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SUMMARY

Macromolecular machines, such as the ribosome,
undergo large-scale conformational changes during
their functional cycles. Although their mode of action
is often compared to that of mechanical machines, a
crucial difference is that, at the molecular dimension,
thermodynamic effects dominate functional cycles,
with proteins fluctuating stochastically between fun-
ctional states defined by energetic minima on an en-
ergy landscape. Here, we have used cryo-electron
microscopy to image ex-vivo-derived human poly-
somes as a source of actively translating ribosomes.
Multiparticle refinement and 3D variability analysis
allowed us to visualize a variety of native translation
intermediates. Significantly populated states include
not only elongation cycle intermediates in pre- and
post-translocational states, but also eEF1A-contain-
ing decoding and termination/recycling complexes.
Focusing on the post-translocational state, we ex-
tended this assessment to the single-residue level,
uncovering striking details of ribosome-ligand inter-
actions and identifying both static and functionally
important dynamic elements.

INTRODUCTION

At the heart of many biological processes are complex and dy-

namic macromolecular machines. Different from macroscopic

machines, these operate intermittently rather than continuously.

Because inertia is irrelevant at the nanometer scale, conforma-

tional changes are dominated by thermal forces (Frauenfelder

et al., 1991; Purcell, 1977). Consequently, macromolecular ma-

chines randomly sample all conformational states available to

them at a given temperature instead of passing smoothly from

one functional state to the other (Frauenfelder et al., 1991). Func-
tional states represent local minima in their energy landscape,

defined by energetically costly conformational changes required

to transit to neighboring minima.

The ribosome is an archetypical molecular machine, synthe-

sizing proteins based on the primary sequence information en-

coded in mRNA templates (Frank and Spahn, 2006; Voorhees

and Ramakrishnan, 2013). The ribosome consists of a large sub-

unit (LSU; 60S in eukaryotes) containing the peptidyl transferase

center (PTC) and a small subunit (SSU; 40S in eukaryotes) con-

taining themRNA decoding center (DC). Together, both subunits

define three distinct tRNA-binding sites in their intersubunit

space, referred to as the aminoacyl (A)-site responsible for bind-

ing and decoding incoming aminoacylated tRNAs, the peptidyl

(P)-site responsible for orienting the polypeptide-bearing P-site

tRNA for efficient transamidation, and the exit (E)-site respon-

sible for subsequent release of deacylated tRNA.

Protein synthesis can be divided into the four phases: initia-

tion, elongation, termination, and recycling (Melnikov et al.,

2012). Each phase comprises numerous distinct functional

states and multiple large-scale intra- and inter-subunit rear-

rangements of the ribosome, and its ligands drive the functional

cycle (Dunkle and Cate, 2010; Korostelev et al., 2008). Dynamic

single-molecule distance measurements show that these rear-

rangements are governed by a rugged energy landscape that

is shaped by translation factors (Munro et al., 2009; Petrov

et al., 2011). Many functional intermediates of translation have

been structurally analyzed employing both X-ray crystallography

and cryo-electron microscopy (cryo-EM) (Moore, 2012; Voo-

rhees and Ramakrishnan, 2013). The focus of these studies

has been on bacterial complexes, while considerably less is

known about the structures of functional states sampled by ribo-

somes from higher eukaryotes. Traditionally, such structural

studies rely on in vitro assembled complexes and on the use of

antibiotics, tRNA mimics, non-hydrolyzable nucleotide analogs,

or genetic modifications in order to stall ribosomes in defined

states. It is still largely unknown if or how in vitro assemblies differ

from their in vivo counterparts that are assembled in the complex

context of the living cell. Only by investigating samples in a
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native(-like) setting can these issues be addressed. While cryo-

electron tomography allows the visualization of individual, active

molecular machines inside cells (Brandt et al., 2010; Myasnikov

et al., 2014), its resolution is limited.

Recognizing that in vitro systems are not able to account for

the full complexity of in vivo environments, we considered study-

ing native translation intermediates by imaging ex-vivo-derived

non-stalled and unmodified polysomes from human cell extracts

using multiparticle cryo-EM. Polysomes are formed by actively

translating ribosomes and are therefore expected to constitute

a mixture of ribosomes in elongation states (Rich et al., 1963).

Thus, polysomes bear the potential to study the process of trans-

lation using one single specimen and to obtain not only multiple

structural snapshots of functional states from the same sample,

but also to determine the native distribution of states to approx-

imate the positions of minima on the energy landscape, if confor-

mational and compositional heterogeneity can be overcome by

particle image sorting procedures (Spahn and Penczek, 2009).

To further structural insights into the process of protein syn-

thesis inside the living cell, we report here the structural analysis

of ex-vivo-derived human polysomes using multiparticle cryo-

EM. We show that a variety of functional states are significantly

populated, providing critical structural insights into minima of

the energy landscape of the ribosomal elongation cycle and

the rate-limiting steps close to the in vivo situation. We also

demonstrate that subunit rolling (Budkevich et al., 2014) indeed

constitutes a degree of freedom sampled in vivo. Focusing on a

larger subset of particle images, we solve the structure of the

human 80S ribosome in the post-translocational state at near-

atomic resolution despite conformational and compositional

heterogeneity. The high-resolution cryo-EM map shows details

of native interactions of the ribosome with its ligands, revealing

a striking difference in the binding mode between P- and E-site

tRNA binding in the unrotated state and allows identifying both

static and functionally important dynamic elements.

RESULTS

Distinct Functional States Can Be Reconstructed from
Human Ex-Vivo-Derived Polysomes
To preserve the in vivo functional states of polysomes during pu-

rification, we switched from classical sucrose-gradient centrifu-

gation to a considerably faster gel filtration-based enrichment

strategy to isolate polysomes from the cytosol of human cells

(Stephens and Nicchitta, 2007). Samples were vitrified in liquid

ethane with minimal delay after cell lysis and enrichment, while

they were still exhibiting hallmark features expected of a polyso-

mal sample (Brandt et al., 2010; Rich et al., 1963), such as the

distinct peak pattern in a sucrose gradient (Figure 1A) and clus-

ters of ribosomes in the raw micrographs (Figure 1B). In order to

sort particle images in silico, we employed unsupervised multi-

particle analysis (Loerke et al., 2010) that was combined with

3D variability analysis to identify regions of high conformational

and/or compositional heterogeneity (Extended Experimental

Procedures).

