
INFORMATION AND COMPUTATION 87, 241-263 (1990)

An Algebra and a Logic for NC’

KEVIN J. COMPTON*

EECS Department, Unioersity of Michigan,
Ann Arbor, Michigan 48109

AND

CLAUDE LAFLAMME~

Department of Mathematics, Universiry of Toronto,
Toronto, Onlario, Canada M5.S 1Al

Presented here are an algebra and a logic characterizing the complexity class
NC’, which consists of functions computed by uniform families of polynomial size,
log depth circuits. In both characterizations, NC’ functions are regarded as func-
tions from one class of finite relational structures to another. In the algebraic
characterization a recursion scheme called upward tree recursion is applied to a class
of simple functions. In the logical characterization, first-order logic is augmented by
an operator for defining relations by primitive recursion where it is assumed that
every structure has an underlying relation BIT giving the binary representations of
integers. ‘c 1990 Academic Press, Inc.

1. INTRODUCTION

Several recent papers have provided a new insights into the structure of
the complexity class NC’ (see Barrington (1986) and Barrington and
Thtrien (1987)), the class computed by a family of polynomial size, log
depth circuits. We examine the structure of this class from a logical point
of view by presenting an algebra and a logic characterizing it. This paper
appeared in an earlier version as Compton and Laflamme (1988). At
almost the same time, results similar to those in Section 3 of this paper
appeared in Barrington, Immerman, and Straubing (1988). We will make
precise the differences between their results and ours presently.

The original definition of NC’ imposed a log space uniformity condition
on the circuit family; that is, there is an algorithm generating the circuit for
inputs of length n in space O(log n). However, later papers showed that

* Research partially supported by NSF Grant DCR 86-05358.
’ Research partially supported by NSERC of Canada and FCAR of the Providence of

Quebec.

241
0890-5401/90 $3.00

Copyright b 1990 by Academic Press, Inc
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82725436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

242 COMPTON AND LAFLAMME

other uniformity conditions are more natural. Following Cook (1985) we
adopt a uniformity condition known as E*-untformity, which is explained
in Section 2.

Our algebra is in the spirit of the algebras Gurevich (1983) used to
characterize LOGSPACE and PTIME sets. Gurevich characterized
LOGSPACE by an algebra of functions on finite structures generated in
the same way the primitive recursive functions are generated on the natural
numbers. Similarly, we characterize NC’ by an algebra .d generated by
applying a recursion scheme called upwurd tree recursion to a class of
simple functions.

Our logic is in the spirit of the logics Immerman (1986) and Vardi
(1982) used to characterize PTIME, and the logics Immerman (1987b)
used to characterize other complexity classes. We show that first-order
logic augmented by an operator for defining relations by relationuf
primitive recursion (i.e., the scheme of primitive recursion restricted to rela-
tions) characterizes NC’ provided that all structures have a relation BIT
giving the binary representations of elements.

Algebras characterizing complexity classes date back to the beginnings of
the complexity theory. Ritchie (1963) gave an algebra characterizing deter-
ministic linear space and Cobham (1965) gave an algebra characterizing
PTIME. These were algebras of functions over the natural numbers, unlike
the algebra presented here. The algebra of primitive recursive functions is
another example of a number theoretic algebra. Lind (1974) gave a number
theoretic algebra characterizing LOGSPACE. Gurevich (1983) formulated
a framework for characterizing complexity classes with algebras on finite
structures. Earlier work of Fagin (1974), Immerman (1986, 1987b), Vardi
(1982) and Lynch (1982) characterized various classes using logics on
finite structures.

Other logical methods have been used to characterize complexity classes.
Buss (1986) uses proof theory to characterize several classes. Clote (1989)
uses Buss’s framework to characterize NC (defined in the same way as NC’
except that circuits may have depth (log n)k); this characterization draws
on some ideas in an earlier unpublished number theoretic algebra for NC’
(with PTZME and LOGSPACE uniformity conditions) due to Clote and
Cook. Allen (1989) gives another algebra for NC.

Immerman (1987a) presents a logic similar in some respects to ours; it
augments first-order logic with an operator for computing the transitive
closures of width 5 graphs (where structures have the underlying relation
BIT). The proof that this logic characterizes NC’ can be found in
Barrington, Immerman, and Straubing (1988). These authors remark that
augmenting first-order logic by quantifiers for multiplying elements of some
nonsolvable group such as S,, rather than by an operator for computing
transitive closures of width 5 graphs, obtains the same result.

AN ALGEBRA AND A LOGIC FOR NC ’ 243

Our logic instead incorporates the more natural operation of defining
relations by primitive recursion. The relationship to logics capturing other
complexity classes is clearer in this context. Least fixed-point logic, the
logic Immerman (1986) and Vardi (1982) showed captures PTZME
(assuming that structures have an underlying linear order), can be viewed
as first-order logic together with an operator for defining relations
inductively. From the results in Gurevich (1983), one can show that
LOGSPACE is captured by first-order logic together with an operator for
defining functions by primitive recursion. (An underlying linear order is not
needed here-it can be defined using primitive recursion.) But primitive
recursion is just a particular kind of inductive definition. We capture NC’
by first-order logic together with an operator for defining relations
by primitive recursion, but now it appears necessary to have BIT as an
underlying relation.

