automorphisms. All groups considered here will be finite. We write $G \in \mathcal{CNN}$ if G has an abelian normal subgroup A with G/A nilpotent. Our notation will be quite standard; see, for example, [5] or [7].

The main result is as follows.

THEOREM 0. Let $G \in \mathcal{CN}$ with Out $G = \operatorname{Aut} G/\operatorname{Inn} G = 1$. Then either $|G| \leq 2$ or G is a direct product of groups $A_i X_i$ with the following properties: A_i is a homocyclic p-group of odd order, $A_i \leq A_i X_i$, $A_i \cap X_i = 1$, X_i is the normalizer of a Sylow 2-subgroup of Aut A_i . Finally $A_i \cong A_j$ only if i = j. Conversely, every such group has no outer automorphisms.

The structure of the groups X_i will be completely determined. We can immediately assert that $N_{AutA_i}(X_i) = X_i$ and so X_i contains the unique involutory automorphism which inverts A_i , whenever $|A_i|$ is odd. Moreover we will see that X_i is a direct product of a Sylow 2-subgroup of Aut A_i and a diagonal, even scalar on A_i , group. Since a Sylow 2-subgroup of Aut A_i is also a Sylow 2-subgroup of GL(n, p), for some n, the structure and the action of X_i on A_i is completely determined.

Now suppose that $G \in \mathcal{CN}$ with Out G = 1. If $Z(G) \neq 1$, it follows from Theorem 0 that |G| = 2. Thus the complete groups in \mathcal{CN} are exactly the groups of order >2 described in the theorem. It is also interesting to note that, because every abelian group of odd order has an involutory automorphism, viz., inversion, it follows that the groups X_i in Theorem 0 are always of even

^{*} This was completed while the author was visiting the University of Freiburg. He thanks Professor O. H. Kegel for his hospitality.

order. Thus any complete group in \mathcal{ON} has even order. This can be compared with [2, 6].

Before commencing the proof we begin with some elementary lemmas.

LEMMA 1. Let $G \in \mathcal{CIN}$, A a maximal abelian normal subgroup of G with G|A nilpotent.

(i) If Out G = 1, then G is a semidirect product AX with X nilpotent and $C_X(A) = 1$. Also $N_{AutA}(X) = X$ and $H^1(X, A) = 0$.

(ii) If G satisfies the properties in (i) and A char G, then Out G = 1.

Proof. (i) First $C_G(A) = A \leq G$ because A is a maximal abelian normal subgroup of G. It is well known that $H^1(G|A, A)$ is isomorphic with a subgroup of Out G (see, for example, [7, p. 119]). It follows that $H^1(G|A, A) = 0$. By Lemma 2 [3], $H^2(G|A, A) = 0$ and the extension splits. Let G = AX, $A \cap X = 1$.

Any element in $N_{\text{Aut}A}(X) - X$ induces an automorphism of G in a natural way. If Out G = 1 this automorphism is inner and, because A is abelian, must be induced by an element of X. Hence $N_{\text{Aut}A}(X) = X$.

(ii) Let $\alpha \in \text{Out } G$ and $H = G\langle \alpha \rangle$. Because A char G, $A \subseteq H$ and $A \subseteq C_H(A) \subseteq H$. If $C_H(A) = A$, then $H/A \subseteq \text{Aut } A$ and contains XA/A as a normal subgroup. Because $H^1(X, A) = 0$, there is one class of complements to A in XA and so $N_H(X)$ covers H/A. It follows that $N_{H/A}(X) = X$ covers H/A and $\alpha = 1$.

If $C_H(A) \supset A$, we can assume that $\alpha \in C_G(A) \leq H$. Then $[\alpha, G] \subseteq A$ and so $\alpha \in H^1(X, A) = 0$. This completes the proof of Lemma 1.

LEMMA 2. Let A be abelian, X a nilpotent subgroup of Aut A. Then $X = N_{Aut A}(X)$ if and only if $A = \bigoplus_p A(p)$, $X = \bigoplus_p X(p)$, where A(p) is a Sylow p-subgroup of A and $X(p) = X/C_X(A(p))$. Finally $N_{Aut A(p)}(X(p)) = X(p)$ for all primes p.

Proof. The nilpotent group X is a subgroup of

$$\bigoplus_{p} X(p) \subseteq \bigoplus_{p} \operatorname{Aut} A(p) \subseteq \operatorname{Aut} A.$$

Since $X = N_{\text{Aut }A}(X)$ and $\bigoplus_p X(p)$ is nilpotent, we have $X = \bigoplus_p X(p)$. Now it is clear that $N_{\text{Aut }A(p)}(X(p)) = X(p)$. The converse is clear.