A first tier of unsupervised multiparticle refinement (Figure S1)

revealed tRNA-carrying ribosomes in either classical unrotated

(66% of ribosomal particle images) or rotated (34% of ribosomal
846 Cell 161, 845–857, May 7, 2015 ª2015 Elsevier Inc.
particle images) intersubunit arrangement. However, both

rotated and unrotated complexes still featured localized 3D vari-

ability, indicating heterogeneity in the form of substoichiometric

ligand binding. We therefore employed a second tier of unsuper-

vised classification focusing on the heterogeneous areas to

further split the data into defined functional states (Figures 1C,

2, andS2). The presence of density corresponding to the nascent

chain (NC) in all complexes demonstrates that our ex-vivo-

derived polysomes are functional and contain predominantly

active ribosomes. This is different froma recentmicrosomal sam-

ple, where only �13% of the ribosomes were found in an active

state (Voorhees et al., 2014). Our approach indeed allows the

structural analysis of functional ribosomal complexes derived

from the native environment of the cell that all were assembled

and isolated under identical conditions. The resulting maps can

be regarded as snapshots of the ribosome ‘‘in midflight’’ (Moore,

2012) allowing key insights into in vivo protein synthesis.

For the rotated configuration, continued sorting revealed three

distinct subpopulations. The first of these contains an A/A- and

a P/E-tRNA and thus represents a rotated-1 state (Figure 2A).

This structure is almost identical to the in vitro rotated-1 PRE

state (Budkevich et al., 2011), with the A-tRNA contacting H89

and H69 and the CCA end being held in the A-site, but addition-

ally shows a contact with the ASF (Figure 3A). The second

rotated state contains A/P- and P/E-configured tRNAs (Fig-

ure 2B) similar to the in vitro rotated-2 PRE state (Budkevich

et al., 2011) and the active fraction of microsomal porcine ribo-

somes (Voorhees et al., 2014). Intriguingly, the dominating

rotated PRE in vivo corresponds to the rotated-2 PRE state

with two hybrid tRNAs (Figure 1C, inset; Table S1), unlike the pre-

vious bacterial structures of the rotated 70S ribosome where

only the P/E-tRNA is seen in a clear hybrid position (Agirrezabala

et al., 2008; Julián et al., 2008). Unexpectedly, we observe a third

rotated PRE conformation with three tRNAs in classical configu-

rations (Figure S2A). Contacts of the A-tRNA with the LSU are

similar to those of the rotated-1 state. Compared to POST, the

SSU is rotated by �8�. We conclude that this rare sub-popula-

tion may represent a short-lived intermediate PRE state (PRE*),

however, high flexibility of the tRNA and low resolution preclude

a more detailed interpretation.

For the unrotated configuration, a second tier of sorting re-

sulted in five subpopulations. Comparison with structures from

defined in vitro settings (Budkevich et al., 2011, 2014) identified

these subpopulations as a classical-1 PRE state, two states with

an A/T-tRNA, a pre-recycling state and a POST state.

Further sorting of the classical PRE state, containing three

classical A/A-, P/P-, and E/E-tRNAs (Figures 2C), in a third tier

of classification shows that it consists of two complexes with

different amounts of rolling (Figures S2B and S2C). For the first

state, the 40S subunit is rolled by �6� with respect to the unro-

tated POST configuration (Figure S2G), and the overall 80S

configuration matches well that of a classical-1 configuration

observed in vitro (Budkevich et al., 2014). A second state

shows intermediate rolling of �1�–2� with respect to the POST

(Figure S2B) and may correspond to an accommodation inter-

mediate (classical-i PRE), where the interaction of the A-site

tRNA with the 80S ribosome is reminiscent of the classical-2

configuration.



Figure 1. The Experimentally Observed Elongation Circle

(A and B) (A) Sucrose density-gradient analysis of the polysomal sample and (B) raw micrograph after size-exclusion gel-filtration. Scale bar represents 100 nm.

(C) Overview of the cryo-EMmaps in the framework of the elongation circle. Translocation and decoding-sampling/-recognition complexes (grayed out) were not

observed experimentally and are represented by simulated maps based on published factor structures (PDB 4CXH and 2P8W). For POST and classical PRE

structures with different amounts of rolling were observed, represented by the blue scale bar. All maps are filtered to 7.5 Å. Inset: relative occupancies are color-

coded in grayscale.

See also Figure S1.
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Figure 2. Functional States Reconstructed from Human Polysomes

(A–F) Cryo-EM maps filtered to their global resolution (Table S1) corresponding to (A) rotated-1 PRE, (B) rotated-2 PRE, (C) classical-1 PRE, (D) post-hydrolysis,

(E) post-dissociation, and (F) pre-recycling states. For the POST state at high resolution see Figure 4. For the rotated PRE* state and states featuring intermediate

amounts of rolling see Figure S2. Left: ribosomal complexes with SSU depicted in yellow and LSU in blue. Right: segmented cryo-EMmaps, rotated by 80�: A/A-
site tRNA (pink), A/T-site tRNA (dark pink), A/P-site tRNA (medium pink), eRF1 (pink), P-site tRNA (green), P/E-site tRNA (dark green), E-site tRNA (orange), mRNA

(purple), eEF1A (red), ABCE1 (red), NC (blue), 18S RNA (yellow), 40S r-proteins (gray-yellow), 28S, 5S, 5.8S RNA (blue), and 60S r-proteins (gray-blue). See also

Figure S2 and Table S1.
Interestingly, both complexes that contain classical P/P- and

E/E-tRNAs and an A/T configured tRNA (Figures 2D and 2E)

are different from the decoding states observed in vitro where

eEF1Awas trapped in the guanosine-5’-triphosphate (GTP) state

by the non-hydrolyzable GTP analog GMPPNP (Budkevich et al.,

2014). It is thus likely that the present states correspond to later

decoding intermediates after GTP hydrolysis. This is corrobo-

rated by the appearance of the factor density. For the first, higher

populated complex, we observe clear density for both domain III

and II of eEF1A in the factor-binding site, but density corre-

sponding to the G-domain (domain I) is highly fragmented indi-

cating flexibility (Figure 3B). The second complex lacks signifi-

cant density in the factor-binding site, although there is some

density present close to the surface of the SSU where domain

II of eEF1Amakes contact (Figure 3C). In addition to the contacts

observed for the factor-bound state, we observe a contact of the

acceptor stem of the A/T-tRNA with uL14, potentially acting as a

steric filter (Caulfield andDevkota, 2012), and a connection of the

ASL region with the N-terminal region of eS30, which has

previously been shown to also interact with eEF2 (Anger et al.,

2013).