Rather than considering the classes of structures satisfying fixed senten-
ces in a logic (the usual method for capturing a complexity class) we inter-
pret structures by means of a fixed sequence of formulas. This change in
approach allows us to characterize complexity classes of functions rather
than sets.

Why study algebras and logics for complexity classes?
One reason is that they give a better understanding of structure. For

example, Barrington (1986) showed that the word problem for any finite
nonsolvable group is complete for NC’ via constant depth reductions.
Evaluating a word over a finite group by multiplying elements in order is
a paradigm of primitive recursion. Regarding Barrington’s result, we may
wonder just how much of the computational power of the constant depth
reductions is needed. Our logic provides the answer: just enough to com-
pute binary representations of integers and compute first-order connectives
and quantifiers.

Another reason is that they provide an easy means to verify that
problems are in a complexity class. This is perhaps more important for
NC ’ because there is a messy uniformity condition to be verified. (For
circuits of depth O(log2 n) and higher, a simpler uniformity condition may
be used; see Ruzzo (198 1).) Very often it is ignored or glofssed over. With
our algebra or logic it is immediate.

We might hope that algebras and logics would provide the means to
establish the complexities of problems not easily analyzed, although as yet
there are no examples of this. Perhaps with NC’ there will be. After all,
constructing circuits or alternating Turing machines is like programming in
a low level language, while algebras and logics are like high level languages.

This brings us to our last reason. Algebras and logics may provide the
basis for programming language design. Our logic can be regarded as a
purely sequential characterization of NC’ since primitive recursion is

244 COMPTON AND LAFLAMME

usually evaluated sequentially. This means that it is easier to think about.
Adding a richer selection of predefined functions to the logic may produce
a language in which programs are easily understood, but also easily
compiled into circuits or some other parallel architecture.

We thank the referee for helpful comments; in particular, the observation
that downward tree recursion is a consequence of upward tree recursion
(Lemma 3.1). The proof given there is a modified version of the proof
supplied by the referee.

2. BACKGROUND

In this section we review basic definitions and results. The following
definition is one of several equivalent definitions found in the literature. It
is the most convenient one for our purposes.

DEFINITION. A log time bounded random access alternating Turing
machines is given by a tuple

where Q ~ and Q v are the universal and existential state sets, C is the
tape alphabet, q. E Q A u Q v is the initial state, q,$ Q I\ u Q v is
the check state, m log n is the time bound on inputs of length n, k is the
number of work tapes, and 6, and 6, are the transition functions. A4 has
k + 3 tapes: an input tape with no head, and an index tape, a timer tape,
and k work tapes, each with a read/write head. Each configuration of M
has two possible successors given in the usual way by 6, and 6, (unless the
state of the configuration is qc, in which case there are no successors). A
configuration whose state is qc is accepting if and only if the content of the
index tape is a, i, where a is a tape symbol, i is the binary representation
of an integer, and the symbol at position i on the input tape is a. A
configuration whose state is in Q h is accepting if both of its successor con-
figurations is accepting. A configuration whose state is in Q v is accepting
if at least one of its successor configurations is accepting. At the beginning
of the computation the head on the timer tape is at position rm log nl. At
each step of the computation the timer head moves one cell to the left. If
the timer runs out, M enters qc. We also assume that when M enters q,,
all tape heads are reset to the leftmost cell of each tape. A string is accepted
if the initial configuration for that string is accepting.

We can define various complexity classes by means of random access
alternating Turing machines. An alternate method is by circuits.

AN ALGEBRA ANDALOGICFORNCl 245

DEFINITION. A circuit family is a sequence Q = (c(, , g2, . . .) of fan-in 2
combinational circuits. An NC ’ function is a sequence F = (F, , F,, . . .) of
functions computed by a polynomial size, log depth circuit family a.
Following Cook (1985), we also stipulate that G(must be E*-uniform, as
defined below. (E*-uniformity is a notion due to Ruzzo (1981) who called
it U E* -uniformity.)

Fix a circuit family 51 and suppose that the gates in each circuit x, are
labeled with distinct integers. Further suppose that the two inputs of each
AND-gate and OR-gate are labeled L and R. The extended connection
language for CI is the set of tuples (n, r, S, t, M’), where r and s are bit
sequences labeling gates in rl,, there is a direct chain of gates from gate r
to gate s, the type (AND, OR, NOT) of gate r is t, and u’ is a string over
the alphabet {L, R} describing the input sequence along the path from r to
S. Then a log depth circuit family CY is E*-uniform if membership of a tuple
(n, r, S, t, VV) in the extended connection language can be determined by a
random access alternating Turing machine in time O(log n).

For the moment, think of NC’ functions as mappings on {0, 1 }*. We
usually distinguish between NC’ functions, for which the associated circuits
may have multiple outputs, and NC’ sets, for which each circuit has a
single output indicating acceptance or rejection. The two notions are easily
related by defining for each NC’ function F a set A, consisting of all pairs
of bit sequences (u, u) satisfying the following: 1111 = IF(u v has precisely
one occurrence of 1, say in the ith position; and the ith bit of F(u) is 1.
Then it is easy to verify that F is an NC’ function if and only if A, is an
NC’ set.