LEMMA 3. Let R be an r-Sylow subgroup of H = GL(n, q), n > 1, $q = p^k$, p a prime. Then $N_H(R) = RC_H(R)$ only if r = 2, and when r = p = 2, even q = 2 and $N_H(R) = R$.

Proof. If r = p, then R is a normal subgroup of the group of all triangular

matrices over GF(q). It follows that $N_H(R) \supseteq RC_H(R)$ unless q = 2. When r = p = q = 2, $N_H(R) = R$ by [7, p. 381], for example.

Suppose $r \neq p$. Let *m* be the exponent of *q* modulo *r*. Then $r \mid (q^m - 1)$, but $r \nmid q^l - 1$ for l < m. Write $s = [n/m] = a_0 + a_1r + \cdots$ with $0 \leq a_i < r$, the *r*-adic representation of the integral part of n/m. Our Sylow *r*-subgroup can be seen as a direct product of Sylow *r*-subgroups of $GL(mr^i, q)$ as follows:

$$GL(m, q) \times \cdots \times GL(m, q) \times GL(mr, q) \times \cdots \times GL(mr, q) \times \cdots$$

A Sylow r-subgroup R of $GL(mr^i, q)$ is either a wreath product $R = \mathbb{Z}_{r^a} \operatorname{wr} \mathbb{Z}_r \operatorname{wr} \cdots \operatorname{wr} \mathbb{Z}_r$, with $q^m - 1 = r^a s$, (r, s) = 1, or r = 2, $q^m \equiv -1 \pmod{4}$, m = 1, and $R = D \operatorname{wr} \mathbb{Z}_2 \operatorname{wr} \cdots \operatorname{wr} \mathbb{Z}_2$ and D is a quasidihedral Sylow 2-subgroup of GL(2, q).

When r > 2, $N_H(R) \supset RC_H(R)$. When r = 2, $N_H(R) = RC_H(R)$ and $N_H(R)$ is a direct product of R and cyclic (diagonal) groups of order (q - 1). We can find these facts in [1, 8].

LEMMA 4. Let $A = A_1 \oplus A_2$ be an abelian p-group, p > 2, $T = T_1 \oplus T_2 \subseteq$ Aut A, where T_i is a Sylow 2-subgroup of Aut A_i . If A_i is indecomposable as a T_i -module and $A_1 \not\cong A_2$, then T is a Sylow 2-subgroup of Aut A and $N_{\text{Aut }A}(T) = N_{\text{Aut }A_1}(T_1) \oplus N_{\text{Aut }A_2}(T_2)$ is nilpotent.

Proof. We show that every automorphism of A which normalizes T must also normalize A_1 and A_2 . The lemma will then follow quickly.

Because A_i is indecomposable as a T_i -module, it follows from 5.2.2 [5] that A_i is homocyclic.

If $A_1 \not\cong A_2$ but $T_1 \cong T_2$, then we must have $\bar{A}_1 \cong \bar{A}_2$, where $\bar{A}_i = A_i/\Phi(A_i)$, but $\exp A_1 < \exp A_2$ without loss of generality. Then every automorphism of A stabilizes the chain $\bar{A} \supseteq \bar{A}_1 \supseteq 1$ because $A_1 \Phi(A)$ char A. Also any automorphism of A which is trivial on \bar{A}/\bar{A}_1 and \bar{A}_1 lies in a normal *p*-subgroup of Aut A. Thus Aut A has a normal *p*-subgroup K with Aut $A/K \cong GL(\bar{A}_1) \oplus GL(\bar{A}_2)$ because Aut $A \supseteq$ Aut $A_1 \oplus$ Aut A_2 .

It follows that in this case $N_{\text{Aut}A}(T)$ has a normal *p*-subgroup $N_{K}(T) \subseteq C_{\text{Aut}A}(T)$ and

$$N_{\operatorname{Aut} A}(T)/N_{\operatorname{K}}(T) \cong N_{\operatorname{Aut} \overline{A}_1}(\overline{T}_1) \oplus N_{\operatorname{Aut} \overline{A}_2}(\overline{T}_2).$$

Now $N_{\operatorname{Aut} \bar{A}_i}(\bar{T}_i) = \bar{T}_i \times \bar{D}_i$, where \bar{D}_i is the group of scalar automorphisms of \bar{A}_i by [1]. Note that \bar{A}_i is indecomposable as $T_i = \bar{T}_i$ -module.

If $A_1 \cong A_2$ and $T_1 \cong T_2$, then $T_1 \oplus T_2$ is a Sylow 2-subgroup of Aut $(\overline{A}_1 \oplus \overline{A}_2) = \operatorname{Aut} \overline{A}$ by [1] again. Thus $T_1 \oplus T_2$ is a Sylow 2-subgroup of Aut A, because T acts faithfully on $\overline{A} = A/\Phi(A)$.

