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A group G is complete if the center Z(G) of G 1s trivial and if every auto-
morphism of G is inner. In [3], all complete metabelian finite groups were
determined. They are either of order 2 or direct products of holomorphs of
cyclic groups of different odd prime power orders. Here we will determine all
finite groups G which have a normal abelian subgroup 4 with G/A4 nilpotent and
which have no outer automorphisms. All groups considered here will be finite.
We write G € (A" if G has an abelian normal subgroup 4 with G4 nilpotent.
Our notation will be quite standard; see, for example, [5] or [7].

The main result is as follows.

TueoreM 0. Let Ge N with Out G = Aut G/Inn G = 1. Then either
| G| <2 or Gis a direct product of groups A,X; with the following properties:
A; is a homocyclic p-group of odd order, A; <1 A, X,, A,NX, =1, X, is the
normalizer of a Sylow 2-subgroup of Aut A, . Finally A; ~ A; only if i = .

Conwversely, every such group has no outer automorphisms.

The structure of the groups X; will be completely determined. We can
immediately assert that Npyy (X;) = X; and so X; contains the unique
involutory automorphism which inverts A, , whenever | 4;] is odd. Moreover
we will see that X is a direct product of a Sylow 2-subgroup of Aut 4; and a
diagonal, even scalar on 4, , group. Since a Sylow 2-subgroup of Aut 4, is also
a Sylow 2-subgroup of GL(n, p), for some #, the structure and the action of X; on
A, is completely determined.

Now suppose that G e A" with Out G = 1. If Z(G) # 1, it follows from
Theorem 0 that | G| = 2. Thus the complete groups in (74" are exactly the
groups of order >>2 described in the theorem. It is also interesting to note that,
because every abelian group of odd order has an involutory automorphism,
viz., inversion, it follows that the groups X, in Theorem 0 are always of even
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order. Thus any complete group in (%4 has even order. This can be compared
with [2, 6].
Before commencing the proof we begin with some elementary lemmas.

Lemma 1. Let Ge AN, A a maximal abelian normal subgroup of G with
G| A nilpotent.

(i) If Out G =1, then G is a semidirect product AX with X nilpotent and
Cx(A4) = 1. Also Ny (X) = X and HY(X, A) = 0.
(ii) If G satisfies the properties in (i) and A char G, then Out G = 1.

Proof. (i) First Cy(A4) = A4 <1 G because A4 is a maximal abelian normal
subgroup of G. It is well known that HY(G|A, A) is isomorphic with a subgroup
of Out G (see, for example, [7, p. 119]). It follows that HYG/4, A) = 0. By
Lemma 2 [3], H¥G/A4,4) =0 and the extension splits. Let G = 4X,
ANnX =1

Any element in N,y 4(X) — X induces an automorphism of G in a natural
way. If Out G = 1 this automorphism is inner and, because A is abelian, must
be induced by an element of X. Hence Ny (X)) = X.

(i) Let «€OutG and H = G{&). Because A char G, 4 <1H and
ACCy(A)y<t H. If Cy(A) = A4, then H/AC Aut 4 and contains XA4/A as a
normal subgroup. Because H{(X, A) = 0, there is one class of complements to
A in XA and so Ny(X) covers H/A. It follows that Ny, (X) = X covers H/A

and o« = 1.

If Cx(A4)D A, we can assume that o € Cy(4) <1 H. Then [, G] € 4 and so
o€ HY(X, A) = 0. This completes the proof of Lemma 1.

Lemma 2. Let A be abelian, X a wilpotent subgroup of Aut A. Then X =
Naw AX) if and only if A = @, A(p), X = @, X(p), where A(p) is a Sylow
p-subgroup of A and X(p) = X|Cx(A(p)). Finally N au 4)(X(2)) = X(p) for all
primes p.

Proof. 'The nilpotent group X is a subgroup of
@ X(p)C D Aut A(p) C Aut A.
b4 »

Since X = Ny 4(X) and @, X(p) is nilpotent, we have X = P, X(p).
Now it is clear that Nyt 4(,)(X(p)) = X(p). The converse is clear.