The proof that our algebra d characterizes NC’ depends on a theorem
of Ruzzo showing that NC’ sets are precisely those accepted by random
access alternating Turing machines in time O(log n). In view of the discus-
sion above we can reformulate Ruzzo’s result as follows.

THEOREM 2.1. A function F is in NC ’ if and only if A F i,s recognized by
a log time bounded alternating random access Turing machine.

Now we review the framework for viewing functions as mappings
between relational structures rather than strings.

DEFINITION. A relational similarity type 0 is a set of relation symbols
with assigned arities. (We assume throughout that r~ is finite.) A a-structure
consists of a set (called the domain) together with relations of the
appropriate arities corresponding to each symbol of c.

Let S(a, n) denote the set of a-structures with domain n =
(0, 1, ..., n - 1). A relation of arity k on n is represented in the usual way
by a bit sequence of length nk. We identify each o-structure in S(a, n) with
the concatenation of bit sequences representing its relations.

246 COMPTON AND LAFLAMME

Fix relational similarity types (T and T. A structural function from
a-structures to r-structures (written F: (T + T) is a sequence F=
(F,, F2, . ..). where F,,: S(a, n) + S(z, n).

Structural functions occur often in model theory, for example when one
class of structures is interpreted in another.

Henceforth we will view NC’ functions as structural functions computed
by E*-uniform circuit families. This point of view is not really a restriction
since input and output strings can always be represented as structures, but
it also seems to correspond more closely to the way problems are for-
mulated for circuit complexity classes. For example, we would naturally
represent n-bit integer addition as a structural function F: o --f z where the
similarity type c contains two unary relation symbols and z contains a
single unary relation symbol. To represent the highest carry bit in the sum,
add a 0-ary relation symbol to T. For Boolean matrix multiplication, cr
would contain two binary relation symbols and t would contain a single
binary relation symbol.

DEFINITION. A global relation of arity k for 0 is a function which,
applied to a structure of S(a, n), yields a relation of arity k on n. A global

function of arity k and coarity 1 is a function which, applied to a structure
of S(a, n), yields a function from n” to n’. To avoid confusion, global func-
tions will always be denoted by lower case letters and structural functions
will be denoted by upper case letters. Assuming n 2 2 we can associate with
each global relation of arity k for n its characteristic glohal,function of arity
k and coarity 1 in the obvious manner.

This is the same approach taken in the standard Tarski semantics for
first-order logic: a formula defines a global relation, which is to say, it
yields a relation on each structure.

DEFINITION. For a structural function F: o + 5, we define x,., the
characteristic global function of F, as follows. If F applied to a a-structure
(n, S,, S,) yields a T-structure (n, T, , T,), then x,,. applied to
(n, S,, S,) yields a function xi x .. x xr, where x, is the characteristic
function of relation T,. (When it is convenient we denote a relation symbol
and the relation it interprets in a particular structure by the same symbol,
for example symbols S, and T, above.)

3. AN ALGEBRA FOR NC'

In this section we present an algebra ,d of global functions on
o-structures.

AN ALGEBRA AND A LOGIC FOR NC ’ 247

DEFINITION. The class of simple functions is the smallest class of global
functions containing the functions listed below (for each k :> 0) and closed
under composition. In each case x denotes a sequence x, , xk of elements
from n. Wherever y and z appear, they also denote length k sequences of
elements from n. We regard x as an n-ary representation of an integer less
than nk. The constant 0 is the length k sequence representing 0. K is the
largest power of 2 not exceeding nk.

(Sl) Zero,(x) = 0, identically.

(S2) Ident, = x.

if x is odd;
if x is even.

(S4) Half,(X) = LX/2 j.

if xcK/2;
otherwise

xs 1,

i

if x is even and x < K;

(Se) Toggle,(x) = x - 1, if xisoddandx<K;

X, otherwise.

Composition is defined in the usual way: if h, , h, are simple functions
with coarities summing to the arity of a simple function g, then

.f(x) = g(h,(x), “‘1 Ux))

is a simple function.

DEFINITION. d is the smallest class containing the simple functions (for
all integers k), the characteristic global functions of each global relation
denoted by a symbol in (T, the functions

if x#y;
if x = y,

for each k > 0, and closed under composition, projection, and the scheme
of upward tree recursion, given below.

We first describe a restricted form upward tree recursion, then a
restricted version of the related scheme of downward tree recursion. We
then describe how to generalize these schemes. In these recursion schemes
the length of y is k, K is the largest power of 2 not exceeding nk, andf, h,
h,, and h, have the same the coarity.

248 COMPTON AND LAFLAMME

(Tl) Upward Tree Recursion (UTR). If g(x, y) is in .& and h is a
simple function, then .d also contains the function ,f(x, y) defined as
follows:

J‘(x, y, =
dX> Y 13 if y>K/2ory=O;
Nx, Y? .f(x, 2Y), .f(x, 2Y + 1 I), otherwise.

(T2) Dotvnward Tree Recursion (DTR). If g(x) is in .01 and ho, h, are
simple functions, then .d also contains the function J‘(x, y) defined as
follows:

g(x)> if y=Oory>K;

Mx, Y,f(X, LYPJ)), if yisevenandO<y<K;
hl(% Y,S(X> LY/2i))? if yisoddandO<y<K.