Thus in both cases $N_{\operatorname{Aut}A}(T)$ has a normal *p*-subgroup $N_{K}(T) \subseteq C_{\operatorname{Aut}A}(T)$

and $N_{\text{Aut}A}(T)/N_{\text{K}}(T) \cong T \times D$ where D is a diagonal group which induces scalar automorphisms on A_i , i = 1, 2.

We show now that $N_{K}(T)$ stabilizes the modules A_{1} , A_{2} . The groups T_{i} are either of type $\mathbb{Z}_{2^{2}}$ wr \mathbb{Z}_{2} wr \cdots wr \mathbb{Z}_{2} or D wr \mathbb{Z}_{2} wr \cdots wr \mathbb{Z}_{2} with D quasidihedral. It follows that $Z(T_{i})$ is cyclic in either case and so $\Omega_{1}(Z(T_{i})) = Z_{i}$ is the unique involution which inverts A_{i} .

Every automorphism in $N_K(T) \subseteq C_{\operatorname{Aut} A}(T)$ centralizes Z_i and so normalizes $[A, Z_i] = A_i$. It is clear now that $N_K(T) \subseteq N_{\operatorname{Aut} A_1}(T_1) \oplus N_{\operatorname{Aut} A_2}(T_2)$ and also that $N_{\operatorname{Aut} A}(T) = N_{\operatorname{Aut} A_1}(T_1) \oplus N_{\operatorname{Aut} A_2}(T_2)$. These groups are both nilpotent. Lemma 4 is done.

COROLLARY 5. Let $A = A_1 \oplus \cdots \oplus A_k$ be an abelian p-group, p > 2, T_i a Sylow 2-subgroup of Aut A_i , and suppose that A_i is indecomposable as T_i -module for i = 1, ..., k. Suppose $A_i \cong A_j$ only when i = j. Then T is a Sylow 2-subgroup of Aut A and $N_{\text{Aut } A}(T) = \bigoplus_i N_{\text{Aut } A_i}(T_i)$ is nilpotent.

Proof. Clear from Lemma 4.

THEOREM 6. Let X be a nilpotent subgroup of GL(n, q) and suppose $N_{GL(n,q)}(X) = X$. Then X is a direct product of a 2-group and a diagonal group of odd order.

Proof. We use induction on *n*. If n = 1, everything is true.

Let V = V(n, q) be the natural module on which X acts. If V is decomposable as an X-module, then $V = V_1 \oplus V_2$, where V_i is X-invariant.

Now $X \subseteq X/C_X(V_1) \oplus X/C_X(V_2) \subseteq GL(V)$. Since X is nilpotent and selfnormalizing in GL(V), it follows that $X = X/C_X(V_1) \oplus X/C_X(V_2)$. Now $X/C_X(V_i)$ is self-normalizing in $GL(V_i)$ because otherwise $N_{GL(V)}(X) \supset X$. By induction X is a direct product of a 2-group and diagonal group of odd order. This is our theorem.

Thus we may assume that V is indecomposable as an X-module. Hence Z(X) is cyclic.

We write $X = P \times Q$ where P is a p-group, Q is a p'-group and $q = p^k$ for some prime p. If Q acts diagonally on V, then first Q is abelian and then even scalar, because V is X-indecomposable. Thus $Q \subseteq Z(GL(V))$. But then

$$X = PQ = N_{GL(V)}(PQ) = N_{GL(V)}(P)$$

and P is a Sylow p-subgroup of GL(V). By Lemma 3, r = p = q = 2 and our theorem is true in this case.

Thus Q does not act on V as diagonal matrices. Thus there is an r-Sylow subgroup R of Q which acts on V is a nondiagonal way. For if each Sylow subgroup of Q could be diagonalized, Q would be abelian and could itself be diagonalized by elementary linear algebra. It is also clear that V is homogeneous as R-module. For we could take an irreducible *R*-module V_1 of *V* and then $\sum_{W \cong V_1} W$ is a direct component of *V* as *X*-module.

We put $V = V_1 \oplus \cdots \oplus V_a$, with $V_i \cong V_1$ irreducible *R*-modules. Write $X = R \times S$. Then matrices representing *R* have the form

$$\begin{pmatrix} A & 0 \\ \cdot & \\ 0 & A \end{pmatrix},$$

while those representing Z(R)S have the form

$$\begin{pmatrix} X_{11} & X_{1m} \\ & \ddots & \\ & \ddots & \\ X_{m1} & X_{mm} \end{pmatrix}$$

with $X_{ij}A = AX_{ij}$. The matrices X_{ij} lie in $\operatorname{Hom}_R(V_1, V_1)$, a finite field. Let F be the subring (and so subfield) of $\operatorname{Hom}_R(V_1, V_1)$ generated by the X_{ij} , for possible i, j. It follows that $Z(R)S \subseteq GL(m, F)$ where $m \deg V_1 = n$. Because R is not diagonable, deg $V_1 \neq 1$ and so m < n.

