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Nowadays, grid computing is increasingly showing a service-oriented tendency and as a

result, providing quality of service (QoS) has raised as a relevant issue in suchhighly dynamic

and non-dedicated systems. In this sense, the role of scheduling strategies is critical and new

proposals able to deal with the inherent uncertainty of the grid state are needed in a way

that QoS can be offered. Fuzzy rule-based schedulers are emerging scheduling schemas

in grid computing based on the efficient management of grid resources imprecise state

and expert knowledge application to achieve an efficient workload distribution. Given the

diverse and usually conflicting nature of the scheduling optimization objectives in grids

considering both users and administrators requirements, these strategies can benefit from

multi-objective strategies in their knowledge acquisition process greatly. Thiswork suggests

the QoS provision in the grid scheduling level with fuzzy rule-based schedulers through

multi-objective knowledge acquisition consideringmultiple optimization criteria.With this

aim, a novel learning strategy for the evolution of fuzzy rules based on swarm intelligence,

Knowledge Acquisitionwith a Swarm Intelligence Approach (KASIA) is adapted to themulti-

objective evolutionof anexpert gridmeta-scheduler foundedonParetogeneral optimization

theory and its performance with respect to a well-known genetic strategy is analyzed. In

addition, the fuzzy scheduler with multi-objective learning results are compared to those

of classical scheduling strategies in grid computing.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Gridcomputing is ahardwareandsoftwareplatformthatprovideshigh-endcomputational capabilitiesby thecooperation

of geographically distributed resources interconnected through high-speed networks [1]. It essentially consists of a shared

environment supported by a standard-based service infrastructure that enables the coordination of administrative domains

or communities computing resources [2]. Resources may differ in terms of scope, competence and structure and they are

subject to the local access and sharing policies of their associated administrative organization. Moreover, as corresponds

to non-dedicated systems, the capabilities of the available resources and reservation behaviour may change with time.

These facts together with the active arrival of heterogeneous jobs (i.e., jobs are diverse in computational needs, they can be

classified into computing or data intensive; some of the jobs can be full applications with diverse specifications and others

can be just atomic tasks [3]) and failures occurrence,make the grid a “fully dynamic environment with uncertainties” [4]. Thus,

unlike other traditional distributed systems, one of the main problems is related to the efficient coordination of resources

or scheduling in an inherent dynamic environment, which is known to be a NP-complete problem [5].

The scheduling problem in grid computing is multi-objective in its general formulation [3,4,6]. A grid performance

can be rated in terms of many different criteria which must be simultaneously considered in the scheduling process to
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achieve the objectives of the grid. Essentially, the objectives of a scheduling system in grid computing are to manage and

offer resources in a way that users demands are satisfied, what may involve the consideration of different levels and sorts

of quality of service (QoS) [7]. In fact, grid computing is increasingly showing a service-oriented tendency [8] and as a

result, providing QoS has raised as a relevant issue in such highly dynamic and non-dedicated systems. The definition of

QoS depends on the different applications and it may concern metrics regarding hardware capacity, available software

and many other resources specifications. Further, as studied in [2], QoS is usually a constraint that must be imposed on

the scheduling process. The consideration of QoS has effect on the resource selection step and then affects all the final

optimization process. Therefore, resources assignment in the scheduling process is highly influenced by the consideration

of QoS and thus, it also affects the optimization of the final scheduling objectives. Furthermore, as grid systems become

more complex and used, the specification of QoS also becomes tougher andmore demanding and requires the consideration

of multiple objectives in the scheduling. However, given the diverse nature and the large number of optimization criteria,

the simultaneous consideration of multiple optimization criteria in the scheduling process is a major challenge. In order

to optimize the behavior of a scheduler regarding multiple QoS objectives, one of the existing solutions is based on the

definition of multi-objective indexes that add different optimization objectives to obtain scalars that show the quality of

the scheduling. One of the main problems in the specification of multi-objectives indexes is given by the normalization of

the different optimization criteria. The different optimization objectives are often measured in different units and scales

what makes the specification of multi-objective indexes complex. Further, these objectives can be conflicting in such a

way that improving one objective may be to the detriment of other objectives. Nevertheless, schedulers should be able to

work simultaneously with diverse optimization objectives. In addition, it must be noted that grid performance fluctuation

makes it difficult to evaluate the scheduling strategy performance and it is claimed to be one of the main differences with

conventional distributed systems [2].

Besides, the dynamism in the grid environment makes the adaptation of schedulers to changing conditions necessary.

Adaptive scheduling strategies are those in which the grid past, current and future states are considered in every step of the

decision making process in a way that system performance is not deteriorated and thus, they are able to provide certain

levels of QoS [3,4]. Actually, it is stated that any scheduling strategy aiming to provide certain levels of QoS must consider

the grid state. In this sense, the role of fuzzy rule-based scheduling strategies have recently attracted the attention for

the scheduling problem in massive parallel machines and grids [9–11]. Fuzzy rule-based schedulers are knowledge-based

systems [12] derived from Fuzzy Rule-Based Systems (FRBSs) that incorporate grid expert knowledge and deal with the

grid state information uncertainty through the application of fuzzy logic [13–15] to provide efficient solutions. Their main

strength resides in their ability to adapt to variations in the grid conditions through the flexible featuring of the system state

and associated inference of themost suitable response. However, the successful performance of fuzzy rule-based schedulers

highly depends on the quality of their knowledge bases and thus, with the learning strategy. In spite of the existence of

some approaches facing the adaptation of fuzzy rule-based schedulers to the scheduling process [9–11], there exists a lack in

the consideration of multiple optimization parameters simultaneously in their knowledge acquisition processes. However,

a multi-objective learning for fuzzy rule-based schedulers is necessary to offer complex QoS requirements.

This work suggests the QoS provision in grid computing with fuzzy rule-based schedulers. With this aim, a multi-

objective learning strategy for fuzzy rules is incorporated to the fuzzy schedulers. Specifically, the learning strategy is based

on the adaptation of KASIA (Knowledge Acquisition with a Swarm Intelligence Approach) to the multi-objective evolution

of fuzzy rules for grid schedulers and it is founded on the Pareto general optimization theory [16,17]. The performance of

the proposed learning strategy is compared to the well-known genetic learning strategy, Pittsburgh approach and results

are analyzed in terms of convergence behaviour and accuracy considering non-parametric statistical tests. It is shown that

incorporating multi-objective techniques to the knowledge acquisition of expert fuzzy schedulers allows obtaining a set of

high quality solutions, including trade-off solutions, among contradictory optimization criteria simultaneously. Moreover,

the performance of fuzzy schedulers (incorporating the acquired knowledge with the proposed multi-objective learning)

is compared to that of widely used scheduling strategies in grid computing, EASY-Backfilling (EASY-BF) [18], First Come First

Served (FCFS) [19], Earliest Suitable Gap (ESG), ESG + Local Search(ESG + LS) and ESG + LS periodical [20–22], considering diverse

grid performance criteria through the whole scheduling process. Therefore, this work represents a new effort towards the

improvement of fuzzy rule-based schedulers and QoS provisioning in grid computing.

The rest of the paper is organized as follows. In Section 2 an overview of optimization criteria and multi-objective

scheduling in grid computing is provided. Section 3 introduces the general formulation of the scheduling problem and

presents the fuzzy scheduler organizationwithin a grid environment. The proposed knowledge acquisition process for fuzzy

meta-schedulers based onKASIA approach formulti-objective learning in grid computing is described in Section 4. In Section

5 the performance of the learning strategy is evaluated through simulations and results of the expert fuzzy scheduler are

compared to those of classical grid scheduling techniques. Finally, Section 6 concludes the paper.

2. Background

Scheduling in grid computing is described as a multi-objective problem in its general formulation [3,4,6]. An efficient

scheduling strategy must satisfy both users and administrators demands what generally involves the simultaneous opti-

mization of several scheduling optimization objectives. One challenge in the simultaneous optimization is related to the
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conflicting or contradictory nature of the diverse optimization objectives. On the one hand, it is said that an objective con-

flicts with another objective, when optimizing one of these objectives at least causes the detriment of the other one [3,4].