LemMa 3. Let R be an r-Sylow subgroup of H == GL(n, q), n > 1, ¢ = p*, p
a prime. Then Ny(R) = RCy(R) only if r =2, and whenr = p =2, even q = 2
and Ny(R) = R.

Proof. If r = p, then R is a normal subgroup of the group of all triangular
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matrices over GF(g). It follows that Ny(R)2 RCy(R) unless g = 2. When
v = p == q =2, Ny(R) = Rby [7, p. 381], for example.

Suppose 7 == p. Let m be the exponent of ¢ modulo 7. Then 7 | (¢ — 1), but
ryg'—1 for [ <m. Write s = [nfm] = ay+ ayr 4 -+ with 0 < a; <7,
the r-adic representation of the integral part of nfm. Our Sylow r-subgroup can
be seen as a direct product of Sylow r-subgroups of GL(m#?, g} as follows:

GL(m, g) X - X GL(m, ) X GL(mr, q) X - X GL(mr, q) X -

% a

1

A Sylow r-subgroup R of GL(mr?, q) is either a wreath product R =
ZyawrZ,wr --wrZ,, with ¢ —1 = r%, (r,5) =1, or v =2, ¢"=—1
(mod 4), m = 1, and R = D wr Z, wr --- wr Z, and D is a quasidihedral Sylow
2-subgroup of GL(2, q).

When 7 > 2, Ny(R)D RCy(R). When r =2, Ny(R) = RCy(R) and
Ny(R) is a direct product of R and cyclic (diagonal) groups of order (g — 1).
We can find these facts in [1, 8].

LemMa 4. Let A = A, @ A, be an abelian p-group, p > 2, T =T, D T, C
Aut A, where T, is a Sylow 2-subgroup of Aut A;. If A; is indecomposable as a
T;-module and A, o A, , then T is a Sylow 2-subgroup of Aut A and N sy 4(T') =

Naut 4,(T1) © Naut 4,(T3) is nilpotent.

Proof. We show that every automorphism of 4 which normalizes T' must
also normalize A, and 4, . The lemma will then follow quickly.

Because A4, is indecomposable as a T;-module, it follows from 5.2.2 [5] that
A, is homocyclic.

If Ayt A, but Ty o~ T,, then we must have A; >~ A,, where A, =
A, |D(A4,), but exp 4, < exp A, without loss of generality. Then every auto-
morphism of A stabilizes the chain 42 4; D 1 because 4,9(4) char A. Also
any automorphism of 4 which is trivial on A/4, and 4, lies in a normal p-sub-
group of Aut 4. Thus Aut A4 has a normal p-subgroup K with Aut 4/K ~
GL(A,) ® GL(4,) because Aut A D Aut 4, @ Aut 4, .

It follows that in this case Nay (7)) has a normal p-subgroup Ng(T)C
Caut 4(T) and

Nauwta(T)/Ng(T) =2 Nauta,(Th) @ Nauta(To)-

Now Nau 1(T;) = T; X D;, where D is the group of scalar automorphisms
of A; by [1]. Note that 4, is indecomposable as T; = T;-module.

If 4y A, and Ty T,, then T, @ T, is a Sylow 2-subgroup of Aut
(4; @ 4,) = Aut A by [1] again. Thus T}, @ T, is a Sylow 2-subgroup of Aut 4,
because T acts faithfully on 4 = A/®(A4).

Thus in both cases N,y (7") has a normal p-subgroup Ni(T) C Cay ((T)
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and Ny T)Ni(T)== T X D where D is a diagonal group which induces
scalar automorphisms on 4;,¢ = 1, 2.

We show now that Ng(T') stabilizes the modules 4, , 4, . The groups T; are
either of type ZyswrZ,wr ---wrZ, or DwrZ,wr - wrZ, with D quasi-
dihedral. It follows that Z(T;) is cyclic in either case and so 2,(Z(7T;)) = Z, is
the unique involution which inverts 4, .