If Z(R)S is not self-normalizing in GL(m, F), RS is not self-normalizing in GL(n, q) because every matrix in GL(m, F) commutes with R. By induction we have Z(R)S as a direct product of a 2-group T and a diagonal U group of odd order. Remember this group U is diagonal over F.

If R could be chosen as a 2-group, then X is a direct sum of a 2-group T and a group U of diagonal matrices over F. But every such group U is abelian and because Z(X) is cyclic, U is itself cyclic.

If U were diagonable over GF(q) there is nothing to do. If U is not diagonal over GF(q), we can apply Lemma 5 [3] and find $N_{GL(n,q)}(U) \supset C_{GL(n,q)}(U)$. Now $N_{GL(n,q)}(X) = X$ and

$$TU = N_{GL(n,q)}(T) \cap N_{GL(n,q)}(U)$$

Hence T is a Sylow 2-subgroup of $N_{GL(n,q)}(U)$ contained in $C_{GL(n,q)}(U)$. The Frattini argument leads to the contradiction

$$egin{aligned} C_{LG(n,q)}(U) &\subsetneq N_{GL(n,q)}(U) = C_{GL(n,q)}(U) (N_{GL(n,q)}(T) \cap N_{GL(n,q)}(U)) \ &= TU. \end{aligned}$$

Hence a Sylow 2-subgroup of G acts on V diagonally and Z(R)S consists of diagonal (over F) transformations. Thus X = RS where R is a nondiagonable Sylow subgroup of X and S is an abelian group diagonable over F, an extension field of GF(q). Because Z(X) is cyclic, S is cyclic.

If S were not diagonal over GF(q) we could apply Lemma 5 [3] again and get $N_{GL(n,q)}(S) \supset C_{GL(n,q)}(S)$. This leads to the same contradiction as before via the Frattini argument.

Hence S acts on V as diagonal matrices. Now because V is indecomposable, S is scalar and central in GL(n, q). But then $RS = N_{GL(n,q)}(RS) = N_{GL(n,q)}(R)$ and R is a Sylow r-subgroup with r > 2. This is a contradiction to Lemma 3 and we are done.

Remark. It follows from here that the groups GL(n, q) always have a single conjugacy class of Carter subgroups, unless $q = 2^m$, m > 1 and n > 1, when they have no nilpotent self-normalizing subgroups. For by Theorem 6, such a subgroup has the form $X = T \times D$, where T is a 2-group and D is a diagonal subgroup. Write V as a direct sum of eigenspaces $V = \bigoplus_i V_i$, where D acts on V_i as scalar transformations for each *i*. Now $X = \bigoplus_i X_i$, where $X_i = X/C_X(V_i)$, because again $X \subseteq \bigoplus_i X$ a nilpotent subgroup of GL(V) and X is self-normalizing. It follows that X_i is nilpotent and self-normalizing in $GL(V_i)$ and clearly $X_i = T_i \times D_i$ where T_i is a 2-group and D_i is the full group of scalar transformations of V_i , for each *i*. Thus T_i is a Sylow 2-subgroup of $GL(V_i)$ because $N_{GL(V_i)}(X_i) = X_i = N_{GL(V_i)}(T_i)$.

If $T_i \cong T_j$, it follows from [1] that $V_i \cong V_j$ and if $i \neq j$, there is an automorphism of V interchanging V_i and V_j and X_i and X_j , which normalizes X and of course does not lie in it. Thus $T_i \cong T_j$ and also $V_i \cong V_j$, if $i \neq j$.

If q is odd, it is immediate from Lemma 3 that X is a Sylow 2-normalizer.

If q = 2, then D = 1 and X = T is a Sylow 2-subgroup of GL(n, q), and also a 2-Sylow normalizer.

If $q = 2^m$, m > 1, then $N_{GL(V_i)}(X_i) = N_{GL(V_i)}(T_i)$ is not nilpotent unless V_i is one dimensional, for each *i*. But then *V* itself is one dimensional and $GL(1, 2^m)$ is cyclic and, of course, has a Carter subgroup.

THEOREM 7. Let A be an abelian p-group, X a nilpotent subgroup of Aut A with $N_{Aut A}(X) = X$. Then

(i) $A = A_1 \oplus \cdots \oplus A_k$, where A_i are indecomposable X-modules and $A_i \simeq_X A_j$ only if i = j.