On the other hand, an optimization objective is considered contradictory respect to another objective when its optimization

does not only involves the deterioration of the other objective but the optimization of this one in a opposite sense (i.e.,

minimizing the first objective leads to maximizing the second one or vice versa). Since the optimization of the grid perfor-

mance is usually associated to providing a balance between an acceptable QoS for users and an efficient harnessing of the

distributed system or throughput, which are conflicting objectives, finding trade-off solutions often arises as the goal of the

optimization process [3]. Another challenge is associated to the measurement of the different optimization objectives. The

optimization objectives are generallymeasured in various scales and units and thus, a direct combination of these objectives

to define performance indexes is not a feasible option inmost of themulti-objective scheduling processes. Hence, a relevant

problem is how to combine and compare different and typically opposed scheduling optimization criteria to obtain efficient

schedules and how to incorporate these strategies to the scheduling system. Note that in this work, the terms criteria and

objective are used interchangeably, where optimization objectives/criteria are used to express the goal of the optimization

and performance objectives/criteria are used to characterize the grid system performance [4].

Different approaches can be found in the multi-objective optimization theory that consider the integration of multiple

optimization criteria. These strategies are generally classified into hierarchical and simultaneous ones [3]. On the one hand,

hierarchical approaches suggest the consideration of priority levels among the diverse optimization criteria and these pri-

orities are established based on the final purpose of the grid, e.g., in high-performance grids, it can be commonly beneficial

to further improve makespan compared to response time and an analog reasoning can be followed in case users demands

are to be prioritized [3]. Therefore, in the hierarchical approach, the scheduling optimization objectives are ranked and an

optimization process is conducted in such a way that higher priority criteria cannot be deteriorated when improving less

significant ones. This approach is mainly suitable for those cases in which the optimization objectives are quantified in dif-

ferent units and scales and their combination in a single performance index is not feasible, e.g., aggregation of makespan and

resource usage. Some instances of the application of the hierarchical approach in jobs scheduling can be found in [23,24]. The

main drawback of the hierarchical approach is given by the specification of priorities among objectives which is not feasible

in many situations. On the other hand, in the simultaneous approach, several optimization objectives are to be optimized at

the same time. A critical aspect of this approach is given by the high computational costs associated to the optimization of

multiple conflicting or contradictory optimization objectives. To deal with the problem, the Pareto optimization theory [17]

is studied as an efficient solution. Within the Pareto optimization theory several strategies can bementioned. However, two

main strategies can be found for grid scheduling: the weighted sum approach and the general approach [3,4].

In the weighted sum approach the diverse optimization objectives are aggregated in a single multi-objective index. This

index indicates the quality of the schedule in such away that the problem can be addressed as single-objective. Theweighted

sum approach presents a major problem; the aggregation of several optimization objectives into a single index requires the

specification of weighted factors to compensate the different scales and units. This increase the complexity of the search

process since it involves addingnewvariables to theproblem.Thisway, inmanypractical situations it is generallynecessary to

set these parameters with prior tuning processes and users or applications optimization criteria predefined priorities. Xhafa

et al. suggest the selection of makespan and flowtime as optimization criteria for the scheduling problems in grid computing

[3,4,25]. Specifically, the aggregation of these two indexes into a single index is considered. However, in spite of the fact

that both makespan and flowtime are measured in the same units, they are associated to incomparable ranges and thus, an

alternative formulation for these optimization criteria such asnormalized flowtimemust be used. Also, suitableweight factors

to compensate the diverse optimization criteria must be found and a prior tuning process is suggested. This way, authors

state that the combination of these optimization criteria into a single index allows the application of single-objective meta-

heuristics. Also, Carretero and Xhafa [26] present a scheduling implementation based on genetic algorithms for independent

job scheduling in grid computing and both hierarchical andweighted approaches are considered formakespan and flowtime.

A similar approach can be found in [6] where a modification of AFSA (Artificial Fish Swarm Algorithm) is proposed and

different optimization criteria are optimized on the basis of predefined priorities. On the other hand, Li and Li [27] apply the

concept of utility function to combine andoptimize three optimization criteria in computational grids, i.e., payment, deadline

and reliability, and these multi-dimensional requirements are combined as an overall utility function by the weighted sum

of the various QoS utility functions. Also, Izakian et al. [28] suggest the composition of conflicting temporal optimization

criteria into a single weighted performance index for scheduling in grid computing. However, in the weighted simultaneous

approach, it is discussed whether it is always feasible to determine efficient values for the weight factors given their high

dependence with the specific grid state and dynamism of the grid. Furthermore, it is argued whether this approach can be

considered as multi-objective in a strict sense.

The second simultaneous approach is the general approach. The general approach suggests to compute the Pareto optimal

solutions [29]. In contrast to the weighted-based simultaneous approach, the search for Pareto optimal solutions does not

need prior tuning processes to find suitable weight factors to combine different optimization objectivesmeasured in diverse

scales andunits. Further, nopriorities have to be established among thediverse optimization objectives. Hence, this approach

provides a general strategy that cannot only be suitable but necessarywhen objectives cannot be prioritized or appropriated

scaling factors cannot be found. The concept of Pareto optimality has been used for multi-objective optimization in several

scheduling strategies. In [30] a scheduling strategy for computational grids based on resources providers bids is introduced

by Sample et al. In this strategy a bid or index that considers the needed service, expected start time for the service and
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information related to size and complexity of the service input parameters is defined and the scheduling strategy decision is

taken foundedon thePareto optimality of thebest schedules foundedon this bid. Specifically, a bid is said tobePareto optimal

in case it outperforms it in terms of time, cost and performance certainty the rest of bids. Also, in [31] some preliminaries

studies about the simultaneous combination of bi-criteria for scheduling in grid computing and evolutionarymulti-objective

(EMO) using the Pareto dominance are presented. In addition, Benedict and Vasudevan [32] study the problem of scheduling

scientific workflows in grids by a niched Pareto-based strategy considering the workflow completion subject to deadlines.

Talukder et al. [33] introduceMulti-objectiveDifferential Evolution (MODE)with the aimof generating trade-off in schedules

with respect tousersQoSdemands in termsof timeand cost andPareto fronts are obtained for differentworkflows.Moreover,

regarding adaptive scheduling, Franke et al. [9,34] presented a fuzzy schema for scheduling independent jobs on parallel

machines which are increasingly part of computational grids. They formulate an objective function that prioritizes different

users averageweighed response time and results are analyzed regarding the Pareto front of all possible scheduling decisions

for the workload. In this work, the simultaneous optimization of diverse objectives though the use of Pareto general theory

is suggested for the provision of QoS in grid scheduling. Specifically, the aim is to find a set of non-dominated solutions or

rule bases (RBs) that can be used by the fuzzy rule-based scheduler depending on the conditions of the grid. Non-dominated

solutions are obtained through the general theory of Pareto to avoid the problems associated with simultaneous weighted

and hierarchical approaches in the multi-objective optimization of schedulers as studied in this section.

3. Problem formulation and fuzzy rule-based scheduler specification

The general formulation of the scheduling problem in a hierarchical grid can be summarized as follows [35]. The grid

system, GS, is made up of a set of G geographically distributed sites or resources domains RDj , GS = {RD1, RD2, . . . , RDG}
that aggregate Hj heterogeneous computational resources, RDj =

{
rj,1, rj,2, . . . , rj,Hj

}
and share capabilities in order to

satisfy users and applications demands on the basis of own local access and availability policies that may change with

time. In a grid environment jobs, J = {J1, J2, . . . , JL}, dynamically arrive and specify the required properties for the target

resource in order to satisfy compatibility such as the time limit for the execution (given by the queue or user), the required

machine architecture, the demanded software licenses, the operating system, the network type or the file system. Thus, a

job describes a user’s application that can demand a single (i.e., sequential) or more CPUs (i.e, parallel). Several machines

within the same cluster or site can be co-allocated to execute a given parallel job butmachines belonging to different clusters

cannot be co-allocated to process the same parallel job [36].