Every automorphism in N (7") C Cpyy (T') centralizes Z; and so normalizes
(4, Z;] = A;. It is clear now that Ng(T) C N sy 4,(T1) @ Naut 4(T5) and also
that Nyt (7T) = Naus 4,(T1) @ Nut 4,(T2)- These groups are both nilpotent.
Lemma 4 is done.

CoroLLARY 5. Let A = A, ® -+ ® A, be an abelian p-group, p > 2, T; a
Sylow 2-subgroup of Aut A, , and suppose that A; is indecomposable as T;-module
for i = 1,..., k. Suppose A; ~ A; only when i = j. Then T is a Sylow 2-subgroup
of Aut A and N put ((T) = @; N aut 4 (T5) is nilpotent.

Proof. Clear from Lemma 4.

THEOREM 6. Let X be a mnilpotent subgroup of GL(n,q) and suppose
Nerwm.o(X) = X. Then X is a direct product of a 2-group and a diagonal group of
odd order.

Proof. We use induction on n. If n = 1, everything is true.

Let V' = V{(n, q) be the natural module on which X acts. If I/ is decomposable
as an X-module, then V' = V; @ V,, where V, is X-invariant.

Now X C X/Cx(Vy) @ X/Cx(V,) C GL(V). Since X is nilpotent and self-
normalizing in GL(V), it follows that X = X/Cyx(V;) @ X/Cx(V,). Now
X[Cx(V,) is self-normalizing in GL(V,) because otherwise N (X) D X. By
induction X is a direct product of a 2-group and diagonal group of odd order.
This is our theorem.

Thus we may assume that I is indecomposable as an X-module. Hence Z(.X)
is cyclic.

We write X = P X Q where P is a p-group, Q is a p’-group and ¢ = p* for
some prime p. If O acts diagonally on V, then first Q is abelian and then even
scalar, because V is X-indecomposable. Thus QO C Z(GL(V)). But then

X = PO = Ny p)(PQ) = Nor)(P)

and P is a Sylow p-subgroup of GL(V). By Lemma 3, = p = ¢ = 2 and our
theorem is true in this case.

Thus Q does not act on V as diagonal matrices. Thus there is an 7-Sylow sub-
group R of Q which acts on V7 is a nondiagonal way. For if each Sylow subgroup
of O could be diagonalized, Q would be abelian and could itself be diagonalized
by elementary linear algebra. It is also clear that V' is homogeneous as R-module.
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For we could take an irreducible R-module V; of V' and then Zway, Wisa
direct component of 7 as X-module.

Weput V="V,® - DV,, with V, >~ V, irreducible R-modules. Write
X = R x S. Then matrices representing R have the form

A 0
0 4
while those representing Z(R)S have the form

X 11 *’Ylm

Xml Xmm

with X;;4 = AX,;. The matrices X;; lie in Hompg(V;, V;), a finite field. Let
F be the subring (and so subfield) of Homg(¥V, V) generated by the X;, for
possible 7, j. It follows that Z(R)S C GL(m, F) where m deg V; = n. Because R
is not diagonable, deg V; £ 1 and so m < n.

If Z(R)S is not self-normalizing in GL(m, F), RS is not self-normalizing in
GL(n, q) because every matrix in GL(m, F) commutes with R. By induction we
have Z(R)S as a direct product of a 2-group T and a diagonal U group of odd
order. Remember this group U is diagonal over F.

If R could be chosen as a 2-group, then X is a direct sum of a 2-group T and a
group U of diagonal matrices over F. But every such group U is abelian and
because Z(X) is cyclic, U is itself cyclic.

If U were diagonable over GF(g)there is nothing to do. If U'is not diagonal over
GF(q), we can apply Lemma 5 [3] and find Ng; (. 0(U) D Corin.o(U)-

Now Ngzn.ofX) = X and

TU = NGL(n,q)(T) N NGL(n,q)(U)

 Hence T is a Sylow 2-subgroup of N (,,(U) contained in Cgy,,9(U). The
Frattini argument leads to the contradiction

CLG(n,q)(U) g NGL(n,q)(U) = CGL(n,q)(U)(NGL(n,q)(T) N NGL(n,q)(U))
= TU.