(ii) $X = X_1 \oplus \cdots \oplus X_s$ with $X_i = X/C_X(A_i)$ and $X_i = T_i \times D_i$ with T_i a 2-group and D_i a group of scalar automorphisms of A_i .

Remark. It follows that the groups A_i are indecomposable T_i -modules. Hence $A_i \cong_X A_j$ if and only if $A_i \cong A_j$ as groups. By 5.2.2 [5], the groups A_i are homocyclic.

Proof. If A is decomposable as X-module, then $A = A_1 \oplus A_2$ with A_i X-invariant. Again

$$X \subseteq X/C_X(A_1) \oplus X/C_X(A_2)$$
, a nilpotent group.

Since X is self-normalizing, $X = X/C_X(A_1) \oplus X/C_X(A_2)$. Thus $X/C_X(A_i)$ is self-normalizing in Aut $A_i \subseteq$ Aut A and by induction X is of the required type. We write $A_i = A_{i1} \oplus \cdots \oplus A_{ir_i}$, i = 1, 2, with A_{ij} indecomposable X-modules. If $A_{ij} \cong_X A_{kl}$ for some i, j, k, l, we can interchange A_{ij} with A_{kl} by an automorphism of A which normalizes X. This is impossible.

Thus A is indecomposable as X-module.

It follows that A is a p-group for some prime p and that Z(X) is cyclic.

Write $X = P \times Q$ with P a p-group and Q a p'-group.

Every scalar automorphism of A is central in Aut A and so lies in $N_{\text{Aut A}}(X) = X$. Since the group of all scalar automorphisms of A has order divisible by (p-1), it follows that (p-1) | |Q|.

If Q = 1, then p = 2 and X is a 2-group. This is our assertion in this case. Thus we may assume $Q \neq 1$.

If Q acts on A diagonally, Q is abelian and as before cyclic, even scalar because A is indecomposable as $X = P \times Q$ module. But then $Q \subseteq Z$ (Aut A) and

$$PQ = N_{\text{Aut}A}(PQ) = N_{\text{Aut}A}(P)$$

and P is a Sylow p-subgroup of Aut A.

The group Aut A has a normal subgroup

$$K = \{ \alpha \in \operatorname{Aut} A : \alpha \equiv 1 \pmod{\Phi(A)} \}.$$

It follows that $N_{Aut A}(P)$ has a normal subgroup K and $N_{Aut}(P)/K$ is a subgroup of the group of triangular matrices in GL(n, p). Also K is a p-group. Because $N_{Aut A}(P) = PZ(Aut A)$, this can only occur if Aut A = PZ(Aut A) or if p = 2and P is a Sylow 2-subgroup of Aut A.

If Aut A = PZ (Aut A), p > 2, it follows that $A = \mathbb{Z}_{p^{a_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{a_k}}$ with $a_1 < a_2 < \cdots < a_k$. Otherwise $GL(2, \mathbb{Z}_{p^a}) \subseteq \operatorname{Aut} A$ for some a, and this is impossible if Aut A = PZ (Aut A). By Theorem 2 [3], we know that the group of diagonal automorphisms of such an abelian p-group A is self-normalizing in Aut A. Since Aut A = PZ (Aut A) is nilpotent, it follows that Aut A consists entirely of diagonal automorphisms and this is our theorem. Of course because A is indecomposable, k = 1 in this case and A is cyclic.

If P is a Sylow 2-subgroup of Aut A, $X = P \times Q$ and by our present assumption, Q is diagonal on A. This is again our theorem and so we may from now on assume that Q is not diagonal on A.

If P = 1, A is indecomposable as X = Q-module and it is easy to see, because A is homocyclic by 5.2.2 [5], that $\overline{A} = A/\Phi(A)$ is indecomposable and irreducible as X-module. Write \overline{Q} for the image of Q on \overline{A} . Then $\overline{Q} \simeq Q$. It is easy to see that $N_{\operatorname{Aut}\overline{A}}(\overline{Q}) = \overline{Q}$. This follows quickly by the Frattini argument. By Theorem 6, $\overline{Q} \simeq Q = X$ is a direct product of a 2-group T and a group D which acts diagonally on \overline{A} . Naturally (|D|, p) = 1. It is easy to see that D must act diagonally on A. This fact can be found in the proof of Lemma 4(ii), [3].

Thus we may assume $P \neq 1$.

Our proof proceeds by showing that either the theorem holds or $N_{\text{Aut }A}(Q) \supseteq QC_{\text{Aut }A}(Q)$.