Regarding scheduling of users jobs, two scheduling levels can be differentiated in a hierarchical grid. On the one hand,

Local ResourceManagers (LRMs) are associated to resources domains and they are responsible for the allocation of workload

among machines within their sites. It must be highlighted that workload corresponds both to grid and local users. Some

examples of LRM are OpenPBS [37] and Condor [38]. On the other hand, the cooperation of LRM is addressed by a second-

level scheduling system or meta-scheduler. Thus, the goal of a meta-scheduler is to manage the grid resources efficiently

through the local scheduling systems coordination. Also, the role of Grid Information Systems (GISs) must be pointed out in

the scheduling structure. Considering the heterogeneous and dynamic nature of grids, the information related to resources

state must be considered to achieve a proper schedule [2]. In this sense, GIS are in charge of providing resources domains

state (i.e., gathering and predicting site dynamic information, such as CPU capabilities andmemory size, software resources,

network bandwidth and domains background load) to meta-schedulers and they are supported by associated LRM reports.

To this end, LRM use tools such as Network Weather Service [39], Hawkeye [38] and Ganglia [40]. Furthermore, an example

of GIS can be found in The Globus Monitoring and Discovery System (MDS) [41]. Hence, within this grid system structure,

our work is focused on the improvement of meta-schedulers.

Scheduling in grid computing is aNP-complete problem in its general formulation andmany strategyhave been suggested

to obtain an efficient planning [5,21]. Scheduling strategies can be classified into queue-based and schedule-based strategies.

On the one hand, queue-based strategies such as EASY-Backfilling (EASY-BF) or Earliest Deadline First (EDF), are characterized

by their simplicity and short algorithms runtimes [22] and can be found of today’s production systems (e.g., Condor [42] or

Grid Service Broker [43]). A relevant drawback of queue-based strategies is related to the provision of QoS. These strategies

cannot offer many QoS guarantees since they do not consider the current conditions of the grid to compute the schedule. On

the other hand, scheduled-based methods such as EGS (Earliest Gap), are founded on up-to-date grid state information [44].

However, the state of the grid system, in contrast to classical distributed systems, is uncertain due to the high dynamism and

thus, the grid available information is mostly imprecise and can deteriorate the efficiency of the schedule. This way, recent

works are focused on the design of adaptive scheduling strategies [3,4] able to work in a system subject to uncertainty. In

this sense, it is important to underline the consideration of FRBSs.

Fuzzy rule-based meta-schedulers are expert systems that provide scheduling decisions on the basis of the reasoning

applied over the sites state information and their own knowledge of the environment. The state of the grid sites is given by

a set of features, so-called grid input features, that characterize their current conditions. The general structure of a fuzzy

rule-based scheduler within the grid environment is shown in Fig. 1. Essentially, the aim of the expert meta-scheduler is to

provide an indicator of suitability for each available site to be used in the current planning. To do this, in every scheduling

step, the state of each site is obtained considering a number of grid input features and this state in numerical format is

transformed into a linguistic format that considers the fuzzy uncertainty of this information. Next, the knowledge of the
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Fig. 1. Fuzzy rule-based meta-scheduling system structure.

expert system given in the form of fuzzy rules is applied to this fuzzy to obtain the indicator of suitability for the considered

site. Finally, once themeta-scheduler has all the indexes for all the sites, the site with a higher rate is selected for the current

schedule.

Specifically, the basic operation of a fuzzy rule-based meta-scheduler can be summarized as the combined operation of

three main systems for every site, namely, fuzzification, inference and defuzzification systems:

Fuzzification system. First, in the fuzzification stage, the expert scheduler selects the finite set of features to describe the

grid sites state andmakes a fuzzy characterization of these features crisp values in away that the inherent uncertainty of the

information provided by GIS systems is considered. This selection of sites features must be done in a way that a compromise

is reached among the accuracy in the state description and the simplicity of the expert system associated knowledge, i.e.,

knowledge base (KB). The scheduler knowledge is given in the form of associations or “IF-THEN” rules relating the grid input

features and the expert system output. Specifically, in this work, a Mamdani encoding [45,46] is considered for the rules

where a rule Ri can be formulated as

Ri = IF x1is Ai,1 and/or . . . xn is Ai,n THEN y is Bi (1)

where (x1, . . . , xn) represents the n considered grid input features to describe the grid state and Ai,m and Bi denote the

associated fuzzy sets for the grid input feature xn and output for rule i, respectively. Hence, a large number of input features

can significantly increase the search space and enlarge the learning processes. In this work, grid features are selected

following previous works in the design of fuzzy rule-based meta-schedulers [11,47]. Specifically, the following grid input

features are considered which concern both actual resources state and performance evolution,

• Number of free processing elements (FPE): Number of free processing elements within a participating resource domain,

RDi.• Previous tardiness (PT): Sum of tardiness [48] of all finished jobs in resource domain RDi.• Resource makespan (RM): Current makespan [4] or finalization time of the last considered job in the RDi.• Resource tardiness (RT): Current tardiness of jobs assigned to the RDi.
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• Previous score in deadline evaluation (PS): Previous deadline score of already finished jobs in the RDi.• Resource score or number of delayed jobs (RS): Number of non delayed jobs so far in the RDi.• Resources in execution (RE): Number of resources executing jobs within the RDi currently.

Hence, the fuzzification interface addresses the task of converting the crisp input values characterizing the site state into

fuzzy values to be used in the inference phase. Specifically, in the fuzzification interface, the aim is to retrieve the current

values for the grid input features and to obtain the degree to which these inputs belong to each rule for every site.

Inference system. Next, in the inference stage, for every site the scheduler applies its knowledge, i.e., RB, to obtain a

fuzzy set showing the suitability of the site to be selected in the next schedule. Once the inputs are fuzzified, the degree of

membership to which every input is satisfied for every rule, is known. In the inference stage, inference operators are applied

to determine a fuzzy set that indicates the overall result for every rule for every site.

Defuzzification system. Finally, the fuzzy output for every site is translated into a crisp index in the defuzzification stage

in a way that a quantifiable value can be associated to the site suitability to be selected. As described above, decisions are

founded on the analysis of every rule of the expert system knowledge base as individual. However, in order to obtain a final

crisp decision, rules contribution must be first joined for every site. The combination of output fuzzy sets of every rule into

an overall output fuzzy set, is done in the aggregation process. Finally, a defuzzification method is applied in order to obtain

a crisp output index for every site from the resulting output fuzzy set obtained in the aggregation process.

Theseprocesses, fuzzification, inferenceanddefuzzification stagesare repeated foreveryparticipatingsite ineveryschedule.

Thisway, theexpert scheduler founds itsdecisionon theacquisitionof several (i.e., numberof sites) resourcedomainselectors

or indexes in every schedule. The higher the site index themore suitability of the site to be selected for the current schedule.

It must be noted here that the execution cost of the proposed meta-scheduler corresponds to that of fuzzy logic systems

where a fuzzification stage is required for every site in the grid. The implementation of these systems is in fact a very easy

and quick process and what it is more important to allow scalability, their software cost are low [45].

As studied in this section, the fuzzy rule-based meta-schedulers reasoning strategy is mainly driven by the application

of the system knowledge to the system state and this way the quality of this knowledge is decisive for the their performance

where quality can be rated in terms of diverse optimization criteria. Therefore, this knowledge must be robust to withstand

changes in conditions on the grid due to dynamism. This is why the expert systemmust employ knowledge gained from an

extended learning of the environment in which it is located. Thus, in this work real traces provided by a current operating

environment and including a wide period of operation are used in a way that the scheduler can be learnt considering the

dynamic behavior of the network due to various causes such as the absence or addition of domains or resources, changes in

access policies or failures. On the other hand, a significant modification of environmental conditions with respect to those

the systemhad been trainedwith (due to a high dynamism) can lead to a loss of quality of the expert system knowledge. This

is the reason why the proposed scheduler must be provided with the ability to adapt to this high dynamism by considering

learning processes that are able to improve the quality of its scheduling. The incorporation of an efficient learning system for

themeta-scheduler prevents the loss of quality of the scheduling strategy at the advent ofmajor changes in the conditions of

the grid system.Hence, the knowledge acquisitionprocess is critical for the efficient operation of fuzzy rule-based scheduling

systems. In the next section a multi-objective learning approach based on swarm intelligence is presented.