Hence a Sylow 2-subgroup of G acts on V diagonally and Z(R)S consists of
diagonal (over F) transformations. Thus X = RS where R is a nondiagonable
Sylow subgroup of X and S is an abelian group diagonable over F, an extension
field of GF(g). Because Z(X) is cyclic, S is cyclic.



GROUPS WITH NO OUTER AUTOMORPHISMS 89

If .S were not diagonal over GF(q) we could apply Lemma 5 [3] again and get
Nerin.o(S) D Corm,o(S)- This leads to the same contradiction as before via the
Frattini argument.

Hence S acts on ¥ as diagonal matrices. Now because V' is indecomposable,
S is scalar and central in GL(n, g). But then RS = Ng; (. o(RS) == Ngptn.0(R)
and R is a Sylow r-subgroup with » > 2. This is a contradiction to Lemma 3 and
we are done.

Remark. Tt follows from here that the groups GL(n, ¢) always have a single
conjugacy class of Carter subgroups, unless ¢ = 2™, m > | and n > 1, when
they have no nilpotent self-normalizing subgroups. For by Theorem 6, such a
subgroup has the form X = T x D, where T is a 2-group and D is a diagonal
subgroup. Write V" as a direct sum of eigenspaces V = @; V;, where D acts
on V; as scalar transformations for each i. Now X = @, X;, where X, =
X/Cx(V,), because again X C @; X a nilpotent subgroup of GL(V') and X is
self-normalizing. It follows that X is nilpotent and self-normalizing in GL(V;)
and clearly X; = T; x D, where T is a 2-group and D, is the full group of
scalar transformations of V,, for each 7. Thus T; is a Sylow 2-subgroup of
GL(V,) because N v )(X,) = X; = NGL(Vi)(n)‘

If T, == T;, it follows from [1] that ¥V, ~ V; and if ¢ ¢ j, there is an auto-
morphism of V interchanging V; and V; and X, and X, which normalizes X
and of course does not lie in it. Thus T; 2 T;and also V,; o V; , if i%].

If ¢ is odd, it is immediate from Lemma 3 that X is a Sylow 2-normalizer.

If g = 2,then D = 1 and X = T is a Sylow 2-subgroup of GL(n, ¢), and also
a 2-Sylow normalizer.

If ¢ = 2", m > 1, then NGL(V‘)(XL-) = Ngrw )(Ty) is not nilpotent unless V;
is one dimensional, for each 7. But then ¥ itself is one dimensional and GL(1,2™)
is cyclic and, of course, has a Carter subgroup.

TuEOREM 7. Let A be an abelian p-group, X a nilpotent subgroup of Aut A
with Nay 4(X) = X. Then

() A=4,D DAy, where A; are indecomposable X-modules and
Aty Ajonly if i = j.
(i) X=X,® - DX, with X; = X|Cyx(4;) and X; = T; X D; with
T; a 2-group and D; a group of scalar automorphisms of A; .
Remark. It follows that the groups A; are indecomposable T;-modules.
Hence A; =~y A; if and only if A; ~ 4; as groups. By 5.2.2 [5], the groups 4;
are homocyclic.

Proof. If A is decomposable as X-module, then 4 = 4, ® A4, with A4,
X-invariant. Again

X C X[Cx(A4;) @ X/Cx(A4,),  anilpotent group.
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Since X is self-normalizing, X = X/Cy(A4,) @ X/Cx(A4,). Thus X/Cy(4,)
is self-normalizing in Aut 4, C Aut 4 and by induction X is of the required
type. We write 4, =4, P - @ Ayt =1,2, with 4, indecomposable
X-modules. If 4;; o2y A, for some 4, j, &, I, we can interchange A,; with A,; by
an automorphism of 4 which normalizes X. This is impossible.