If Q is abelian, it is cyclic because $Q \subseteq Z(X)$. Now by Lemma 5 [3], $N_{\text{Aut}A}(Q) \supset C_{\text{Aut}A}(Q)$.

Thus we assume Q is non-abelian.

If A is indecomposable as a Q-module, then A is homocyclic by 5.2.2 [5] and Aut $A \cong GL(n, \mathbb{Z}_{p^k})$. Again $\overline{A} = A/\Phi(A)$ is irreducible as Q-module and because $[P, \overline{A}] \subset \overline{A}$ and is Q-invariant, we have $[P, \overline{A}] = 1$.

Then $\overline{X} \simeq Q$, where \overline{X} is the image of X in its action on \overline{A} . It is clear that $C_{\operatorname{Aut}\overline{A}}(\overline{Q}) \subseteq \overline{Q}$. Otherwise we have $\overline{\alpha} \in C_{\operatorname{Aut}\overline{A}}(\overline{Q}) - \overline{Q}$, $H = KQ\langle \alpha \rangle \subseteq \operatorname{Aut} A$ where $H = \{\alpha \in \operatorname{Aut} A : \alpha \equiv 1 \pmod{\Phi(A)}\}$. Note here that every automorphism $\overline{\alpha} \in \operatorname{Aut} \overline{A}$ determines a unique coset αK in Aut A.

Now $[\alpha, Q] \subseteq K$. But $X = N_H(X)$ is a nilpotent self-normalizing subgroup of the soluble group H. Since $X \subseteq KQ \subseteq H$, we have a contradiction to VI. 12.2 [7]. Hence

$$C_{\operatorname{Aut}\overline{A}}(\overline{Q}) \subseteq \overline{Q}$$

If $N_{\operatorname{Aut}\overline{A}}(\overline{Q}) = \overline{Q}, \overline{Q}$ is a direct product of a 2-group and a diagonal group of odd order by Theorem 6. We get then $X = Q \times N_{K}(Q)$. Write $Q = T \times U$ with T a 2-group and U a group of odd order which acts diagonally on \overline{A} and also on A. Since $N_{K}(Q) \subseteq C_{K}(Q)$ and

$$Q \supseteq Q_{1} = \left\langle \begin{pmatrix} -1 & & & 0 \\ & \ddots & & \\ & & 1 & \\ & & \ddots & \\ 0 & & & 1 \end{pmatrix}, \dots, \begin{pmatrix} & & & 0 \\ & \ddots & & \\ & & -1 & & \\ & & \ddots & \\ & & & \ddots & \\ 0 & & & \ddots & \\ 1 \end{pmatrix}, \dots \right\rangle,$$

it is clear that $C_{GL(n,\mathbb{Z}_p^k)}(Q) \subseteq C_{GL(n,\mathbb{Z}_p^k)}(Q_1)$ consists only of diagonal matrices. Note that if p = 2, in this case, we are through. Thus $X = Q \times N_K(Q)$ is direct product of a 2-group and a diagonal group.

Thus $N_{\operatorname{Aut}\overline{A}}(\overline{Q}) \supseteq \overline{Q}C_{\operatorname{Aut}\overline{A}}(\overline{Q})$ and even $N_{\operatorname{Aut}A}(Q) \supseteq QC_{\operatorname{Aut}A}(Q)$ using the Frattini argument again.

Now we assume that A is decomposable as a Q-module.

We remark at this stage that if B is an indecomposable Q-module, then B is homocyclic and uniserial. It follows that if C is any Q-submodule of B, then

$$C = C/\Phi(C) \simeq \overline{B} = B/\Phi(B).$$

Write $A = A_1 \oplus \cdots \oplus A_k$, with A_i indecomposable Q-module. Write

 $A^* = \sum_i A_i$, the sum of those A_i such that $\overline{A}_i \cong_A \overline{A}_1$. By the above remark A^* is a X-submodule of A and, of course, a direct factor. Hence $A^* = A$.

Thus \overline{A} is homogeneous as Q-module. Assume $\exp A_1 \ge \cdots \ge \exp A_k$. Thus $\overline{Q} \simeq Q$ acts on \overline{A} in the form

$$\begin{pmatrix} W & 0 \\ \cdot & \cdot \\ 0 & W \end{pmatrix}$$

and because \overline{P} commutes with \overline{Q} , \overline{P} is represented in the form

$$\begin{pmatrix} I & X_{ij} \\ & \cdot \\ & \cdot \\ 0 & I \end{pmatrix}$$

with $X_{ij}W = WX_{ij}$.