4. Multi-objective swarm-based knowledge acquisition strategy

In this work, expert meta-schedulers RBs are suggested to be acquired through the adaptation of KASIA strategy [11]

to multi-objective learning. KASIA is a swarm intelligence-based strategy for the acquisition of fuzzy RBs inspired by the

stochastic evolutionary algorithm Particle Swarm Optimization (PSO). Although the original aim of PSO was to simulate

the choreography of birds within a flock graphically, it has derived in an optimizer which has proved effective in complex

multidimensional problems in a wide range of research areas including renewable energies [49] and electromagnetics [50].

Further, PSO has been adapted to knowledge acquisition in FRBSs [11]. The major advantages of KASIA over other classical

learning strategies in FRBSs such as Pittsburgh [51] andMichigan [52] approaches are related to its accuracy and convergence

velocity. Furthermore, it is to be mentioned its simple implementation and reduced number of fixing parameters. In KASIA,

each individual is known as a “particle” Pi of a swarm which moves within a multidimensional search space and represents

a whole fuzzy RB,

Pi =

⎡
⎢⎢⎢⎢⎢⎢⎣

ai1,1 ai1,2 . . . ai1,n bi1 ci1

ai2,1 ai2,2 . . . ai2,n bi2 ci2

. . . . . . . . . . . . . . . . . .

aim,1 aim,2 . . . aim,n bim cim

⎤
⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2, ...,NP (2)

where every row denotes the encoding of a Mamdani type fuzzy rule [45], n, m describe the number of input variables and

rules, respectively and NP represents the number of particles in the swarm. Thus, antecedents aij,k are represented as an

integer in the interval
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Algorithm 1Multi-objective knowledge acquisition with a swarm intelligence approach, KASIA.

Initialization

1. Swarm: the size of the swarm (Num_particles) and the number of rules of each individual (m),

number of iterations of the algorithm (Num_iter), initial value for inertia weight (ω0), weight factors d1 and d2.

2. Random initialization of RB-swarm position: rules initialization

for every particle/RB i and every rule j,

(a) Check no zero antecedents are considered to keep rules coherence:

while(
∑n

k=1 a
i
j,k == 0 )

Random setting of aij,k for random k (rule initialization if antecedents are zero)

end

(b) if | aij,k | > NFin then Eq. (11)

(c) if | bij,k | > NFout then Eq. (12)

(d) if cij /∈ {1, 2} then Eq. (13)

end

3. Random initialization of velocity of particles in the swarm.

4. Check velocity satisfy maximum and minimum values corresponding to Vmax and Vmin after initialization.

5. Initialize best local non-dominated solution (P#
ND), where this solution corresponds to:

fi(P
#
ND(t)) ≤ fi(PTi )∀i = 1, ..., q

and ∃i ∈ {1, ..., q} with fi(P
#
ND(t)) < fi(PTi ))

6. Initialize best global non-dominated solution (P∗
ND), where this solution corresponds to:

fi(P
∗
ND(t)) ≤ fi(PT ) ∀i = 1, ..., q

and ∃i ∈ {1, ..., q} with fi(P
∗
ND(t)) < fi(PT ))

Swarm search for best locations loop

For (Num_iter),

For (Num_particles)

1. Update position of a particle in the swarm. Eq. (9).

2. Check if constraints are satisfied in RB-swarm position.

(a) Check no zero antecedents are considered to keep rules coherence:

while
∑n

k=1 a
i
j,k == 0

Random setting of aij,k for random k (rule initialization if antecedents are zero)

end

Check antecedents, consequents and connectives restrictions

(b) if | aij,k | NFin then Eq. (11)

(c) if

midbij,k | > NFout then Eq. (12)

(d) if cij /∈ {1, 2} then Eq. (13)

3. Evaluate the quality found by the particle.

Particles ++, repeat the process above for the following particle in the swarm

end

Update best global non-dominated solution (P∗
ND).

For (Num_particles)

1. Update best local non-dominated solution (P#
ND).

fi(P
#
ND(t)) ≤ fi(PTi )∀i = 1, ..., q

and

existsi ∈ {1, ..., q} with fi(P
#
ND(t)) < fi(PTi ))

2. Update velocity. Eq. (18).

3. Check velocity satisfy maximum and minimum values corresponding to Vmax and Vmin after initialization.

Particles ++

end, repeat the process above for the following particle in the swarm

iter++

end

Return Solution: best global non-dominated solutions (P∗
ND).

aij,k ∈ [−NFin, NFin] , j ∈ {1, 2, ...,m}, k ∈ {1, 2, ..., n} (3)

where NFin is the number of fuzzy sets for input j. Also, consequents bij are bounded to

bij ∈ [−NFout, NFout] , j ∈ {1, 2, ...,m} (4)

NFin, NFout ∈ N (5)

with NFout , the number of output sets.



R.P. Prado et al. / International Journal of Approximate Reasoning 53 (2012) 228–247 235

In addition, two values for the connectives are considered: AND and OR connectives are represented by “1” and “2”,

respectively,

cij ∈ {1, 2} (6)

In a first stage of the algorithm, the swarm is initialized with a set of NP particles randomly distributed in the search

space and a single real function f is definedmaking up the objective function or fitness to be improved. The fitness indicates

the quality of a given position for particles. Hence, each particle position is updated through iterations with the aim that

a better value for the objective function f is achieved. To be precise, the position updating is done on the basis of particle

velocity matrix modification where velocity at every iteration is presented as a matrix for each particle Pi:

Vi =

⎡
⎢⎢⎢⎢⎢⎢⎣

vi1,1 vi1,2 . . . vi1,n vi1,n+1 vi1,n+2

vi2,1 vi2,2 . . . vi2,n vi2,n+1 vi2,n+2

. . . . . . . . . . . . . . . . . .

vim,1 vim,2 . . . vim,n vim,n+1 vim,n+2

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

where vij,k ∈ [Vmin, Vmax] , j ∈ {1, 2, ...,m}, k ∈ {1, 2, ..., n + 2}. Vmax and Vmin denote the maximum and the minimum

values allowed for the velocity, respectively. Moreover, three different velocity components drive the whole optimization:

the inertia component or particles leaning to keep their current velocity, the self-recognition component or inner tendency to

return to their best position, P#(t) and the social component that represents the particles inclination to move towards the

best position found by the whole swarm, P∗(t). Specifically, particles velocity updating is formulated as

Vi(t + 1) = ω ⊗ Vi(t) ⊕ (d1 ∗ r1) ⊗ (P#(t) � Pi(t)) ⊕ (d2 ∗ r2) ⊗ (P∗(t)�Pi(t)) (8)

where d1, d2 are constant weight factors, r1, r2 are random factors in the [0,1] interval, ω represents inertia weight, ⊗
indicates multiplication and ⊕ and � denote regular addition and subtraction of matrices, respectively. Finally, particles

change their location according to the following expression:

Pi(t + 1) = Pi(t) ⊕ Vi(t + 1) (9)

and this updating process is repeated until the stopping condition is satisfied (i.e., a number of fixed iterations or aminimum

required fitness quality). As found in literature [34] about FRBSs knowledge acquisition in massive parallel processing

environments, the specification of the stopping condition in bio-inspired optimization algorithms is generally founded on

the statistical study of the system behaviour within the particular environment.

A relevant factor for convergence in this learning strategy is related to the suitable setting of inertia weight ω, whereas

high values for ω advantages global searches within the considered space, low values fosters local searches. Hence, ω can

be fixed to balance both types of searches which may be suitable according to the stage of the optimization and, in this

sense, to decrease the necessary iterations to reach an optimum position. To be precise, ω is generally set to decrease its

value through iterations in order to intensify local searches around final positions once the global space has been explored.