The tree for these recursion schemes is pictured in Fig. 1. Each node a in
the tree has left child 2a and right child 2a + 1. Thus, the node 0 has only
a right child so for UTR y = 0 must be treated as a special case. Also, to
ensure that we have a full binary tree, we do not really use the nodes
numbered K or higher. This simplifies our treatment, but is probably not
necessary.

In the general forms of the schemes simultaneous recursions are allowed.

FIG. 1. Tree used in Recursion Schemes.

AN ALGEBRA AND A LOGIC FOR NC ’ 249

Thus, for UTR, functions f,, fm can be defined simultaneously from
g, 3 ..‘> g,, h,, h,,,, and A,,,, A,,,; set.f,(x, Y) equal to

g,(x, Yh if y 3 K/2 or y = 0;

4x, Y, f,(x, 2~), fm(x, 2~ 1, f,(x, 2~ + I), fm(x, 2~ + 1)I, otherwise.

The general form of DTR is defined similarly.
A form of downward tree recursion was used by Bennett (1962) in his

investigations of the spectrum problem; he called his scheme recursion on
notation.

The reason that downward tree recursion was not included in our detini-
tion of d is that it can be proved from upward tree recursion in our
system. We thank the referee for pointing this out to us and supplying a
proof, which appears in modified form below.

LEMMA 3.1. d is closed under DTR.

Proof First note that the usual Boolean operations on (0, 1 } can be
defined as simple functions. Toggle,(x) is negation and Cond,(x, y, 0) is
conjunction. (We can assume that we have constants 0 and 1 at our
disposal, using the functions Zero,(x) and Toggle,(x).) The function
Cond,(x, 0,O) is 1 if x is even, and 0 otherwise. We can also make use of
Cond, to define functions be cases below.

Suppose that f(x, y) is defined from g, h,, and h, as in the definition of
DTR. Use simultaneous UTR to define functions Reverse,, Branch,, and f

(EquUz, Y h if y >, K/2 or y = 0;

Branch,(z, y) =

i

1, if either Branch,(z, 2y) or
Branch,(z, 2y + 1) is odd;

0, otherwise;

i

Ewal,& Y 1, if
2 . Reverse,(z, 2y), if

Reverse,(z, y) =
2 . Reverse,(z, 2y + 1) + 1, if

h,(x> Y, g(x)), if
Mx, Y, f(z, x, 2~11, if

AZ, x, Y) =
h,(x, Y, f(z, x, 2~ + 1 I), if

ybK/2ory=O;
Branch,(z, 2y + 1) is
even and 0 < y < K/2;

Branch,(z, 2y + 1)
is odd and 0 < y < K/2;

y 3 K/2 or y = 0;
Branch,(z, 2y + 1) is
even and 0 < y < K/2;

Branch,(z, 2y + 1)
is odd and 0 < y < K/2.

250 COMPTON AND LAFLAMME

Suppose K/2 d z < K; in other words, z is a leaf in the recursion tree.
Suppose also that z is la/a, , ... a,, in binary notation and y is a prefix
of z: i.e., y is ICI,U, , .. .a, in binary notation. Then Branch,(z, y) = 1 and
Reverse,(z, y) is equal to la,u, “‘u, , . In particular, Reverse,(z, 1) is
equal to lu,a, . ..a.. Consider the tree in Fig. 1. The binary representation
of a number describes a path to that number from the root: branch left for
0 and right for 1. Reverse, allows us to reverse the binary representation
(after the initial 1).

Thus, a recursion from 1 down the tree to y can be simulated by a
recursion from Reverse,(z, 1) up the tree to Reverse(z, y). This is precisely
what happens in the definition oft By induction on the depth of y,

f(x, y) = ,f(Reverse,(z, 1), x, Reverse,(;, y))

whenever K/2 <z < K and y > 0 is a prefix of z.
Define

Leaf,(y, z) = ”
if z>K/2orz=O;

2 . Leaf,(22) otherwise

so that the function

f(Reverse,(Leaf,(y, 1), I), x, Reverse,(Leaf,(y, l), 1))

is equal to f(x, y) when 0 < y < K. If we can assign the correct value
f(x, y) = g(x) to the function when y = 0 and y > K we are done. But this
is easy to do since we have Boolean functions and y 3 K precisely when
Leaf,(Half,(y)) = Half,(y). 1

The main result of this section, Theorem 3.3 below, states that a
necessary and sufficient condition for a structural function to be in NC’ is
that its characteristic global function be in d. Sufficiency is a consequence
of Lemma 3.2. The circuits constructed in the proof of this lemma must be
regular enough that E*-uniformity can be easily verified. The following
definition is used in the proof.

DEFINITION. Let G= {RI,..., R,} be a relational similarity type and ,f be
a global function on cr-structures of arity k and coarity 1. We will say that
a circuit family (x1, cr,, . . .) implements f if the following conditions hold.
Each LY, has inputs for o-structures (n, R,, R,); also, there are rk log nl
inputs for the binary representation of an argument x for f and rl log nl
outputs for the binary representation off(x) (evaluated on (n, R,, R,)).