Thus A is indecomposable as X-module.

It follows that 4 is a p-group for some prime p and that Z(X) is cyclic.

Write X = P X Q with P a p-group and Q a p'-group.

Every scalar automorphism of 4 is central in Aut 4 and so lies in Ny (X) =
X. Since the group of all scalar automorphisms of A has order divisible by
(p — 1), it follows that (p — 1) | | O |.

If O =1, then p = 2 and X is a 2-group. This is our assertion in this case.
Thus we may assume Q = 1.

If O acts on A4 diagonally, Q is abelian and as before cyclic, even scalar because
A is indecomposable as X = P x O module. But then Q C Z (Aut 4) and

PQ = Naw APQ) = Naut 4(P)

and P is a Sylow p-subgroup of Aut 4.
The group Aut 4 has a normal subgroup

K ={xecAut 4 :o=1 (mod P(4))}.

It follows that Nz, 4(£) has a normal subgroup K and N ,(P)/K is a subgroup
of the group of triangular matrices in GL(n, p). Also K is a p-group. Because
N put 4(P) = PZ(Aut A4), this can only occur if Aut 4 = PZ(Aut A)orifp =2
and P is a Sylow 2-subgroup of Aut 4.

If Aut 4 = PZ (Aut 4),p > 2, it follows that 4 = Z,0, @ - P Z,0, with
a, < ay < < ay. Otherwise GL(2,7,.) C Aut 4 for some @, and this is
impossible if Aut A = PZ (Aut A). By Theorem 2 [3], we know that the group
of diagonal automorphisms of such an abelian p-group A4 is self-normalizing in
Aut 4. Since Aut 4 = PZ (Aut 4) is nilpotent, it follows that Aut 4 consists
entirely of diagonal automorphisms and this is our theorem. Of course because 4
is indecomposable, £ = 1 in this case and 4 is cyclic.

If Pis a Sylow 2-subgroup of Aut 4, X =P X Q and by our present
assumption, Q is diagonal on A. This is again our theorem and so we may from
now on assume that Q is not diagonal on A4.

If P = 1, A is indecomposable as X == Q-module and it is easy to see, because
A is homocyclic by 5.2.2 [5], that 4 = A/®(A4) is indecomposable and irreducible
as X-module. Write Q for the image of Q on 4. Then O =~ Q. It is easy to see
that N4y, 7(0) = O. This follows quickly by the Frattini argument. By Theorem
6, 0 ~Q = X is a direct product of a 2-group T and a group D which acts
diagonally on A. Naturally (| D |, p) = 1. It is easy to see that D must act
diagonally on 4. This fact can be found in the proof of Lemma 4(ii), [3].
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Thus we may assume P == 1.

Our proof proceeds by showing that either the theorem holds or Nyt 4(Q) 2
Q CAut A( Q)

If O is abelian, it is cyclic because O C Z(X). Now by Lemma 5 [3],
Nauta(Q) D Cauta( Q)

Thus we assume Q is non-abelian.

If A is indecomposable as a 0-module, then 4 is homocyclic by 5.2.2 [5] and
Aut 4 ~ GL(n, Z,x). Again A = A|P(A) is irreducible as Q-module and because
[P, A1 C A and is Q-invariant, we have [P, A] = 1.

Then X =~ Q, where X is the image of X in its action on 4. It is clear that
Caut 4(0) C Q. Otherwise we have &€ Cpy 4(0) — O, H = KQ{o) C Aut 4
where H = {a € Aut A: « =1 (mod ®(4))}. Note here that every automor-
phism & € Aut A determines a unique coset «K in Aut 4.