The fourth subpopulation of the unrotated states features

density in the A-site that does not agree with an A-site tRNA

and density in the factor-binding site different from any expected

for factors involved in the elongation cycle. Comparison with

in vitro termination complexes (des Georges et al., 2014; Preis

et al., 2014) identifies this state as a pre-recycling state with

bound eRF1 and ABCE1 (Figure 2F). eRF1 is in the extended
848 Cell 161, 845–857, May 7, 2015 ª2015 Elsevier Inc.
conformation with the GGQ motif of domain ce facing toward

the PTC (Figure 3F). As for the in vitro complex (Preis et al.,

2014), its NTD is fragmented. Similarly, the distal nucleotide-

binding domain (NBD2) of ABCE1 is fragmented.

Amajor fraction of particle images of our ex-vivo-derived poly-

somes was assigned to the POST state. As POST state com-

plexes appear to be stable in terms of conformation (Budkevich

et al., 2014), we continued refinement of this subpopulation to

improve its resolution. Although it has been demonstrated that

near-atomic resolution maps for relative invariant parts of ribo-

some can be obtained, e.g., by focusing the refinement on the

large ribosomal 60S subunit (Penczek et al., 2014), and compos-

ite near-complete atomicmodels of the eukaryotic ribosome can

be constructed by combining the best resolved parts from

different functional states (Voorhees et al., 2014), we tried to

represent distinct complexes by a single cryo-EM map each.

This was to ensure that we describe distinct functional states

and are able to faithfully visualize structural links between

remote functional sites (Agmon et al., 2005), e.g., tRNAs bridging

the ribosomal subunits or the dynamic inter-subunit bridges (Ga-

bashvili et al., 2000). Intriguingly, further sorting of the population

representing POST state complexes revealed a degree of

freedom with regard to the presence of subunit rolling (Figures

S2D–S2F). While the majority of particles did not show any sub-

unit rolling and was refined to high resolution, we obtained two

additional populations (POST-i2 and POST-i3) with �1� and

�3� of subunit rolling, respectively (Figures S2D and S2E). Due

to the limited resolution of these two states, we cannot discern



Figure 3. Imaging Ex-Vivo-Derived Polysomes Allows the Visuali-

zation of Transient States

(A–E) Close-up view of the rotated-1 PRE state A-site tRNA (A) and the post-

decoding states (B–E). (B and D) Only domain III (red) and domain II (orange)

of eEF1A feature strong density, while domain I (yellow) is fragmented. The

A/T-tRNA (dark pink) elbow is connected to the SRL and H89. (C) For the post-

dissociation state additional contacts with eS30 and uL14 are visible. A frag-

mented density of unclear origin is shown in red. (E) 18S RNA-based overlay of

decoding-sampling (yellow), decoding-recognition (orange), post-decoding

post-hydrolysis (blue) and post-decoding post-dissociation (pink) models for

eEF1A and the A/T-tRNA elbow.
whether they constitute true energetic minima of subunit rolling,

or encompass a continuous band of subunit rolling.

In total, our three-tier multiparticle refinement strategy en-

abled us to identify and visualize 11 distinct functional states of

translating human ribosomes, the majority corresponding to

elongation states. All are resolved to sub-nanometer resolution

or better (Figures S3A–S3D; Table S1) and show robust ligand-

densities (Figures 2 and S2).

Structure of the Native Human POST Complex at Near-
Atomic Resolution
After refining the largest POST population of 313,321 particle im-

ages (16% of the total data set) separately, we obtained a highly

improved cryo-EM map for the POST state with a global resolu-

tion of 4.0 Å using the 0.5 Fourier shell correlation (FSC) criterion,

whereas the 0.143 FSC criterion suggests that the map is equiv-

alent to an X-ray density map at 3.5 Å resolution (Figure S3E). We

corroborated this resolution estimate by a local resolution mea-

surement that is independent of the FSC (Figure S3F). Visual

inspection of themap agreed with the near-atomic resolution es-

timate, with the cryo-EM map (Figure 4) allowing direct observa-

tion of single-residue details for large parts of the map (Figures

4C–4F and S4A–S4D). However, intrinsically flexible expansion

segments remain less defined (Figures S3G and S3H), indicating

that these structural elements are uncoupled from the functional

state of the ribosome. Moreover, all elements endogenously pre-

sent as mixtures remain less defined, with exception of the

remarkably well-resolved P-site tRNA.

The quality of the cryo-EMmap in thewell-ordered regions ap-

pears comparable to that of recent crystal structures of eukary-

otic ribosomes (Ben-Shem et al., 2011; Klinge et al., 2011; Rabl

et al., 2011), allowing us to resolve individual nucleotides with

distinct densities for phosphates, bases, and sugars, as well

as protein backbones with clearly visible bulky side-chains.

Starting from our previous homology model (Figures S4E and

S4F) of the human ribosome (Budkevich et al., 2014), we created

an atomic model for the human ribosome (Tables S2 and S3) by

iterating multiple rounds of (semi-)manual real-space fitting, en-

ergy minimization and geometric idealization (Extended Experi-

mental Procedures; Table S4). The quality of the cryo-EM map

allows rationalization of single point mutations compared to

yeast (Figure 4E) and determination of correct residues for

ambiguous protein sequences (Figure S4A). The high signal-to-

noise-ratio of the ordered regions allows the visualization of indi-

vidual charged ions (Figures 4F, S4B, and S4C). We tentatively

assigned these as either chelated or diffuse magnesia based

on comparison to known magnesium binding sites (Jenner

et al., 2010) and binding motifs (Klein et al., 2004). In total, the

atomic model provides a detailed inventory of protein-protein,

RNA-RNA and protein-RNA interactions that define the human

ribosome in the native, unrotated POST state, while previous

high-resolution structures of the 80S ribosome where all solved

in rotated or partially rotated conformations (Ben-Shem et al.,

2011; Voorhees et al., 2014).
(F) Close-up view of the pre-recycling state showing eRF1 (shades of blue) and

ABCE1 (yellow to red). Atomic models are based on Preis et al. (2014).

See also Movie S1.
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Figure 4. High-Resolution Structure of the Human Ribosome in the POST State

(A) Surface representation of the POST state cryo-EM map filtered to 3.5 Å (blue, LSU; yellow, SSU; green, P-site tRNA; orange, E-site tRNA; purple, mRNA).

(B) Individual subunit maps with the corresponding atomic models. Segmented density corresponding to the NC (red) is shown filtered to 7.0 Å for clarity.

Segmented maps are shown turned by 80�.
(C–F) Enlarged regions of the cryo-EM map showing well-resolved (C) alpha-helices or (D) beta-strands with individual side-chains, (E and F) strong p-stacking

interactions, and (F) individual nucleotides with nearby ions.