Let F be the subring of $\operatorname{Hom}_A(\overline{A}_1, \overline{A}_1)$ generated by the matrices X_{ij} and W(from Z(Q)). As before F is a field, and $\overline{P} \subseteq GL(n/\deg A_1, F)$. Every p-subgroup of GL(m, F) is a proper subgroup of its normalizer by Lemma 3, unless p = 2and \overline{P} is a Sylow 2-subgroup of GL(m, F) with |F| = 2. Every matrix in $GL(n/\deg A_1, F)$ commutes with Q and so $N_{GL(n/\deg A_1, F)}(\overline{PQ}) \supset \overline{PQ}$, if $p \neq 2$. But then there exists an automorphism $\overline{\alpha}$ which normalizes \overline{PQ} and whose matrix is also triangular. This automorphism lifts to an automorphism α of A which normalizes PQK. By VI 12.2 [7] again we have a contradiction, because X is a Carter subgroup of the solvable group $PQK\langle\alpha\rangle$.

If \overline{P} is a 2-group, then p = 2, |F| = 2, and $\overline{PZ}(\overline{Q}) \subseteq GL(n, 2)$. But by Lemma 3, $Z(\overline{Q}) = 1$ and so $\overline{Q} = Q = 1$ and X is a 2-group.

Thus in every case $N_{\operatorname{Aut} A}(Q) \supseteq QC_{\operatorname{Aut} A}(Q)$.

We reach a final contradiction quickly now. Because $P \subseteq C_{\text{Aut }A}(Q)$ and $PQ = N_{\text{Aut }A}(P) \cap N_{\text{Aut }A}(Q)$, it follows that P is a Sylow p-subgroup of $N_{\text{Aut }A}(Q)$ lying in $QC_{\text{Aut }A}(Q)$. Since $P \neq 1$, we have the following:

$$QC_{\operatorname{Aut}A}(Q) \subsetneq N_{\operatorname{Aut}A}(Q) = QC_{\operatorname{Aut}A}(Q)(N_{\operatorname{Aut}A}(P) \cap N_{\operatorname{Aut}A}(Q))$$
$$= QC_{\operatorname{Aut}A}(Q).$$

This completes the proof of Theorem 7.

COROLLARY 8. Let X be a nilpotent subgroup of Aut A with A an indecomposable X-module and $X = N_{Aut A}(X)$. Then $X = N_{Aut A}(T)$, and T is a Sylow 2-subgroup of Aut A.

Proof. By Theorem 7, $X = T \times D$, where T is a 2-group and D is a diagonal group. Thus $X \subseteq N_{\text{Aut A}}(T)$.

Because A is indecomposable as X-module, D consists of scalar transformations and so $D \subseteq Z(\operatorname{Aut} A)$. Thus $X = N_{\operatorname{Aut} A}(X) = N_{\operatorname{Aut} A}(T)$. Hence T is a Sylow 2-subgroup of Aut A.

Remark. We can observe here that Aut A has a unique conjugacy class of Carter subgroups C for every abelian p-subgroup A. Such a subgroup C is always a normalizer of a Sylow 2-subgroup. For by Corollary 5, a Sylow 2-normalizer is always nilpotent and, of course, self-normalizing. But Theorem 6 shows that every Carter subgroup has the form $X = T \times D$ where T is a 2-group and D is a diagonal group. By Corollary 8, X is a normalizer of a Sylow 2-subgroup of Aut A. This gives a further infinite collection of generally nonsolvable groups which have quite well-behaved Carter subgroups.

COROLLARY 9. Let $A = \bigoplus_i A_i$ be an abelian p-group for p > 2, $X = \bigoplus_i X_i \subseteq \bigoplus_i \text{Aut } A_i \subseteq A \text{ with } X_i \text{ a Sylow 2-normalizer of Aut } A_i \text{ . If } A_i \text{ is indecomposable as X-module and } A_i \cong_X A_j \text{ when } i \neq j, \text{ then } \bigoplus_i X_i \text{ is a Sylow 2-normalizer of Aut } A.$

Proof. Corollary 9 is exactly Corollary 5 in view of Theorem 7. For by Theorem 7 we know now that indecomposability as X_i -module implies indecomposability as T_i -module, where $X_i = T_i \times D_i$ with T_i a Sylow 2-subgroup of Aut A_i and D_i a group of automorphisms of A which are scalar on A_i . Corollary 9 is now immediate.

The next lemma is a slight generalization of Lemma 6 [3]. The proof is almost identical now in view of Theorem 7.

LEMMA 10. Let A be an abelian group of odd order and let $X = N_{Aut A}(X)$ be a nilpotent subgroup of Aut A. Then $H^{1}(X, A) = 0$.

Proof. By Theorem 7, $A = \bigoplus_i A_i$, $X = \bigoplus_i X_i$ with A_i indecomposable X-modules and $A_i \cong A_j$ only when i = j.