LEMMA 3.2. Every global function in ,02 is implemented by un
E*-uniform, polynomial size, log depth circuit fumily.

AN ALGEBRA AND A LOGIC FOR NC ’ 251

Proof: Observe first that each simple function is implemented by an
E*-uniform, polynomial size, constant depth circuit family.

An E*-uniform, polynomial size, log depth circuit family can be
implemented for the composition of functions if each of the functions
composing it is implemented by such a family. Also, projection (or more
strictly, the collection of projection functions) and the global characteristic
functions of global relations denoted by symbols in 0 can be implemented
by E*-uniform, polynomial size, log depth circuit families. Notice that
these assertions are not completely trivial since the value of a sequence of
variables x is assigned by regarding it as an n-ary representation of an
integer, whereas its circuit implementation uses its binary representation.

We now have only to show that if the functions used in an instance UTR
are implemented by E*-uniform, polynomial size, log depth circuit families,
then so is the function resulting from the recursion. For simplicity consider
the restricted (nonsimultaneous) form of the UTR scheme. The argument
we give works just as well for the simultaneous form. Suppose in UTR
scheme that g is implemented by an E*-uniform, polynomial size, log
depth circuit family and h is implemented by an E*-uniform, polynomial
size, constant depth circuit family. Construction of a circuit for f(x, y) is
straightforward. In the recursion tree (Fig. 1) replace every node a that is
a leaf node or the 0 node with a circuit to compute g(x, a). Replace every
other node a with a circuit to compute h(x, y, *, *), where the last two
inputs become the outputs of the children of a. Thus, the output of the
circuit at the node a is f(x, a). It is a simple matter to add to the circuit
a selector which for a given input y outputsf(x, y).

E*-uniformity is not difficult to check. In fact, it is easy to see that mem-
bership of a tuple (n, r, s, t, w) in the extended connection language for the
circuit can be determined by a random access deterministic Turing machine
in time O(log n). This observation was made by Ruzzo (1981) in passing
and later stated explicitly by Barrington, Immerman, and Straubing
(1988). 1

We now state the main result of this section.

THEOREM 3.3. A structuralfunction F is in NC’ if and oniy ifxF is in .d.

Proof: Suppose F: (T + r is in NC ‘. We show that xF is in our algebra
&. Suppose that r consists of I relation symbols. Thus, when F is applied
to a a-structure it yields a r-structure (n, T,, r,). When xF is applied to
the same structure it yields a function x, x ... x xl, where xi is the charac-
teristic function of T,. We will show for each i that the global function
which yields xi on o-structures is in &‘. The product x1 x ... x xI is
obtained by a slightly more elaborate version of the same argument.
Therefore, we will assume that T contains just one relation symbol T.

M3’87!1!2-17

252 COMPTON AND LAFLAMME

By Theorem 2.1, A, is accepted by an alternating random access Turing
machine M in time m log n for some constant m. We view (u, u) E A F as a
structure in S(a u { T’}, n) where T’ is a relation symbol of the same arity
as T, and T’(x) holds if and only if x represents the position of the 1 bit
in v. We modify M so that rather than writing a symbol and input tape
position on the index tape, it writes a 0 or 1, a k-ary relation symbol from
CJ u {T’}, and a k-tuple of integers. Rather than checking that a symbol is
at a given position on the input tape, M checks that the relation evaluated
at the given tuple has the truth value specified. This change in the index
tape format does not change the running time of M in any significant way.

We code each configuration of A4 as follows. Suppose the work tape and
index tapes are numbered 1, k. The contents of the ith tape are encoded
by strings x, and yI, where x, is a bit sequence consisting of a 1 followed
by an encoding of the contents to the left of the head, rightmost tape cells
corresponding to least significant bits of x,, and y, encodes the contents to
the right and under the head, leftmost tape cells corresponding to least
significant bits of y,. (The leading I in x, is needed to keep track of the
number of cells to the left of the head.) For the contents of the timer tape
we need only represent the contents to the left of the head. Code states in
any reasonable way. We need to show that changes of configurations
effected by the transition functions 6, and 6, can be represented by
simultaneous simple functions.

Changing a configuration according to 6, or 6, entails determining the
state and the symbols scanned on each tape by using Cond, and Half, to
obtain the bits in their representation; applying appropriate Boolean
functions to obtain bits of the new state, the symbols written and the head
directions; and using Half,, Double,, and Toggle, to modify the configura-
tion accordingly. Hence, there are simple functions h,,, and h,,, simulating
6, and 6, on the strings that represent configurations. The entire computa-
tion tree of M can then be obtained using DTR on a tree of depth m log n.
Also computed, besides configurations, are integers coding the sequences of
state types (i.e., whether a state is in Q ii or Q v) along branches of the
computation tree from the root to a given node. This can easily be made
part of the DTR.

At the leaves, M must check that a particular relation S, evaluated at a
given tuple of elements, has a specified truth value. We use the charac-
teristic function xs and projection to do this.

Use UTR then to determine whether M accepts by passing acceptance or
rejection bits up the tree. At each node the conjunction or disjunction of
the bits passed to it will be taken according to whether the state for the
corresponding configuration is in Q ~ or Q v To know which to take, the
sequences of state types collected down the branches during the DTR are
passed back up the tree.