See also Figures S3 and S4 and Tables S2, S3, and S4.
Molecular Description of Eukaryotic-Specific Bridges in
the Unrotated Configuration
Our present map facilitates the assessment of interactions be-

tween the ribosomal subunits via eukaryotic bridges in the clas-

sical, unrotated subunit arrangement. As the dynamic nature of

the intersubunit bridges is prerequisite to support large-scale

conformational changes of the ribosome, like intersubunit rota-

tion or 40S subunit rolling, molecular knowledge of the bridges

in all relevant configurations is crucial. Our high-resolution struc-

ture now validates our initial assignment of intersubunit bridges

(Budkevich et al., 2014) and reveals molecular details for most

of the intersubunit interactions in the POST state (Table S5).

Especially, the lateral eukaryotic-specific bridges eB12 and

eB13 are affected by intersubunit rearrangements. For example,

the distal part of the C-terminal helix of eL19, forming bridge

eB12, is displaced by up to 25 Å (Figure 5A) in comparison to

the yeast crystal structures (Ben-Shem et al., 2011). Remark-

ably, the interaction interface with the large groove of expansion

segment es6E on the 40S side is hardly affected by this: e.g., the

interaction between Arg163 of eL19 and U871 (yeast U813) of

es6E is maintained irrespective of the intersubunit arrangement

(Figure 5B). On the opposing side of the SSU, bridge eB13

acts akin to a tethered anchor, with a flexible linker of eL24

(residues 68–85) allowing for highly similar binding positions of

the C-terminal kinked ‘‘anchor’’ regardless of the intersubunit

arrangement (Figure 5C). Different from the lateral bridges, the

central eukaryotic-specific bridge eB14 comprising the highly
850 Cell 161, 845–857, May 7, 2015 ª2015 Elsevier Inc.
conserved peptide eL41 is largely unaffected by intersubunit re-

arrangements (Figure 5D). Interestingly, eL41 folds into a linear

alpha-helix reminiscent of an axle that binds into a ‘‘socket’’

formed between several rRNA helices of the SSU. Potentially,

eB14 could thus help defining the motion center of 40S rolling

and rotation.

Interactions of the Ribosome with a Classical P-Site
tRNA
Although ex-vivo-derived polysomes contain a mixture of all

endogenous tRNAs, the P-site tRNA density is almost com-

pletely defined to high resolution. Exceptions localize to regions

with known structural variability, especially the variable loop and

the D-stem loop (Figure 6A) (Giegé et al., 2012). The well-

resolved density of the P-site tRNA implies that at least for the

vast majority of endogenous tRNAs a single conformation is en-

forced by the P-site binding pocket. Comparison with crystal

structures of Thermus thermophilus ribosomes (Selmer et al.,

2006) demonstrates a striking level of structural conservation.

Still, we note a direct interaction between the C-terminal

Arg146 of uS9 and the tRNA at positions 33 and 35 (Figure 6B)

different from bacterial structures (Selmer et al., 2006). It is

apparently a swap of Lys145 for a tyrosine compared to bacteria

(Figures 6C andS5) that changes the electrostatic situation at the

C terminus, promoting the direct contact.

At the tRNA elbow the P-site loop around Arg64 of uL5,

monitoring P-site occupancy (Rhodin and Dinman, 2010),



Figure 5. Eukaryotic-Specific Bridges

eB12, eB13, and eB14 Are Differentially

Affected by Intersubunit Rotation

Comparison of yeast LSU crystal structures

(ribosome A, orange; ribosome B, purple) (Ben-

Shem et al., 2011) with the present unrotated

human atomic model (blue). The orientation aid

illustrates the orientation of the 80S in each panel.

(A and B) In the unrotated state, the C-terminal

helix of eL19 forming eB12 is bent compared

to the yeast structures (A), however, virtually

identical interactions are observed between eL19

and es6E (B).

(C) To visualize the flexible linker tethering the

C-terminal kinked ‘‘anchor’’ of eL24 forming eB13,

density is shown filtered to 7.0 Å. Despite a strong

displacement of the ‘‘anchor,’’ its overall shape

remains highly similar.

(D) The central bridge eB14 is hardly affected by

intersubunit rearrangements.

See also Table S5.
contacts the T-stem loop (Figure 6B). Moreover, the C-terminal

Phe106 of eL44 establishes an additional tentative contact

with the tRNA via aromatic stacking. Intriguingly, uL5 interacts

through the neighboring Asn65 side chain with the backbone

carbonyl oxygen of Gly101 in eL44, suggesting a concerted

action of both proteins at the P-site (Figure 6B). Contrary to

our in vitro ribosomal complex (Budkevich et al., 2014), we

do not observe a direct interaction of uL16 with position 1 of

the P-site tRNA. Rather, at high resolution clear density for

the residues comprising the tip of the loop is lacking, implying

heterogeneity or flexibility (Figure 6B, inset). This agrees best

with a transient interaction in the POST state, suggesting

release after guiding peptidyl-tRNA from the A/P hybrid posi-

tion to the classical P/P position in the POST state (Budkevich

et al., 2011).

At the PTC, superimposing structures of T. thermophilus con-

taining three tRNAs (Selmer et al., 2006) and Haloarcula maris-

mortui LSU containing tRNA-mimics (Schmeing et al., 2003)

with our model emphasizes the high conservation between the

three domains of life. The backbone atoms of the PTC residues

superimpose with a root-mean-square deviation of 0.77 Å and

0.84 Å, respectively. We observe identical interactions of the

P-tRNA acceptor stem where residues C74, C75, and A76 stack

(Figure 6D). C74 and C75 furthermore form Watson-Crick base

pairs with residues G4159 (Escherichia coli numbering G2252;

E. coli numbering will be given in brackets in the following) and

G4158 (G2251) of the 28S RNA P loop, respectively. The terminal

A76 is stabilized by interaction with A4359 (A2451). The well-

described A-minor interaction between A76 and the C3880

(C2063) and A4358 (A2450) pair (Selmer et al., 2006) is present

in native human ribosomes.
Cell 161, 845
Visualization of Chemically
Heterogeneous NC and mRNA
Despite the chemical heterogeneity of

the NC, we observe a continuous den-

sity extending from the P-site tRNA

into the exit tunnel, most likely repre-

senting the first five to six residues of the NC. For the amino

acid connected to the CCA-end of the P-tRNA, a smeared-

out density bulge may represent a mixture of all endogenous

side chains (Figure 6E). Limiting the resolution to 7 Å allowed

us to trace the path of the NC through the complete LSU

(Figure S6A).

Similarly to the NC, the mRNA is expected to contain mixtures

of nucleotides at each position. Although the mRNA density is

largely fragmented, we are able to trace the path of approxi-

mately 28 nucleotides when limiting the resolution to 7 Å (Fig-

ure S6B). At the A-site on the SSU, only A1824 (A1492) and

A1825 (A1493) of h44 are disordered (Figure S6C), most likely

sampling flipped-in and -out positions as no A-site tRNA is pre-

sent. At the P-site, despite the heterogeneity of codons, the

mRNA density is well resolved at full resolution (Figure S6D),

resembling the situation observed for the P-site tRNA. At the

E-site, individual bases of the mRNA are still defined, especially

at codon positions �1 and �2, but the wobble position �3 is

partially fragmented (Figure S6D).