As usual $X_i = X/C_X(A_i) = T_i \times D_i$. By Corollary 8, X_i is a Sylow 2-normalizer of Aut A_i . Because the unique involution in $Z(T_i)$ inverts the module A_i , it follows that $[T_i, A_i] = A_i$ and $C_{A_i}(T_i) = 1$.

Let $Y_i = \bigoplus_{j \neq i} X_i$.

From $1 \rightarrow X_i \rightarrow X \rightarrow Y_i \rightarrow 1$ we get

(*)
$$0 \to H^1(Y_i, A^{X_i}) \to H^1(X, A_i) \to H^1(X_i, A_i)^{Y_i},$$

an exact sequence. Here B^T denotes the set of elements in the *T*-module *B* which are centralized by *T*.

Because $[A, X_i] = [A, T_i] = A_i$, $H^1(X_i, A_i) = 0$. Moreover $A_i^{X_i} \subseteq C_{A_i}(T_i) = 0$. Hence $H^1(X, A_i) = 0$, because (*) is exact. Now $H^1(X, A) = \bigoplus_i H^1(X, A_i) = 0$. This is the lemma.

Proof of Theorem 0. Let $G \in \mathcal{ON}$ with $\operatorname{Out} G = 1$. Choose A a maximal abelian normal subgroup of A with G/A nilpotent. It follows from Lemma 1 that G splits over A and G = AX, $A \cap X = 1$. Also $C_X(A) = 1$ and $N_{\operatorname{Aut} A}(X) = X$.

Now $A = \bigoplus_p A(p)$, $X = \bigoplus_p X(p)$ with $X(p) \simeq X/C_X(A(p))$ by Lemma 2. By Theorem 7, $A(p) = A_1 \oplus \cdots \oplus A_p$, $X(p) = X_1 \oplus \cdots \oplus X_p$ with $X_i = X(p)/C_{X(p)}(A_i) = N_{\text{Aut } A_i}(X_i)$ and $A_i \simeq A_j$ only if i = j. Also $X_i = T_i \times D_i$ with T_i a 2-group and D_i a group of diagonal maps of A_i .

Because the group of diagonal automorphisms of A(2) is a 2-group, it follows that A(2) X(2) is itself a 2-group. But then we know that $Out(A(2) X(2)) \neq 1$ by Gaschutz [4] whenever |A(2) X(2)| > 2. Of course, if $Out(A(2) X(2)) \neq 1$, $Out G \neq 1$ since A(2) X(2) is a direct factor of G.

If |A(2)X(2)| = |A(2)| = 2, we have Hom $(X(p), A(2)) \neq 0$ for p > 2 and Out $G \neq 1$ in this case.

Thus if |G| > 2, |A| is odd.

By Corollary 8, X_i is a Sylow 2-normalizer of Aut A_i . Hence G has exactly the structure predicted by Theorem 0.

Conversely, if G has order >2 and the structure given in Theorem 0. X is a Sylow 2-normalizer by Corollary 9. By Lemma 10, $H^{1}(X, A) = 0$.

Finally, if $K_n(G)$ denotes the *n*th term of the descending central series of G, $K_n(G) \subseteq A$ for some *n* because X is nilpotent. Because [A, X] = A, when |A| is odd, we have also $A = K_m(G)$ for all $m \ge n$. It follows if A char G and by Lemma 1(ii) we have Out G = 1. This completes the proof.

References

- 1. R. W. CARTER AND P. FONG, The Sylow 2-subgroups of the finite classical groups, J. Algebra 1 (1964), 139-151.
- R. S. DARK, A complete group of odd order, Math. Proc. Cambridge Philos. Soc. 77 (1975), 21-28.
- T. M. GAGEN AND D. J. S. ROBINSON, Finite metabelian groups with no outer automorphisms, Arch. Math. 32 (1979), 417-423.
- 4. W. GASCHÜTZ, Nichtabelsche *p*-Gruppen besitzen äußere *p*-Automorphismen, J. Algebra 4 (1966), 1-2.
- 5. D. GORENSTEIN, "Finite Groups," Harper & Row, New York, 1968.
- M. V. HOROŽEVSKII, On complete groups of odd order, Algebra i Logika 13 (1974), 63-76; Algebra and Logic 13 (1974), 34-40.
- 7. B. HUPPERT, "Endliche Gruppen," Springer-Verlag, Berlin/Heidelberg/New York, 1967.
- 8. A. WEIR, Sylow p-subgroups of the classical groups over finite fields of characteristic prime to p, Proc. Amer. Math. Soc. 6 (1955), 529-533.