AN ALGEBRA AND A LOGIC FOR NC ’ 253

This gives a global function f which, applied to a structure in
S(o u {T’}, n) representing an input (u, u), yields a 0-ary characteristic
function; this function takes the value 1 if and only if F(U) has a 1 bit at
the position where the 1 occurs in u. If we replace each occurrence of xT(y)
in the description off by Equal,(x, y), we obtain the global function xF.
Since the x7(y) is evaluated only at the leaves of the Turing machine
computation tree, Equal,(x, y) will never be used in a recursion. [

4. A LOGIC FOR NC I

In this section we present a logic for NC ‘. The boundary between logics
and algebras (such as the one in the previous section) is vague. We could
present our logic as an algebra in the same way first-order logic is
presented as a relational algebra in database theory (see Codd (1972)).
However, it seems more natural to use a logical form here.

Formulas of a logic naturally give rise to structural functions. If g and
T are relational similarity types with T consisting of symbols T,, T,, then
formulas ‘pi(x,), (p,(x[) over c, where the length of x, is the arity of T,,
define a structural function F: CJ + r. Form the image of a a-structure J&’
under F by taking {a/d k pi(a)} as the interpretation of each T,.

To motivate the choices made in the design of our logic, let us consider
the characterization of the LOGSPACE functions in Gurevich (1983). He
showed that the algebra of global functions generated by the basic func-
tions and operations that define the primitive recursive functions on the
natural numbers-viz., the zero, projection, and successor functions with
the operations of composition and primitive recursion-characterizes
LOGSPACE in the same way our algebra JJ characterizes NC’. We
suspect that LOGSPACE properly contains NC’ so we ask which of these
functions and operations would appear to take us out of .NC’. The only
possibility is primitive recursion. How much of primitive recursion, then,
can be retained if we wish to stay inside NC ‘? It is not difficult to see that
if we restrict the primitive recursion to functions of bounded range, we stay
within NC ‘. Rather than making awkward stipulations, about ranges of
functions, we instead restrict ourselves to relations, which are, after all,
functions with ranges contained in (0, 1).

We define an extension of first-order logic (with equality) in which we
may define new relations by relational primitive recursion, abbreviated
RPR. We assume that one of the relation symbols in the vocabularly of the
logic denotes a successor relation on each structure.

Formulas in this logic may contain any of the symbols occurring in first-
order formulas and possibly some relation variables. We define formulas cp
of this logic inductively, and at the same time define free(q), the set of free

254 COMPTON AND LAFLAMME

variables in cp. An atomic formula cp is either a first-order atomic formula,
or a formula P(x,, x,), where P is a relation variable of arity j; in the
former free(q) is the same as in first-order logic; in the latter, free(q) =
{P, XI, ..., x,}. More complex formulas rp may be constructed using the
standard logical connectives and first-order quantifiers. In these cases
free(q) is defined just as in first-order logic.

The only other way to construct more complex formulas is by RPR. We
first describe the simplest form of RPR, and then the general form.

Suppose P is a relation variable of arity j, x is a sequence ofj - 1 distinct
variables, and y is a variable not in x. Let + and 0(x, y, P(x, y)) be
formulas. In writing 0 this way we mean that every subformula of 8
containing P is of the form P(x, J) and that the variables x, y occurring in
these subformulas are free; x and y in the first two argument places of
0(x, y, P(x, ~1)) stand for all free occurrences of x and y not in subformulas
of the form P(x, y). Then cp given by

CfYx, Y) = ex, Y, P(X> Y - 1))I$

is also a formula with

free(q) = ((free(o) - (x, y}) u free($)) - {P).

The part of cp within brackets defines the interpretation of P in $. That is,
all free occurrences of P in II/ are interpreted by a relation defined as
follows. P(x, 0) has the same truth value as 0(x, 0, p), where p is an invalid
sentence; P(x, y) has the same truth value as 0(x, y, P(x, y - 1)) when
y > 0. Thus, 0 codes the relations used in both the basis and recursion parts
of the usual primitive recursion scheme. It is useful to think of P(x, 0) as
being obtained by taking y = 0 in the definition

CfYx, Y) = -I(% Y, ax, Y - 1111

and to observe the convention that P(x, - 1) is always false. A sentence is
a formula cp with free(q) = a.

In the general form of RPR simultaneous definitions of relations are
allowed. That is, we may have formulas of the form

P,(Xl, y)=O, P,(x,, Y) = 02
i! 4

Ic/,
PAX,, Y) = 0,

where 19~ is of the form

Oi(X,, y, P,(x,, I’- 113 ..., PA%> Y - 1)).

AN ALGEBRA AND A LOGIC FOR NC' 255

The intended meaning should be apparent: the values of P,(x,, y),
Pk(xk, y) are simultaneously determined by the values of P,(x, , y - 1),
Pk(Xk, Y - 1).

Denote by FO + RPR the set of structural functions given by formulas of
this logic. (We will refer to the logic itself as FO + RPR, also.) Let us first
prove some simple facts about FO + RPR.

PROPOSITION 4.1. The global relation < ordering the elements of each
structure is definable in FO $ RPR.