POST State Ribosomes Undergo Stable Interactions
with E-Site tRNA
We observe distinct density corresponding to a tRNA bound

to the E-site, demonstrating that the E-site tRNA in the

POST state is at least stable enough to survive gel filtration.

Different from the well-resolved P-site tRNA, the bulk of the

E-site tRNA density is fragmented (Figure 7A), suggesting

that the E-site allows for a more relaxed binding. While we

discern no direct interactions with the SSU, on the LSU

side we observe a delocalized interaction between the

tRNA elbow and the L1 stalk (Figure S7A). The full definition
–857, May 7, 2015 ª2015 Elsevier Inc. 851



Figure 6. The P-Site tRNA Is Defined Despite Chemical Heterogeneity

(A) Cryo-EM map (mesh) and atomic model of the P-site tRNA (colored by local resolution as determined by ResMap). SSU, yellow; LSU, blue; mRNA density,

purple.

(B) Key interactions of the P-site tRNA with its binding pocket on LSU and SSU. The inset shows the fragmented density of the uL16 P-site loop (mesh).

(C and D) Comparison between prokaryotic (transparent) and human (color) (C) ASL and (D) PTC. Atomic models of the prokaryotic (PDB 2J00) and the eukaryotic

LSU were aligned based on the LSU rRNA.

(E) Cryo-EMmap (mesh) of A76 and the first residues of the NC. Stick representations depict themost abundant rotamers of each amino acid with the exception of

phenylalanine and tyrosine, where less abundant rotamers are depicted, and proline, which is not shown.

See also Figures S5 and S6.
of the CCA-end of the E-site tRNA (Figure 7B) implies that

the fragmented appearance of the majority of the E-site den-

sity is not caused by substoichiometric occupancy but by

conformational heterogeneity, which in turn may be caused

by small differences among different tRNA species and/or

flexibility/mobility. This is corroborated by the full presence

of the whole E-site tRNA when the resolution of the map

is limited to 7 Å (Figure S7B).

Unlike the body of the E-site tRNA, the acceptor stem features

a well-defined density due to a contact with the 28S RNA at

U3686 and G3711 and strong interactions of the CCA-end

with the LSU (Figure 7B). As observed for prokaryotes and

archaea, A76 is tightly packed in a sandwich between G4332

(G2421) and G4333 (C2422) forming a binding pocket excluding

aminoacylated CCA-ends (Schmeing et al., 2003). In addition,

C75 interacts by p-stacking with Tyr41 of eukaryote-specific

eL44, while in prokaryotes C75 and C74 are stabilized by inter-

nal nucleotide stacking (Selmer et al., 2006). Converse to our
852 Cell 161, 845–857, May 7, 2015 ª2015 Elsevier Inc.
findings, a preceding structure of the H. marismortui LSU in

complex with a CCA tri-nucleotide suggested that instead of

p-stacking Arg40 and Gly57 of eL44 provide additional stabili-

zation of the E-site CCA-end (Schmeing et al., 2003). However,

sequence alignment highlights that the eL44 interaction

observed in our structure likely corresponds to the general

case in eukaryotes asH. marismortui harbors an eL44 sequence

unique to halobacter. Other archaea and eukarya feature a

conserved Tyr or Phe at position 41 (Figure S5). Superimposing

the H. marismortui crystal structure onto our model indicates

that H. marismortui Phe52 occupies almost the same position

as Tyr41 in human and could potentially rearrange under phys-

iological conditions to interact with C75. Superposition also re-

veals that the loop extension of eL44 between Phe56 and Thr62,

which widens upon E-site binding, is shifted up to 4 Å when

compared to H. marismortui (Schmeing et al., 2003), most likely

due to steric clashes between tRNA and the loop extension of

eL44 (Figures 7C–7E).



Figure 7. Native POST State Ribosomes Contain an E-Site tRNA

(A) Cryo-EM map (mesh) and atomic model of the E-site tRNA (colored by local resolution as determined by ResMap).

(B) Close-up on the cryo-EM map (transparent gray) of the CCA-end of the E-site tRNA (orange) and surrounding LSU elements (blue).

(C–E) Comparison between human, archaeal, and bacterial E-site CCA-ends. Atomic models were aligned based on the LSU rRNA and depict (C) the human,

(D) the H. marismortui, and (E) the T. thermophilus CCA-end. In (D) and (E), the human model is shown in transparent gray for comparison.

See also Figures S5, S6, and S7.
DISCUSSION

The Multi-Tiered Landscape of Translation Elongation
inside the Cell
Cytosolic polysomes comprise actively translating ribosomes

sampling a large variety of functional states. Despite this het-

erogeneity, our data-driven in silico sorting scheme allowed

us to uncover 11 distinct states and visualize them with at

least sub-nanometer resolution (Figure 1). We cannot rule

out that certain more transient states were lost during our pu-

rification procedure. However, the fact that the vast majority

of particle images were assigned to bona fide functional

states and the richness in functional states covering most of

the ribosomal elongation cycle shows that the stable interme-

diates have been preserved. Comparing the relative SSU-LSU

configurations among all states (Figures S2G–S2I), we note

that in line with our preceding in vitro studies aimed at unveil-

ing key transitory states of mammalian elongation (Budkevich

et al., 2011, 2014) intersubunit rotation and eukaryotic-spe-

cific 40S subunit rolling are indeed conformational modes pre-

sent in vivo.

However, we observe neither complexes with significant head

swiveling nor complexes containing eEF2. Non-stalled eEF2 has

been observed in a subpopulation of in vitro assembled com-

plexes (Budkevich et al., 2014) and on the populations isolated

from mammalian cells that showed inactive 80S complexes
(Anger et al., 2013; Voorhees et al., 2014). Thus, eEF2 binding

to actively translating 80S ribosomes appears less stable

implying that translocation states are short-lived intermediates

in vivo. Kinetic (Guo and Noller, 2012) and structural studies

(Spahn et al., 2004, Ratje et al., 2010) have linked head swiveling

to EF-G/eEF2 containing translocation intermediates. The simul-

taneous absence of eEF2 and significant head swiveling in our

present elongation intermediates supports such a model.

While not sufficient to map the exact topology of the energy

landscape of elongation, our structural description allows

assessment of the distribution of the more stable functional

states of active polysomes in a native setting (Figure 1C, inset).