A starting value of 1.2 and progressive decrease until 0 is generally accepted as a good selection forω [25]. Also, other works

[53,54] suggest the consideration of adaptive strategies such as the usage of fuzzy controllers, where control parameters are

fixed depending on the considered problem. Specifically, the following expression is used for the inertia weight,

ω(iter) = ω0 · e(−iter/Numiter)c (10)

where ω0 denotes the initial inertia weight, iter represents the current step of the learning process, Numiter is the total

number of steps in the learning process and c is a constant that allows establishing the convergence speed for ω in a way

that a small value forω just is achieved in the last iterations to prevent the early stagnation of particles in the global search at

the same time a fine search of good solutions around final positions or local search in the last iterations is done. On the other

hand, given that antecedents, consequents and connectives of rules making up a RB may exceed the search space through

the updating process, Eq. (9), some constrains are imposed in every iteration in a way that RBs coherence is kept:

aij,k =
{
NFin if aij,k > NFin

−NFin if aij,k < −NFin
(11)

bij,k =
{
NFout if bij,k > NFout

−NFout if bij,k < −NFout
(12)

cij =
{
1 if cij < 1

2 if cij > 2
(13)



236 R.P. Prado et al. / International Journal of Approximate Reasoning 53 (2012) 228–247

In addition, in order to keep the knowledge coherence, every rule j of Pi is initialized in KASIA in the advent of a simul-

taneous null value for its antecedents (if
∑n

k=1 a
i
j,k = 0 ⇒ init aij).

It is to be underlined that KASIA is not supported by genetic operators, such as crossover ormutation, but particles update

their location just taking into account their own internal velocities. This reduction in the number of control parameters

implies a smaller computational effort generally and it also simplifies the setting of the optimization strategy in each

problem. On the other hand, particles have memory and take into account unidirectional information exchanges, what

significantly reduces the number of communications among individuals needed. Moreover, in contrast to other classical

genetic learning strategies, a higher control over particle convergence behaviour can be achieved and as a consequence, the

required number of particle movements or RB evaluations can be reduced significantly. Thereby, KASIA strategy is selected

for the evolution of RBs in this work.

As introduced above, particles in KASIA learning strategy are moved through the search space in every iteration under

the consideration of their own best reached location or best local knowledge, and the whole swarm best reached position

or best global knowledge (i.e., P#(t) and P∗(t), respectively). Hence, a relevant aspect in KASIA is the selection of those

locations or particles selection mechanism. In this process it is determined which individual of the swarm has reached a

better position and also, the best position found for every particle along the whole optimization process. This selection is

addressed on the basis of how good or bad a position is. Thereby, some criteria must be established to decide whether a

particle location is better than another one. In the scalar case, a direct reasoning can be followed: the better objective fitness

f a position has, the better this position is. Nevertheless, in the multi-objective case, not only one criterion is considered to

determine if one location is better than another. Thus, since no order of solutions can be set in a natural way founded of

the values of fitness and since no priorities have to exist in the set of optimization criteria, positions quality must be ranked

considering a non-scalar approach. The multi-objective problem can be formulated as [29]

min F(Pi) = (f1(Pi), ... , fq(Pi)) (14)

s.a : Pi ∈ PT (15)

where PT is the set of all possible particles or feasible locations of the problem and q is the number of optimization criteria

to be considered in the optimization process. In general, the optimization criteria or objective fitness involved fi can present

conflicting or even contradictory interests in a way that optimizing an objective may cause at least the deterioration of

another objective. Hence, situations where there exist no solution able to minimize all criteria in a simultaneous way are

possible. In this sense, multi-objective evolutionary strategies can offer a set of possible solutions that are considered to be

optimal in some criteria. Let two particles of the swarm be denoted as P1 and P2, P1 is said to dominate P2 if and only if F(P1)
is partially less than F(P2),

fi(P1) ≤ fi(P2) ∀i = 1, ..., q (16)

and ∃i ∈ {1, ..., q} with fi(P1) < fi(P2) (17)

In this work, the concept of Pareto dominance above is used to select the best positions found by every particle P#ND(t) and
by the whole swarm P∗

ND(t), i.e., a particle P is said to be non-dominated if no other particle P′ found by the algorithm can

improve some optimization criteria without worsen simultaneously other solution in at least other optimization criteria.

Hence, at every iteration, KASIA strategy is modified in such a way that best solutions are found among the non-dominated

ones. To beprecise, P∗(t) is selectedwithin all thenon-dominated solutionswithin the swarmand P#(t) is selected among all

the non-dominated solutions found by the associated particle during the search. With this aim, Goldberg’s ranking method

[29] is adapted to KASIA. This approach directly uses the concept of Pareto dominance to define the selection process. It

establishes a ranking among the solutions so that the non-dominated solutions of the population have a lower ranking

value than the dominated ones and therefore a greater probability of being selected. Also, it assigns equal probability of

reproduction to all non-dominated individuals in the population. Thereby, the updating of every particle velocity can be

formulated as

Vi(t + 1) = ω ⊗ Vi(t) ⊕ (d1 ∗ r1) ⊗ (P#ND(t) � Pi(t)) ⊕ (d2 ∗ r2) ⊗ (P∗
ND(t) � Pi(t)) (18)

where P#ND(t) denotes the best position or non-dominated position found by particle Pi during the search process up to

iteration t

fi(P
#
ND(t)) ≤ fi(PTi) ∀i = 1, ..., q (19)

and ∃i ∈ {1, ..., q} with fi(P
#
ND(t)) < fi(PTi)) (20)

with PTi all the solutions foundbyparticle Pi. On the other hand, P∗
ND(t) indicates the best position or non-dominated position

found the whole swarm during the optimization until iteration t

fi(P
∗
PO(t)) ≤ fi(PT )∀i = 1, ..., q (21)

and ∃i ∈ {1, ..., q} with fi(P
∗
ND(t)) < fi(PT )) (22)
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with PT representing all the solutions found by the swarm. It must be mentioned that in case of obtaining multiple non-

dominated solutions as a result of the learning strategy, the non-dominated base to be used by the scheduler, is selected

according to the established preferences for the system that are associated to the purpose and the state of the grid system

that must be obtained through a later automatic process. Hence, as a result of the multi-objective learning strategy, the

scheduler canobtaina setofnon-dominatedsolutionsaccording to thedifferentoptimizationobjectives. Thisprovidesa setof

knowledgebases that canoffer different levels of quality in termsof thediverse optimizationobjectives. In this sense, to allow

the scheduling strategy to offer guarantees in its performance, the learning process must be enough exhaustive to acquire

knowledge bases that are robust to address dynamic environmental conditions. Thereby, in this work the theory of Pareto

optimization is used to let expert schedulers learn onmultiple objectives simultaneously and find non-dominated solutions.

Following this strategy the system is able to obtain quality RBs onmultiple objectives which allow an efficient management

of the grid in different perspectives either by the optimizationof anobjective or offer of a balanced solutionbetweendifferent

objectives. On the other hand, the convenience of using one of the different bases obtained in the simultaneous optimization

is to be determined through a later automatic learning process. Through this automatic process, the conditions of the grid in

which is favorable to use these bases are learnt. The suggestedmulti-objective KASIA strategy is summarized in Algorithm 1.

Among all the optimization objectives in grid computing, the importance of makespan and flowtime is to be underlined.

Makespan and flowtime are contradictory optimization objectives, i.e., theminimization of makespan leads to themaximiza-

tion of flowtime and vice versa [31,55], whose simultaneous minimization is desired. The minimization of the latest job

finalization time or makespan is formulated as [3,4],

minSi∈Sched{maxj∈JTj} (23)

where Tj denotes the timewhen job Jj finishes, Sched indicates all thepossible schedules and J represents the set of considered

jobs, and the minimization of flowtime:

minSi∈Sched

⎧⎨
⎩

∑
j∈J

Tj

⎫⎬
⎭ (24)

On the one hand,makespan is generally presented as a general grid productivity index [3,4] and good scheduling results are

associated to small values of this indicator. On the other hand, flowtime is considered to be a critic criteria for interactive

applications in grid computing and it is taken into account to provide a grid performance index from users perspective.

The combined consideration of these criteria can be extensively found in literature [3,4,25] as presented in Section 2 to

optimize grid schedulers in terms of productivity or throughput and jobs response time simultaneously. Hence, they are

also considered in this work to test the proposed strategy.

5. Simulation results and discussion

Considering the difficulties associated to tests in real settings, the fuzzy meta-scheduler with multi-objective KASIA

learning is analyzed through simulations. To be precise, a Gridsim-based toolkit, Alea, is considered in its last version 2.1 [56].