Proqf Write P(x, y) for x< y. Define P(x, y) by RPR as follows:

[P(x, y)-x=y v P(x, y-l)]. [

Hence, the successor and predecessor relations can also be defined. Also, 0
and n - 1, the first and last elements, can be defined.

The RPR recursion scheme allows only recursions of length n. We would
like to extend to recursions of length nk for fixed k. Replace the variable y
in the RPR description with a sequence y of k variables. Order the possible
assignments to y lexicographically and let y - 1 denote the predecessor to
y in this order.

PROPOSITION 4.2. Relational primitive recursions of length nk, as
described above, can be expressed in FO + RPR.

Proof Let P be defined by using extended RPR. That is,

CP(x, Y) = Q(x, Y, P(X? Y - l))l,

where y = y,, yk. We show by induction on k that P c;In be define in
FO+RPR. Let y’= y ,,..., y,- , and define two relations P, and P/ as
follows:

cpdx, y’, yk) = yk = 0 v etx, f, yk, P,(x, f, yk - l))l

cpftx, y’, yk) = yk +o A @x, y’, yk, pf(x, y’, yk - l))].

The idea behind these definitions is that P(x, y) can be computed by
primitive recursion of length at most n on yk, provided that the value of
P(x, y’, 0) is known. P,(x, y) is P(x, y) in the case where P(x, y’, 0) is true;
P,(x, y) is P(x, y) in the case where P(x, y’, 0) is false.

Define a relation Q(x, y’) by an extended RPR of length nk ~ I:

[Q(x, Y’) = (Q(x, Y’ - 1) A 0(x, Y’, 0, Pdx, Y’ - 1, n - 1))

v(l e(x,y’-1)~8(x,y’,O,P,(x,y’-l,n--l))l

256 COMPTON AND LAFLAMME

Here the idea is that Q(x, y’) has the same truth value as P(x, y’, 0). Then
P(x, y) is equivalent to

(ax> Y’) * P,(X? Y)) ” (1 ax, Y’) A P,(x, Y)). I

Unfortunately, FO + RPR does not capture NC ‘.

PROPOSITION 4.3. FO + RPR is properly contained in NC ‘.

ProoJ Proof of containment is part of the proof of Theorem 4.7 below.
We show that FO + RPR #NC’.

Suppose that 0 contains just a unary relation symbol, so that
o-structures may be identified with strings in 10, 1) *. We will determine
which sets of a-structures satisfy sentences in FO + RPR when structures
are assumed to have an underlying linear order.

It is not difficult to see that RPR can be defined in monadic second-
order logic assuming that structures have an underlying linear order. Con-
sider the FO + RPR formula cp given by [P(x, y) = 0(x, y, P(x, y - l))].
Let p be an invalid sentence and z(x, Y) be a conjunction of the formulas

OE YHO(x,O,p)

and

(V.v>0)(1:E Y++ ((y- 1 E Y A 0(x, J’, 1 p) v (y- 14 Y A 0(x, J’, p)).

Then the relation P(x, I’) defined by primitive recursion in cp is equivalent
to

3Y(r(x, Y) A J'E Y).

Substituting this monadic second-order formula for free occurrences of P in
$ gives a monadic second-order formula equivalent to cp.

A classical theorem of Biichi (1960) and Elgot (1961) states that the sets
of a-structures satisfying monadic second-order sentences are precisely the
regular sets contained in { 0, 1 } *. (In fact, any finite automaton can be
simulated using RPR so the sets of a-structures satisfying sentences
in FO + RPR are precisely the regular sets.) Hence, we do not get all
of NC’. 1

To see how to extend FO + RPR to get NC’ recall that Immerman
(1986) and Vardi (1982) needed a linear order (or a successor relation) on
each structure in order to obtain a logic characterizing PTZME. Immerman
(1987b) also needed a linear order for logics characterizing other com-
plexity classes. The reason is that all these classes are defined by restricting
time or space resources on ordinary Turing machines. The input tape heads

AN ALGEBRA AND A LOGIC FOR NC' 257

for these machines move sequentially. But we saw in Theorem 2.1 that the
natural model of computation for NC’ is a random access alternating
Turing machine. The basic idea of a random access input is that the
machine can access the nth cell of the input by writing the binary represen-
tation of n on the index tape. We might hope that by adding a relation
giving the connection between an integer and its binary representation we
get NC’. This is precisely what happens.

Define a binary relation BIT on each structure in S(a, n) by stipulating
that BZT(x, JJ) holds precisely when the yth bit of the binary representation
of x is 1. Fagin (1974) used this relation in his proof showing existential
second-order logic captures NP. Denote by FO + RPR -t- BIT the set of
structural functions given by the logic FO + RPR on structures having the
global relation BIT. (As before, FO + RPR + BIT also denotes the logic.)
We must first prove some basic facts about the logic FO + RPR + BIT.

PROPOSITION 4.4. The following global relations arc dejinahle in
FO i- RPR $ BIT.

(i) Plus(x, y, z)= {(x, JJ, z)jx+y=;).
(ii) Power(x, y)= {(x, y)12”= ~1.
(iii) Ancestor(x, y) = {(x, y)l x= Ly/2’J for some i}. This is the

ancestor relation for the tree in Fig. 1.