This distribution correlates with the relative energetic stability

of each state in comparison to the most stable one (Fischer

et al., 2010; Frank, 2013). We note that neither is the unrolled

configuration exclusive to the POST state nor the rolled configu-

ration to the classical PRE states. Rather, rolling appears to be a

spontaneous movement where the presence of an A-site tRNA

shifts the equilibrium toward the rolled classical PRE-state.

From the local heterogeneity uncovered by our 3D variability

analysis, it is moreover evident that the energetic minimum

corresponding to each state can potentially be split into finer

substates, given proper sorting of the particle images. While

functionally defined, each of these states features localized het-

erogeneity due to structural elements that are more flexible—in

line with the assumption of a multi-tiered hierarchical energy
Cell 161, 845–857, May 7, 2015 ª2015 Elsevier Inc. 853



landscape governing elongation (Munro et al., 2009) and protein

activity in general (Frauenfelder et al., 1991).

While after 3D variability analysis and focused classification a

major part of the POST complex can be resolved at single-resi-

due resolution, there are still regions exhibiting a fragmented

appearance. This localized disorder can be regarded as struc-

tural evidence for the finely split sub-valleys of the energy land-

scape. The most striking example is the highly localized disorder

of the bases A1824 (A1492) and A1825 (A1493) involved in A-site

decoding (Demeshkina et al., 2012; Ogle et al., 2003) in the

otherwise well-ordered h44 (Figure S6C). Both bases are likely

sampling both flipped-in and -out positions as no A-site tRNA

is present. Such flexibility has been predicted frommolecular dy-

namics simulations (Sanbonmatsu, 2006), but is in contrast to

recent X-ray crystallization data from bacterial complexes with

P-site tRNA and mRNA showing a partially preformed DC with

A1493 stably flipped-out and A1492 stably flipped-in by stacking

with A1913 (Demeshkina et al., 2012). Still, our findings can

easily be reconciled with the known kinetics of decoding by

assuming that the empty DC, behaving akin to a liquid unstruc-

tured region, rigidifies upon codon-anticodon interaction. In

this ‘‘flow-fit’’ model, the mobile decoding bases allow fast sam-

pling of the codon-anticodon duplex with the cognate tRNA

inducing a stronger binding interface and thus rigidifying the

DC with higher probability and higher speed. This matches well

the experimental observation that both cognate and near-

cognate tRNAs bind to the ribosome with the identical rates,

but that cognate tRNAs dissociate not only more slowly from

the DC compared to near-cognate tRNAs, but also exhibit faster

rates for the forward reactions, i.e., GTPase activation (Pape

et al., 1999; Geggier et al., 2010). Thus, the observed disorder

of the bases A1824 (A1492) and A1825 (A1493) in an otherwise

highly ordered environment exemplifies the potential biological

importance of mobile, more ‘‘liquid’’ regions (Dyson, 2011) and

demonstrates the potential of visualizing macromolecular ma-

chine at near-atomic resolution in a solution-like state under

near-physiological conditions.

Native Proofreading Complexes Highlight Rate-Limiting
Steps
The presence of ribosomal decoding complexes in polysomes is

not immediately expected, as decoding complexes are believed

to be short-lived intermediates. Accordingly, structural investi-

gations of ribosome-bound ternary complexes rely on the use

of non-hydrolyzable GTP analogs or antibiotics to inhibit the

transition of EF-Tu/eEF1A from the GTP to the GDP conforma-

tion (Budkevich et al., 2014; Schmeing et al., 2009; Schuette

et al., 2009; Villa et al., 2009; Voorhees et al., 2010). The visual-

ization of a non-stalled ternary complex on the human ribosome,

and of a second ribosomal decoding complex containing only

A/T-tRNA but no factor, demonstrates the power of our

approach that aims to derive structures of functional complexes

from the on-going functional cycle instead of isolated functional

complexes. Under steady-state/multi turnover conditions even

shorter-lived states may be significantly populated, as they are

constantly replenished.

Comparing the ternary complex observed from polysomes to

decoding-sampling and decoding-recognition complexes from
854 Cell 161, 845–857, May 7, 2015 ª2015 Elsevier Inc.
our preceding in vitro study with GMPPNP-stalled eEF1A (Bud-

kevich et al., 2014), we note significant differences. First, the

elbow of the A/T-tRNA has already released the stalk base and

appears more strongly bound to the sarcin-ricin loop (SRL,

H95) instead (Figure 3B). Second, there is relevant disorder of

domain I containing the GTP-binding pocket (Figure 3D). These

differences can be readily reconciled by the notion that both

sets of complexes represent different states along the pathway

of tRNA selection. For the in vitro complexes eEF1Awas trapped

in the GTP state by GMPPNP and accordingly the complexes

were observed in the initial phase of decoding before GTP

hydrolysis (Budkevich et al., 2014). As in our present study, the

chemical step is not inhibited, and based on the trajectory of

structural changes from decoding-sampling to decoding-re-

cognition (Budkevich et al., 2014) to the present complex

(Figure 3E; Movie S1), we infer that it corresponds to an amino-

acyl(aa)-tRNA,eEF1A,GDP ternary complex in the post-hydro-

lysis/proofreading state before the eEF1A dissociation and

accommodation steps. This implies that the transition to the

GDP-induced conformation of the factor and release of aa-

tRNA from eEF1A,GDP do not occur immediately upon SRL-

promoted GTP hydrolysis, but with a significant delay. This is

in excellent agreement with kinetic studies in the bacterial sys-

tem where GTP hydrolysis has been shown to be a very fast

step, whereas tRNA accommodation and especially EF-Tu

dissociation are rate-limiting during tRNA selection (Pape et al.,

1998). Furthermore, our results rationalize recent studies on

the formation and turnover of bacterial EF-Tu,GXP,EF-Ts,aa-
tRNA quarternary complexes (Burnett et al., 2013, 2014), which

proposed a novel role of EF-Ts in promoting release of aa-

tRNA from EF-Tu,GDP. The presence of a second proofreading

state containing A/T-tRNA, but lacking density for eEF1A, im-

plies that also tRNA accommodation constitutes a second

slow step after eEF1A dissociation, in agreement with the hy-

pothesis that necessary conformational changes in the tRNA

elbow to allow A/T to A/A transition resemble a stochastic trial-

and-error process and not a concerted pathway (Whitford

et al., 2010; Geggier et al., 2010). We believe that from both

post-hydrolysis states near-cognate tRNA can be rejected in

line with the concept of kinetic proofreading (Hopfield, 1974).