Alea software allows the study of scheduling strategies in settings andworkload conditions founded on traces obtained from

real world. Particularly, in this work, a scenario based on the Czech National Grid Infrastructure Metacentrum project [57]

is proposed. Metacentrum is associated to CESNET (operator of academic network of the Czech Republic -National Research

and Education Network, NREN) whose final goal is to contribute towards the development of a large virtual computational

infrastructure by the cooperation of multi-institutional resources worldwide. Also, Metacentrum has contributed to several

international grid projects such as EGEE III, EuAsiaGrid and EGI_DS Metacentrum. The suggested scenario is based on 14

Metacentrum sites integrating 210 machines and a set of 806 of heterogeneous CPUs. Table 1 summarizes sites features.

Table 1

Metacentrum-based grid resources.

Cluster CPU speed Main memory CPU Operating Number of Total number

(MHz) size (KB) type system machines of CPUs

cluster_0 1500 48,000,000 Itanium2 Linux 1 8

cluster_1 2200 32,000,000 Opteron Linux 1 16

cluster_2 3200 1,009,000 Xeon Linux 10 10

cluster_3 2600 131,182,840 Opteron Linux 5 80

cluster_4 1600 1,005,000 AthlonMP Linux 16 32

cluster_5 2400 1,048,576 Xeon Linux 32 64

cluster_6 2659 15,565,060 Xeon Linux 36 148

cluster_7 3056 2,021,000 Xeon Linux 35 70

cluster_8 1600 1,024,000 Opteron Linux 10 20

cluster_9 2400 4,000,000 Opteron Linux 3 6

cluster_10 2000 4,000,000 Opteron Linux 23 92

cluster_11 3000 4,546,800 Xeon Linux 19 152

cluster_12 2660 27,343,000 Xeon Linux 8 64

cluster_13 2360 15,200,000 Xeon Linux 11 44
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Fig. 2. Fuzzy sets for grid features and resource domain selector.

Moreover, resources maintenance and reservation behaviour (i.e., initial time a machine fails, becomes reserved, dedicated

or unavailable and associated duration), resources queues setting parameters, and workload characterization are obtained

fromMetacentrum facilities traces retrieved in January 2009, available at [58]. Workload in our scenario is made up by a set

of jobs that arrive dynamically and specify the required properties for the target resource in order to satisfy compatibility. A

job represents a user’s application that is associated to an arrival time and computational needwhich can require sequential

or parallel usage of processing units. The used workload traces follow the MWF format (Metacentrum Workloads Format)

[36,58]where the job identifier (job ID), associated jobuserorownerpriority, list of properties tobemet in the targetmachine

(i.e., number of CPU, CPU type, operating system, etc.) and arrival time at the scheduler are indicated for every considered

job [36]. Specifically, in our simulations we consider traces of 2000/2400 jobs (for training and validation, respectively) to

show the performance of the proposed learning strategy.

In this scenario, the fuzzy rule-basedmeta-scheduler is learned through the proposedmulti-objective knowledge acqui-

sition strategy based on KASIA. Fig. 2 illustrates these features associated fuzzy sets for the input features of the scheduler as

presented in Section 3 and output. As shown, three gaussian shaped fuzzy sets are considered to characterize input features,

corresponding to low, medium and high levels. Also, Fig. 2 shows the scheduler single output or resource domain selector

fuzzy sets representing very low, low, medium, high and very high levels. These sets can mathematically expressed as

μ
(xm)
i (z) = 1

σ
(xm)
i

√
2π

exp

⎧⎨
⎩−(z − τ

(xm)
i )2

2σ
(xm)2
i

⎫⎬
⎭

{
z ∈ R

� | z ≤ 1
}

(25)

where τ
(xm)
i and σ

(xm)
i represent the mean and standard deviation.

Furthermore, a classical learning strategy in FRBSs, genetic Pittsburgh approach, is considered for comparison. This

strategy is selected in a way that the suggested schema can be fairly compared in terms of computational effort to classical

learning strategies in FRBSs. It is to be noted that in contrast to other classical learning schemas such as Michigan [52], in

Pittsburgh approach every individual of the population makes up a RB to be evolved through a set of iterations so-called

generations [51]. Hence, every generation involves the evaluation of a set of RBswhich is also the case of the proposedmulti-

objective KASIA approach that considers the evaluation of every swarm individual at every iteration. Moreover, Pittsburgh

approachhas shownabetter accuracy in theoptimizationof fuzzy rule-basedmeta-schedulersknowledge [10]. Configuration

for both strategies are shown in Tables 2 and 3. It must be pointed out that the sizes for the RBs for these strategies are based

on previous studies in the initialization of RBs in the learning of fuzzy rule-basedmeta-schedulers in grid computing for the

same number of variables and fuzzy sets [59]. Further, as in the case of the proposed strategy, in the Pittsburgh approach

the determination of the quality of the bases, which is necessary for the selection process, is based on the Pareto dominance

concept and the Goldberg’s ranking strategy [29].

Fig. 3 shows the evolution of non-dominated solutions on average in 30 experiments for swarm and genetic-based

strategies considering grid performance contradictory objectives (i.e., makespan and normalized flowtime [3]) though 100

iterations with sampling iterations [25 40 55 70 85 100]. As it can be observed, the accuracy of the generated solutions is

improved with the MO-KASIA strategy. Also, it is shown this strategy is able to exercise a deeper exploration of the search

space around final locations than the genetic approach. It is to be noted that the distance of non-dominated solutions for

MO-KASIA in convergence locations is significantly reduced with respect to non-dominated solutions in previous ending

iterations. In this sense, the role of inertia weight setting must be pointed out. Inertia weigh ω allows the configuration

of converge rate and stagnation level in the swam-based strategy. However, in genetic-based algorithms stagnation occurs
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Table 2

Parameters configuration for MO-KASIA approach.

Parameters configuration

MO-KASIA ω = 0.9 d1 = 2, d2 = 2 Number of particles/RBs(NP) = 18 RBsize = 15

Table 3

Parameters configuration for MO-Pittsburgh approach.

Parameters configuration

MO-PittsburghSelection rate (elitism) λ = 0.9 Mutation rate = 0.1e(−iter/Numiter ) Population size(PS) = 20 init max RBsize = 20

Table 4

Training results in grid Metacentrum for the swarm-based and genetic-based learning strategies.

Result (s) Max Min Avg. Standard deviation Confidence interval (95%)

MO-KASIA (makespan) 1,961,649.032 1,625,058.071 1,721,337.030 95,005.094 1,685,861.544 , 1,756,812.515

MO-KASIA (flowtime) 74,359.577 65,687.445 67,929.438 1,812.246 67,252.735 , 68,606.142

MO-Pittsburgh (makespan) 1,937,984.100 1,648,163.117 1,789,834.330 87,350.822 1,757,216.996 , 1,822,451.663

MO-Pittsburgh (flowtime) 69,549.474 66,507.055 67,923.402 716.827 67,655.734 , 68,191.069

when every individual presents the same genetic code and thus, crossover has little or non effect on the population. Hence,

the swam-based strategy can prevent this phenomenon. To be precise, a high inertia weight is considered in a way that

particles in the swarm are allowed to stay in a sawing motion around the best global solution and so best fitness locations

may be found in convergence positions. Thereby, it is shown that a good set in Pareto dominance sense can be obtained by

the multi-objective consideration of the KASIA approach which also achieves an efficient guiding of the search process.

Additionally, the final average non-dominated solutions of the learning process (corresponding to Fig. 3f) and the final

solutions for the 30 experiments and both strategies are illustrated together in Fig. 4. It can be observed that the multi-

objective KASIA approach is able to achieve a greater accuracy in the simultaneous optimization of grid performance opposed

optimization criteria both on average non-dominated and final solutions. Also, as shown in Fig. 4b, the proposed approach

increases the diversity of the final solutions which is relevant regarding the provision of different levels of QoS in the grid.