Now [, O] C K. But X = Ny(X) is a nilpotent self-normalizing subgroup of
the soluble group H. Since X C KQ <J H,we have a contradiction to VI. 12.2[7].
Hence

CAut/T(Q) c Q

If Npyi4(0) = O, O is a direct product of a 2-group and a diagonal group of
odd order by Theorem 6. We get then X =Q X Ng(Q). Write Q = T x U
with T a 2-group and U a group of odd order which acts diagonally on 4 and
also on 4. Since Ng(Q) C Cx(Q) and

—1 O“r. 0“

Q 2 Ql = \ 1 seeny ——1 ,.../,

LO 1J ko J

it is clear that Cor(s,z»(Q) € CoLin,2,1(Q;) consists only of diagonal matrices.
Note that if p = 2, in this case, we are through. Thus X = Q X Ng(O) is
direct product of a 2-group and a diagonal group.

Thus Nauta(Q) 2 OCauta(0) and even Nayi(Q) 2 0Cauta(Q) using the

Frattini argument again.

Now we assume that 4 is decomposable as a Q-module.

We remark at this stage that if B is an indecomposable O-module, then B is
homocyclic and uniserial. It follows that if C'is any Q-submodule of B, then

C = C/®(C) ~ B —= B|®(B).

Write A =4, 8 - @ A4,, with A4; indecomposable Q-module. Write
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A* =73, A;, the sum of those A, such that 4, ~ , 4, . By the above remark 4*
is a X-submodule of A and, of course, a direct factor. Hence A* = A4.
Thus 4 is homogeneous as Q-module. Assume exp 4, = - = exp 4;,.
Thus O =~ Q acts on 4 in the form

w 0
0 w
and because P commutes with O, P is represented in the form

i

I X;;

with X;W = WX,;.

Let F be the subring of Hom ,(4, , 4,) generated by the matrices .X;; and W
(from Z(Q)). As before F is a field, and P C GL(n/deg A4, , F). Every p-subgroup
of GL(m, F) is a proper subgroup of its normalizer by Lemma 3, unless p = 2
and P is a Sylow 2-subgroup of GL(m,F) with |F| = 2. Every matrix in
GL(n/deg 4, , F) commutes with O and so Nez(u/aega, ri(PQ) D PO, if p # 2.
But then there exists an automorphism & which normalizes PQ and whose matrix
1s also triangular. This automorphism lifts to an automorphism « of 4 which
normalizes POK. By VI 12.2 [7] again we have a contradiction, because X is a
Carter subgroup of the solvable group POK{«).

If Pis a 2-group, then p = 2, | F | = 2, and PZ(0Q) C GL(n, 2). But by Lemma
3,Z(Q) = 1andso O = Q = 1 and X is a 2-group.

Thus in every case Ny 4(Q) 2 0Caut 4(Q)-

We reach a final contradiction quickly now. Because PC Cyy; (Q) and
PQ = Nayi s(P) N Nayi A(Q), it follows that P is a Sylow p-subgroup of
Nyt 4(0) lying in QC 5y (Q). Since P = 1, we have the following: :

OCaut 4(Q) & Naut 4(Q) = QCaut Q)N aut 4(P) O Naut 4(Q))
= QC4ut 4(0)-
This completes the proof of Theorem 7.
COROLLARY 8. Let X be a nilpotent subgroup of Aut A with A an indecom-

posable X-module and X = Ny ((X). Then X = Ny AT, and T is a Sylow
2-subgroup of Aut A.

Proof. By Theorem 7, X = T X D, where T'is a 2-group and D is a diagonal
group. Thus X C Ny (T).
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Because A4 is indecomposable as X-module, D consists of scalar transforma-
tions and so D C Z(Aut A). Thus X = Ny (X) = Ny (7). Hence T is a
Sylow 2-subgroup of Aut 4.

Remark. We can observe here that Aut 4 has a unique conjugacy class of
Carter subgroups C for every abelian p-subgroup 4. Such a subgroup C'is always
a normalizer of a Sylow 2-subgroup. For by Corollary 5, a Sylow 2-normalizer
is always nilpotent and, of course, self-normalizing. But Theorem 6 shows that
every Carter subgroup has the form X = T X D where T'is a 2-group and D is
a diagonal group. By Corollary 8, X is a normalizer of a Sylow 2-subgroup of
Aut A. This gives a further infinite collection of generally nonsolvable groups
which have quite well-behaved Carter subgroups.