A Stably Occupied E-Site Is an In Vivo Feature of
Elongating Human Ribosomes
The properties of the E-site tRNA in the bacterial system have

been controversially discussed for decades and it is still not

generally agreed on whether the E-site is only transiently occu-

pied directly after translocation, or whether the E-site tRNA is

released at latter stages, i.e., during A-site occupation (Wilson

and Nierhaus, 2006). Our maps now show an occupied E-site

also in functional states subsequent to the POST state, with

three tRNAs present in the classical PRE, post-decoding and

PRE* complexes. Solely for the rotated-1 and rotated-2 PRE

complexes do we observe only two tRNAs. Remarkably, during

human translation elongation the 60S E-site appears to be al-

ways occupied by the CCA-end of either an E/E- or a P/E-

tRNA. While it can be argued that the presence of an E-site

tRNA on in vitro-assembled complexes is due to the excess of

deacylated tRNA used for technical reasons (Budkevich et al.,



2011, 2014), this argument falls short for the present ex-vivo-

derived complexes. Thus, our findings strongly suggest that sta-

ble E-site occupation in all but the rotated-1 and rotated-2 PRE

states is an in vivo feature of the human system.

Native PRE Complexes Pinpoint the Release of E-Site
tRNA
Given that our structures allow us to trace the transition from an

unrotated PRE state with three classical tRNAs to the rotated

PRE states with two tRNAs in either classical or hybrid configura-

tion, and especially due to the observation of a rotated PRE* sub-

population with A/A-, P/P-, and E/E-tRNAs, we can pinpoint the

release of E-site tRNA during human translation elongation.

Apparently, it is the rotation between the two subunits that

critically destabilizes the E-site, leading to subsequent release

of the E-site tRNA (Figure 1C). Still, while our structures definitely

support the existence of the aforementioned pathway, it has to be

noted that this observation does not preclude the possibility of

parallel alternative pathways where either E-site tRNA is released

concomitantly with intersubunit rotation, or even before rotation.

Conclusions
Our study and others have recently demonstrated that cryo-EM

has opened up the way to study the structure of the ribosome at

high resolution unconstrained by a crystal lattice. Furthermore,

by relying on thorough in silico classification, we have demon-

strated that defined structures corresponding to known and

hitherto unknown intermediate states of translation can be ob-

tained from ex-vivo-derived elongating polysomes. Different

from traditional ‘‘arrest and isolate’’ strategies, our approach

has shed light on the preferred states of the human ribosome.

This uncovered that while eEF2-mediated head rotation is para-

mount for translocation, corresponding functional states are

only sparsely populated precluding visualization, corroborating

the assumed short-lived nature of the translocation state.

Analyzing the full spectrum of significantly populated states of

elongation has not only addressed the specific point of E-site

tRNA release, but also uncovered that proofreading states of

tRNA selection, after codon recognition and GTP hydrolysis,

can be significantly populated, implying that tRNA accommoda-

tion is indeed a slower step. Importantly, despite the high degree

of complexity of a native-like polysomal sample, we were able to

overcomeheterogeneity usinga data-driven sorting scheme.This

allowed us to resolve the native POST state to near-atomic reso-

lution and thus highlight the divergent properties of P- and E-site

and uncover dynamic elements in the ribosome, such as the de-

coding bases.

EXPERIMENTAL PROCEDURES

Additional details can be found online in the Extended Experimental

Procedures.

Polysome Isolation and Grid Preparation

Polysomes were prepared from the cytosolic fraction of digitonin permeabi-

lized HEK293T cells (Hirashima and Kaji, 1970; Stephens and Nicchitta,

2007). The cytosolic fraction was further separated on a Sepharose 4B

size-exclusion column, isolating polysomes as the first peak absorbing at

254 nm. Samples were immediately prepared for cryo-EM by vitrification.
Data Collection

Electron micrographs were collected automatically on an FEI Krios micro-

scope equipped with a back-thinned Falcon II detector and on an FEI Tecnai

G2 Polara equipped with a TC-F416 CMOS camera. The total data set

comprised 51,282 micrographs yielding 1,823,338 particles (801,789 Krios,

1,121,549 Polara).

Data Processing

The data set was processed using incremental K-means-like procedures

(Loerke et al., 2010) in SPIDER (Frank et al., 1996). Initially, the two data sets

split into subsets belonging to either rotated or unrotated ribosomal com-

plexes or to artifactual particles. Particle images belonging to the rotated

PRE and unrotated POST states were separated and artifactual particle im-

ages were removed. Particle images were refined and classified further using

3D variability analysis to guide sorting. The final map of the POST state, based

on 313,321 particle images (130,953 Krios, 182,368 Polara), reached a

resolution of 4.0/3.5 Å. Cryo-EM density maps have been deposited with the

EMDB (accession number EMD-2875, EMD-2902, EMD-2903, EMD-2904,

EMD-2905, EMD-2906, EMD-2907, EMD-2908, EMD-2909, EMD-2910 and

EMD-2911) and coordinates for the POST state have been deposited with

the Protein Data Bank (entry code 5AJ0).

Model Building and Refinement

Initial atomic models of H. sapiens 40S and 60S subunits derive from our pre-

ceding study (Budkevich et al., 2014). Ligands were rebuilt based on crystal

structures of prokaryotic or archaeal tRNAs. The NC poly-alanin model was

built de novo. Overlapping stretches of the model were manually adjusted

into the cryo-EM map as rigid bodies, followed by real space refinement and

geometric idealization for well-resolved densities. Structure models were

further refined and validated using crystallography tools.

ACCESSION NUMBERS

The following accession numbers for the cryo-EM density maps reported in

this paper are available in the EMDB: EMD-2875, EMD-2902, EMD-2903,

EMD-2904d, EMD-2905, EMD-2906, EMD-2907, EMD-2908, EMD-2909,

EMD-2910, and EMD-2911. The accession number for the coordinates for

the POST state reported in this paper is PDB 5AJ0.
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(2010). The three-dimensional organization of polyribosomes in intact human

cells. Mol. Cell 39, 560–569.

Budkevich, T., Giesebrecht, J., Altman, R.B., Munro, J.B., Mielke, T., Nierhaus,

K.H., Blanchard, S.C., and Spahn, C.M.T. (2011). Structure and dynamics of

the mammalian ribosomal pretranslocation complex. Mol. Cell 44, 214–224.

Budkevich, T.V., Giesebrecht, J., Behrmann, E., Loerke, J., Ramrath, D.J.F.,

Mielke, T., Ismer, J., Hildebrand, P.W., Tung, C.-S., Nierhaus, K.H., et al.

(2014). Regulation of the mammalian elongation cycle by subunit rolling: a eu-

karyotic-specific ribosome rearrangement. Cell 158, 121–131.