Further, Table 4 summarizes statistical results. To be precise, results are studied in terms of minimum (Min), maximum

(Max), average (Avg), standard deviation and 95% confidence interval regarding both optimization criteria. The fact that the

multi-objective KASIA outperforms genetic-based strategy on average by 3.83% in terms of makespan is illustrated. However,

it is also shown that both strategies results in terms on average flowtime are similar. Furthermore, multi-objective swarm-

based strategy best location (Min) improves in 1.4% in terms of makespan and 1.23% flowtime, respectively, what proves the

swam-based strategy ability to achieve a deeper exploration of the search space. On the other hand, it is also observed that

multi-objective KASIA presents highermaximum values in terms of flowtime. This could be expected given that this strategy

is able to reach the minimum values in makespanwhat generally leads to an increase in flowtime.

In order to analyze the superiority of our learning strategy non-parametric statistical tests are conducted. Non-parametric

statistical tests are useful to contrast whether the distribution of a variable is the same for two populations or if this variable

tends to differ in one of them considering sampling data. In thiswork it could be interesting to study the results formakespan

and flowtime for the two learning strategies which are compared: MO-KASIA approach and Pittsburgh approach. First, to

determine if it is possible to make non-parametric tests, the normality of the sampling is studied. Results for the two

approaches show that there is no normality in the samples and thus, a non-parametric statistical test can be made to

compare the methods. Specifically, a non-parametric test based on the sum of ranges of Wilcoxon or Mann-Whitney is

considered for comparison, which is a well-knownmethod available if several statistical applications such as R [60] or KEEL

[61]. To make the comparison, two observations have been made: the first one related to makespan and the second one

related to flowtime.

Observation 1

The values of makespan for the two different populations (MO-KASIA and Pittsburgh approaches) with sampling data of

size 30, respectively, are considered as in previous sections. The null hypothesis (i.e., the hypothesis that is intended to be

contrasted) is that the sum of the ranges of the Pittsburgh-MO approach is higher than the one associated to the MO-KASIA

approach. In our case, the obtained value for Wilcoxon W is 649, and the confidence value (p-value) is 0.001646. Thus,

the analysis confirms the hypothesis. Therefore, the value for the first objective, i.e., makespan, is higher for the Pittsburgh

approach, and thus, a worst performance is observed for the Pittsburgh scheduler.

Observation 2

In the first observation, results for makespan have been analyzed. In this observation, results for flowtimewith sampling

data of size 30 and the two different populations (MO-KASIA and Pittsburgh approaches) are studied. As in the previous

observation, the null hypothesis shows that the sum of the ranges in the Pittsburgh-MO approach is higher than the MO-

KASIA approach one. To be precise, in this case, Wilcoxon W is 567, and the confidence value (p-value) is 0.0425. Thus,

the hypothesis is validated after the analysis. This way, the value for the second objective, i.e., flowtime, is higher for the

Pittsburgh-MO approach, as it occurs in observation 1. Table 6 summarizes the results of the non-parametric tests.
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(a)Average non-dominated solutions. Iteration 25.
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(b) Average non-dominated solutions. Iteration 40.
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(c) Average non-dominated solutions. Iteration 55.
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(d) Average non-dominated solutions. Iteration 70.
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(f) Average non-dominated solutions. Iteration 100.

Fig. 3. Evolution of average non-dominated solutions for genetic and swarm-based learning approaches through sampling iterations.
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Fig. 4. Final average non-dominated solutions in the evolution and final training results in 30 experiments with the swarm-based and genetic-based learning

strategies.

Table 5

Scheduling strategies results for MO-KASIA, EASY-BF, FCFS, ESG, ESG + LS and ESG + LS periodical in validation scenario.

Metric/strategy MO-KASIA EASY-BF FCFS ESG ESG + LS ESG + LS periodical

Makespan (s) 1,696,475.511 1,749,586.008 1,944,220.064 1,973,151.408 1,973,151.408 1,973,151.408

Flowtime (s) 87,390.805 87,491.471 88,721.759 91,395.383 95,474.501 83,379.182

Number delayed jobs 174.5 125.0 172.0 143.0 156.0 151.0

Weighted usage (%) 44.04 44.47 33.55 34.73 34.14 34.74

Classic usage (%) 53.01 47.01 38.63 41.45 40.54 40.91

Tardiness (s) 4,580.235 3,235.311 4,346.803 1,311.627 2,159.932 1,274.822

Wait time (s) 44,917.39 43,897.14 45,176.48 37,974.54 45,756.35 31,485.74

Slowdown (s) 186.965 184.352 186.572 15.454 24.839 17.522

Awrt (s) 156,642.650 210,885.070 193,895.867 256,401.198 239,370.660 244,917.654

Awsd (s) 1.76414 1.70910 1.74431 1.34796 1.51796 1.32881
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Fig. 5. Validation results in 30 experiments with the swarm-based and genetic-based learning strategies.

In addition, the acquired knowledge in 30 experiments for both strategies are evaluated in a validation grid scenario. To

be precise, Metacentrum-based scenario workload is increased by 16.67% (a total of 2400 jobs) and an alternative machine

failure and reservation behaviour is considered. Fig. 5 presents rule-bases results in the new setting. As observed, multi-

objectiveKASIAacquired fuzzy rule bases are able to keep their greater accuracywith respect to genetic-basedapproachwhat
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Table 6

Results summarization of non-parametric tests based on the sum of ranges of Wilcoxon.

Observation index/parameter Wilcoxon W P-value Hypothesis

Makespan 649 0.001646 Validated: makespan, is higher for the Pittsburgh-MO approach

Flowtime 567 0.0425 Validated: flowtime, is higher for the Pittsburgh-MO approach

shows the robustness of its knowledge in dynamic conditions. Moreover, in order to further evaluate the meta-scheduler

performance within the grid environment and the quality of the obtained rule bases, the fuzzy scheduler performance is

studied in a range of complementary grid performance criteria, namely, number of delayed jobs [21], weighted usage [62],

classic usage [63], tardiness [48],wait time [63], slowdown [63],averageweighted response time (awrt) [63] andaverageweighted

slowdown (awsd) [63]. Further, the performance of the fuzzy meta-scheduler with multi-objective KASIA learning strategy

is compared to that of some classical scheduling strategies in grid systems nowadays considering the same scenario in the

same configuration. Recent works in the field of grid and cluster scheduling are focused on both queue and schedule based

techniques and thus, a comparison with these two types of scheduling algorithms are provided. On the one hand, regarding

queue-based strategies, a comparison to FCFS [19] and EASY-BF [18] is entailed. On the other hand, performance of the

proposed fuzzy strategy with respect to schedule-based strategies is analyzed. Schedule-based techniques are considered

in simulations by Earliest Suitable Gap (ESG) strategy and Local Search (LS) based methodologies, namely ESG, ESG + LS and

ESG + LS periodical [20–22], where ESG is the schedule-based version of the queue-based backfilling strategy founded on the

CCS system algorithm [64]. Table 5 presents results for these strategies taking into account both the grid optimization and

complementary performance criteria.

First, in order to compare the validation results for all the scheduling strategies, the next statistical procedure is followed

for the two optimization objectives,makespan and flowtime and every classical scheduling strategy. First, it is supposed that

μ0 is the obtained value for the optimization objective by the classical scheduling strategy andμ is the average result of the

fuzzy strategy withMO-KASIA learning. Next, an hypothesisHo is considered: the value for the optimization objective of the

classical strategy equals the average result obtained by the fuzzy scheduler with MO-KASIA, i.e., μ0 = μ. This hypothesis

is to be contrasted with the alternate hypothesis H1: the average result in the optimization criteria of the fuzzy strategy

with MO-KASIA is lower than this value obtained with the classical strategies, i.e., μ0 > μ. Finally, we calculate μ and we

confirm that the hypothesis H1 is true against the hypothesis initially considered Ho. Hence, we verify that the average in

the both optimization objectives obtained with MO-KASIA are lower than the ones obtained with the classical scheduling

methods. Specifically, it is shown that the fuzzy scheduler with swarm-based learning outperforms makespan by 3.04% the

most precise of the rest of strategies in this sense, (i.e., EASY-BF), at the same time it is able to keep the scheduler performance

quality in terms of flowtime. On the other hand, it is also observed that ESG + LS periodical strategy achieves themost accurate

solution in flowtime. Nevertheless, it must be pointed out that this improvement is associated to the worst performance in

terms of makespan. Specifically,makespan is 14.02% less efficient than the one achievedwith the fuzzy schedulerwithmulti-

objective swarm-based learning. Besides, as far as machine usage is concerned, it is shown that the fuzzy meta-scheduler

achieves a major harnessing of grid resources. To be precise, it outperforms in terms of classic usage in with respect to the

best competitor in this sense, EASY-BF, by 11.33%. This result was expected since a significant reduction of jobs completion

time is generally associated to a more efficient harnessing of resources. Also, it is significant to highlight the scheduler

efficient performance in awrt in comparison to the rest of strategies in spite of slowdown deterioration regarding ESG-based

strategies.