CoroLLARY 9. Let A = @; A; be an abelian p-group for p > 2, X =
@; X; C D, Aut A, C A with X; a Sylow 2-normalizer of Aut 4; . If A, is inde-
composable as X-module and A; ~y A; when i 5 j, then ®; X, is a Sylow 2-nor-
malizer of Aut A.

Proof. Corollary 9 is exactly Corollary 5 in view of Theorem 7. For by
Theorem 7 we know now that indecomposability as X;-module implies inde-
composability as T,-module, where X; = T, X D; with T} a Sylow 2-subgroup
of Aut 4; and D, a group of automorphisms of 4 which are scalar on A4, .
Corollary 9 is now immediate.

The next lemma is a slight generalization of Lemma 6 [3]. The proof is
almost identical now in view of Theorem 7.

Lemma 10. Let A4 be an abelian group of odd order and let X = N py; ((X) be
a nilpotent subgroup of Aut A. Then HY(X, 4) = 0.

Proof. By Theorem 7, A = P; A;, X = @; X, with A4; indecomposable
X-modules and 4; ~ 4, only when 7 = j.

As usual X; = X/Cy(A4,) = T; x D;. By Corollary 8, X, is a Sylow 2-nor-
malizer of Aut 4; . Because the unique involution in Z(T;) inverts the module
A; , it follows that [T, , 4;] = A,and C, (T;) = L.

Let Y, = @, X, .

Froml— X, > X - Y,— 1 we get

(%) 0— HY(Y;, 4% — H'(X, 4;) - HY(X,, 4)",

an exact sequence. Here BT denotes the set of elements in the T-module B which
are centralized by T.
Because [4, X;] = [4,T:] = 4,, H(X,,A;) = 0. Moreover Af:iC

C.(T;) = 0. Hence HY(X, A;) = 0, because (*) is exact. Now HY(X, 4
@®; HY(X, 4;) = 0. This is the lemma.
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Proof of Theorem 0. Let G e (lA" with Out G = 1. Choose 4 a maximal
abelian normal subgroup of 4 with G/A4 nilpotent. It follows from Lemma 1
that G splits over 4 and G = AX, AN X = 1. Also Cy(4) = 1 and
Nt sX) = X.

Now 4 = @, A(p), X = @, X(p) with X(p) = X/Cx(A(p)) by Lemma 2.
By Theorem 7, 4(p) = A, @D~ D 4,, X(p) = X; P - @ X, with X =
X(9)/Cx)(4s) = Nauga(X:) and A, >~ A; only if 7 = j. Also X; = T; X D;
with T; a 2-group and D; a group of diagonal maps of 4.

Because the group of diagonal automorphisms of 4(2) is a 2-group, it follows
that A(2) X(2) is itself a 2-group. But then we know that Out(A4(2) X(2)) # 1 by
Gaschutz [4] whenever | 4(2) X(2)] > 2. Of course, if Out(A(2) X(2)) # 1,
Out G == 1 since A(2) X(2) is a direct factor of G.

If | A(2) X(2)| = | 4(2)| = 2, we have Hom (X(p), 4(2)) # 0 for p > 2 and
Out G # 1 in this case.

Thus if |G| > 2, | 4| is odd.

By Corollary 8, X is a Sylow 2-normalizer of Aut 4;. Hence G has exactly
the structure predicted by Theorem 0.

Conversely, if G has order >2 and the structure given in Theorem 0. X' is a
Sylow 2-normalizer by Corollary 9. By Lemma 10, H(X, 4) = 0.

Finally, if K,(G) denotes the nth term of the descending central series of G,
K,(G) C A for some n because X is nilpotent. Because [4, X] = 4, when | 4 |
is odd, we have also 4 = K,,(G) for all m = n. It follows if 4 char G and by
Lemma 1(ii) we have Out G = 1. This completes the proof.
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