Burnett, B.J., Altman, R.B., Ferrao, R., Alejo, J.L., Kaur, N., Kanji, J., and Blan-

chard, S.C. (2013). Elongation factor Ts directly facilitates the formation and

disassembly of the Escherichia coli elongation factor Tu$GTP$aminoacyl-

tRNA ternary complex. J. Biol. Chem. 288, 13917–13928.

Burnett, B.J., Altman, R.B., Ferguson, A., Wasserman, M.R., Zhou, Z., and

Blanchard, S.C. (2014). Direct evidence of an elongation factor-Tu/

Ts$GTP$Aminoacyl-tRNA quaternary complex. J. Biol. Chem. 289, 23917–

23927.

Caulfield, T., and Devkota, B. (2012). Motion of transfer RNA from the A/T state

into the A-site using docking and simulations. Proteins 80, 2489–2500.

Demeshkina, N., Jenner, L., Westhof, E., Yusupov, M., and Yusupova, G.

(2012). A new understanding of the decoding principle on the ribosome. Nature

484, 256–259.

des Georges, A., Hashem, Y., Unbehaun, A., Grassucci, R.A., Taylor, D., Hel-

len, C.U.T., Pestova, T.V., and Frank, J. (2014). Structure of the mammalian

ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP. Nu-

cleic Acids Res. 42, 3409–3418.

Dunkle, J.A., and Cate, J.H.D. (2010). Ribosome structure and dynamics dur-

ing translocation and termination. Annu. Rev. Biophys. 39, 227–244.

Dyson, H.J. (2011). Expanding the proteome: disordered and alternatively

folded proteins. Q. Rev. Biophys. 44, 467–518.

Fischer, N., Konevega, A.L., Wintermeyer, W., Rodnina, M.V., and Stark, H.

(2010). Ribosome dynamics and tRNA movement by time-resolved electron

cryomicroscopy. Nature 466, 329–333.

Frank, J. (2013). Story in a sample-the potential (and limitations) of cryo-elec-

tron microscopy applied to molecular machines. Biopolymers 99, 832–836.

Frank, J., and Spahn, C.M.T. (2006). The ribosome and the mechanism of pro-

tein synthesis. Rep. Prog. Phys. 69, 1383–1417.
856 Cell 161, 845–857, May 7, 2015 ª2015 Elsevier Inc.
Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., and Leith,

A. (1996). SPIDER and WEB: processing and visualization of images in 3D

electron microscopy and related fields. J. Struct. Biol. 116, 190–199.

Frauenfelder, H., Sligar, S.G., and Wolynes, P.G. (1991). The energy land-

scapes and motions of proteins. Science 254, 1598–1603.

Gabashvili, I.S., Agrawal, R.K., Spahn, C.M., Grassucci, R.A., Svergun, D.I.,

Frank, J., and Penczek, P. (2000). Solution structure of the E. coli 70S ribosome

at 11.5 A resolution. Cell 100, 537–549.

Geggier, P., Dave, R., Feldman, M.B., Terry, D.S., Altman, R.B., Munro, J.B.,

and Blanchard, S.C. (2010). Conformational sampling of aminoacyl-tRNA dur-

ing selection on the bacterial ribosome. J. Mol. Biol. 399, 576–595.
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A.L., Dönhöfer, A., Connell, S.R., Fucini, P., Mielke, T., et al. (2010). Head

swivel on the ribosome facilitates translocation by means of intra-subunit

tRNA hybrid sites. Nature 468, 713–716.

Rhodin, M.H.J., and Dinman, J.D. (2010). A flexible loop in yeast ribosomal

protein L11 coordinates P-site tRNA binding. Nucleic Acids Res. 38, 8377–

8389.

Rich, A., Warner, J.R., and Goodman, H.M. (1963). The structure and function

of polyribosomes. Cold Spring Harb. Symp. Quant. Biol. 28, 269–285.

Sanbonmatsu, K.Y. (2006). Energy landscape of the ribosomal decoding cen-

ter. Biochimie 88, 1053–1059.

Schmeing, T.M., Moore, P.B., and Steitz, T.A. (2003). Structures of deacylated

tRNA mimics bound to the E site of the large ribosomal subunit. RNA 9, 1345–

1352.

Schmeing, T.M., Voorhees, R.M., Kelley, A.C., Gao, Y.-G., Murphy, F.V., 4th,

Weir, J.R., and Ramakrishnan, V. (2009). The crystal structure of the ribosome

bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694.

Schuette, J.-C., Murphy, F.V., 4th, Kelley, A.C., Weir, J.R., Giesebrecht, J.,

Connell, S.R., Loerke, J., Mielke, T., Zhang, W., Penczek, P.A., et al. (2009).

GTPase activation of elongation factor EF-Tu by the ribosome during decod-

ing. EMBO J. 28, 755–765.

Selmer, M., Dunham, C.M., Murphy, F.V., 4th, Weixlbaumer, A., Petry, S., Kel-

ley, A.C., Weir, J.R., and Ramakrishnan, V. (2006). Structure of the 70S ribo-

some complexed with mRNA and tRNA. Science 313, 1935–1942.
Spahn, C.M.T., and Penczek, P.A. (2009). Exploring conformational modes of

macromolecular assemblies by multiparticle cryo-EM. Curr. Opin. Struct. Biol.

19, 623–631.

Spahn, C.M.T., Gomez-Lorenzo, M.G., Grassucci, R.A., Jørgensen, R., Ander-

sen, G.R., Beckmann, R., Penczek, P.A., Ballesta, J.P.G., and Frank, J. (2004).

Domain movements of elongation factor eEF2 and the eukaryotic 80S ribo-

some facilitate tRNA translocation. EMBO J. 23, 1008–1019.

Stephens, S.B., and Nicchitta, C.V. (2007). In vitro and tissue culture methods

for analysis of translation initiation on the endoplasmic reticulum. Methods En-

zymol. 431, 47–60.

Villa, E., Sengupta, J., Trabuco, L.G., LeBarron, J., Baxter, W.T., Shaikh, T.R.,

Grassucci, R.A., Nissen, P., Ehrenberg, M., Schulten, K., and Frank, J. (2009).

Ribosome-induced changes in elongation factor Tu conformation control GTP

hydrolysis. Proc. Natl. Acad. Sci. USA 106, 1063–1068.

Voorhees, R.M., and Ramakrishnan, V. (2013). Structural basis of the transla-

tional elongation cycle. Annu. Rev. Biochem. 82, 203–236.

Voorhees, R.M., Schmeing, T.M., Kelley, A.C., and Ramakrishnan, V. (2010).

The mechanism for activation of GTP hydrolysis on the ribosome. Science

330, 835–838.

Voorhees, R.M., Fernández, I.S., Scheres, S.H.W., and Hegde, R.S. (2014).

Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution.
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