Finally, the evolution of all the scheduling strategies performance is compared graphically through the whole grid oper-

ation. Specifically, the performance of the fuzzy meta-scheduler using the RB with best trade-off in terms of makespan and

flowtime is compared given the relevance and difficulty of minimizing in these objectives simultaneously in a grid system

[3,55]. In Fig. 6 the execution of jobs regarding waiting and running states together with the requested CPU is presented.

It is observed that the fuzzy scheduling with swarm-based learning is the only strategy able to achieve no waiting jobs

states up to the advent of workload peaks (i.e., days between 12 and 16). Moreover, an analog behaviour can be detected

regarding used and available CPUs as also shown in Fig. 6. In addition, as discussed for Table 5, jobs execution is significantly

faster for the fuzzy scheduler and it can be appreciated in the time axis. On the other hand, Fig. 7 illustrates grid resources

usage in terms of cluster and machine average usage per day. Figs. 7(a)-(f) illustrate the cluster usage per day during the

whole simulation time in a gradual scale where colors close to dark red and dark green represent high and low usage rates,

respectively. Also, black indicate that the cluster is down. It can be appreciated that the fuzzy scheduler with MO-KASIA

successes in providing a high usage for a range of clusters up to the end of jobs execution in contrast to the rest of strategies,

where low usage rates are frequent in the final stages of workload completion. As shown in Fig. 7(a), all the clusters with the

scheduler with MO-KASIA learning reach high rates of utilization in the simulation and workload is not concentrated in a

set of clusters as it occurs in EASY-BF or FCFS, Fig. 7(b) and (c). For instance, note that clusters 5 and 13 are not employed at all

during the operance of EASY-BF strategy and that they are scarcely used in FCFS. Also, in Fig. 7(e)-(l) it is observed that the

proposed fuzzy schema achieves a more regular average machine usage per day through the whole simulation with respect

to that of the classical scheduling strategies. Finally, Table 7 shows an example of RB obtained with the proposed strategy.
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(a)MO-KASIA (b) EASY-BF

(c) FCFS (d) ESG

(e)ESG+LS (f) ESG+LS periodical

(g) MO-KASIA (h) EASY-BF

(i) FCFS (j) ESG

(k) ESG+LS (l) ESG+LS periodical

15

Fig. 6. Waiting and running jobs/requested CPU evolution for scheduling strategies.
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(a)MO-KASIA (b) EASY-BF

(c) FCFS (d) ESG

(e)ESG+LS (f) ESG+LS periodical

(g) MO-KASIA (h) EASY-BF

(i) FCFS (j) ESG

(k) ESG+LS (l) ESG+LS periodical

16

Fig. 7. Sites/machines day usage evolution for scheduling strategies.
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Table 7

Example of obtained RB with MO-KASIA strategy.

Rule base obtained with MO-KASIA

1. If (FPE is LOW) and (RM is not LOW) and (RT is LOW) and (PS is LOW) and (RS is not LOW) and (RE is not HIGH) and (MEM is LOW) then
(OUTPUT is not HIGH) (1)

2. If (FPE is not HIGH) and (RT is not LOW) and (RS is not LOW) and (RE is not LOW) and (MEM is LOW) then (OUTPUT is not VERYLOW) (1)

3. If (RM is not LOW) and (RT is not LOW) and (PS is not LOW) and (RS is LOW) and (RE is not LOW) and (MEM is not MIDDLE) then (OUTPUT
is VERYHIGH) (1)

4. If (FPE is LOW) and (RM is LOW) and (RS is not HIGH) and (RE is not HIGH) and (MEM is not HIGH) then (OUTPUT is LOW) (1)

5. If (FPE is not MIDDLE) or (RM is not HIGH) or (RT is LOW) or (PS is not MIDDLE) or (RS is not LOW) or (RE is not MIDDLE) or (MEM is not
MIDDLE) then (OUTPUT is LOW) (1)

6. If (RM is not HIGH) and (RT is notMIDDLE) and (PS is not LOW) and (RE is not LOW) and (MEM is not LOW) then (OUTPUT is not VERYLOW)
(1)

7. If (FPE is not HIGH) and (PS is not LOW) and (RS is LOW) and (MEM is LOW) then (OUTPUT is MIDDLE) (1)

8. If (FPE is notMIDDLE) and (RM is notMIDDLE) and (RS is LOW) and (RE is LOW) and (MEM is notMIDDLE) then (OUTPUT is not VERYHIGH)
(1)

9. If (FPE is not LOW) or (RT is not HIGH) or (PS is not LOW) or (RS is not HIGH) or (MEM is not LOW) then (OUTPUT is VERYLOW) (1)

10. If (FPE is LOW) and (RM is not MIDDLE) and (RT is not MIDDLE) and (PS is not MIDDLE) and (RS is not LOW) and (RE is LOW) and (MEM
is not LOW) then (OUTPUT is not LOW) (1)

11. If (PS is not LOW) or (RS is MIDDLE) or (RE is not MIDDLE) or (MEM is not HIGH) then (OUTPUT is not MIDDLE) (1)

12. If (FPE is not HIGH) and (RM is not HIGH) and (RT is not LOW) and (PS is not HIGH) and (RS is not LOW) and (RE is not MIDDLE) and
(MEM is LOW) then (OUTPUT is not LOW) (1)

13. If (FPE is not HIGH) or (RM is not HIGH) or (RT is LOW) or (PS is not MIDDLE) or (RS is not MIDDLE) then (OUTPUT is not MIDDLE) (1)

14. If (FPE is not HIGH) and (RM is not LOW) and (PS is LOW) and (RS is not MIDDLE) and (RE is MIDDLE) and (MEM is not MIDDLE) then
(OUTPUT is LOW) (1)

15. If (FPE is LOW) and (RM is not HIGH) and (RT is HIGH) and (PS is MIDDLE) and (RS is MIDDLE) and (MEM is not LOW) then (OUTPUT is
VERYLOW) (1)

6. Conclusions

The provision of QoS in grid scheduling requires the consideration of the resources state and thus, dealing with the high

dynamismanduncertainty of resources is relevant. Fuzzy rule-based schedulers are knowledge-based systems characterized

by their ability to cope with imprecisions in the grid state and are emerging as an alternative for the scheduling problem.

However, an expert fuzzy scheduler performance is strongly related to the quality of its knowledge and in this sense, with

the learning or optimization processes. Also, the scheduling problem is multi-objective in its general formulation and the

provision of QoS needs that several objectives are considered in the scheduler optimization. Furthermore, these objectives

can present conflicting or contradictory interests in a way that optimizing an objective may cause at least the deterioration

of another one. In this work, the general Pareto optimization theory is considered for the adaptation of the KASIA swarm-

based learning strategy to the multi-objective optimization of fuzzy rule-based schedulers in grid computing. Simulations

results show that this multi-objective learning approach in the optimization of contradictory optimization criteria (i.e.,

makespan and flowtime) is able to increase the accuracy and robustness of its final solutionswith respect to classical learning

strategies in FRBSs with the same computational effort. Moreover, the performance of the fuzzy scheduler with swarm-

based learning improves that of classical strategies in grid computing, EASY-BF, FCFS, ESG, ESG + LS and ESG + LS periodical.

Specifically, it is observed that the multi-objective fuzzy rule-based scheduler operation improve results in the objectives

used for optimization and a more efficient harnessing of grid resources.
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