Proof: (i) Plus is first-order definable from 6 and BIT. Define a
relation Carry(x, JJ, i) that holds precisely when there is a carry to the ith
position when the binary representations of x and JI are added. Thus,
Carry(x, y, i) is detined by

(3j < i)(BZT(x, j) A BZT(y, j)

A (Vk)(j<k<i+(BIT(x,k)++l BIT(y,X:)))).

Then Plus(x, y, z) is a conjunction of the formulas

(BZT(z, 0) ++ (BIT(x, 0) - 1 BIT(y, 0)))

and

(Vi>O)(BZT(z, i)- (Carry(x, y, i) t--f (BZT(x, i) - BZT(y, i)))).

(ii) Power is first-order definable from BIT. Power(x, y) is defined
by

Vi(BZT(y, i) f--f i = x).

258 COMPTON AND LAFLAMME

(iii) Ancestor is first-order definable from d, BIT, and Plus.
Ancestor(x, y) is defined by

3 Vj(BZT(x, j) H BZT(y, i + j)). 1

Next we introduce relational versions of the recursion schemes used by
the algebra XI’. For simplicity we first state restricted versions of the
schemes. Let p denote an invalid sentence.

(R 1) Relational Downward Tree Recursion (RDTR). Let
0(x, y, P(x, y)) be a formula as in the RPR scheme. We define a relation
P as follows:

0% Y) =
i

@x, 0, PI if y=O
0(X> Y% P(x, L.!@J)) if y > 0.

(R2) Relational Upward Tree Recursion (RUTR). Let 0(x, y, P(x, y),
P’(x, y)) be a formula analogous to the one in the RPR scheme. We define
a relation P as follows:

P(x, Y) = 0(X> Y> P> PI? if 2y+l>nory=O
Q(x, Y, P(x, 2Y), P(x, 2.Y + 1 I), otherwise.

Remark. More generally, we allow the schemes RDTR and RUTR to
apply to trees of height m log n (for fixed m). Nodes in these trees
correspond to sequences of variables y = y, ... yk, rather than single
variables y. The variables y,, yk , range over the values 0,
1 7 ..., 2L“‘g”J - 1 rather than 0, 1, n - 1 so that the parents and children
of nodes can be easily found. Also, we extend these schemes to
simultaneous recursions.

LEMMA 4.5. Definition by RDTR and RUTR can be expressed in
FO + RPR + BIT.

Proof: Let 8 define a relation P as in (Rl). Let B’(x, y, z, P’(x, y,
z - 1)) be the formula

(Ancestor(z, y) A 0(x, y, P/(x, y, I?- 1)))

v (1 Ancestor(z, y) A P’(x, y, II - 1)).

Use RPR to define a relation P’ by

[P/(x, y, z) = 8’(x, y, z, P’(x, y, z - 1 ,,I.

AN ALGEBRA AND A LOGIC FOR NC ’ 259

Then P(x, y) is equivalent to P’(x, y, v). This shows that RDTR is
expressible. Only minor modifications are needed to show that RDTR is
expressible for simultaneous recursions on trees of height m log n.

RUTR is more difficult. Let 0 define a relation P as in (R2). That
is, for fixed x, P(x, y) is defined at every node y of a binary tree; 19 may
be regarded as giving the value of P(x, y) as a Boolean function a of
P(x, 2~) and P(x, 2y + 1). We may suppose that z(X, Y) is either a constant
function, X, Y, -I X, 1 Y, or X A Y, since all other Boolean functions can
be expressed as compositions of these functions. (To handle compositions
we may need to lengthen the recursion tree and modify the functions at the
leaves accordingly.)

We reduce the evaluation of this recursion to the word problem for the
symmetric group S5. This reduction is similar to the reduction of bounded
width, polynomial size branching programs to the word problem for S,
(see Barrington (1986)).

Let e be the identity of S5 and a be any 3-cycle in S5. We can define
binary Boolean functions in S,, where e is identified with 0 and a is
identified with 1. To be specific, for each Boolean function a(X, Y) listed
above there are elements k, , k,, k,, k,, k, E S, such that X(X, Y) =
k, Xk, Yk, Xk, Yk,.

Suppose, for example, that X(X, Y) = X A Y. There are 3-cycles h, c such
that a = bcb ‘c ‘. Since all 3-cycles are conjugate, there are elements Li, ,
dz, d,, d4ES5 such that b=d,ad, ‘, c=d,ad, ‘, bp’=d,ad;‘, CC’=
d,ad;‘. Let k,=d,, k,=d;‘dz, k3=d;‘d3, k4=d;‘d,, and k,=d, ‘.
Then for X, YE {e, a}, cc(X, Y) = k, Xk, Yk, Xk, Yk, is a only if X= a and
Y = a; in all other cases it is e.

The function a(X, Y) = X is similar. Since a and a-- ’ are conjugate,
mm’ = dud ~’

gly-lx-ly,
for some element d. Then for X, Y E {e, a}, X =

so replacing X ~’ with dXd ’ and Y i with dYd -’
everywhere we have k, = d, k, = k, = k, = e, and k, = d-r. The function
cc(X, Y) = Y is similar. Constant functions are also similar: use XYX i Y ’
in the manner described above to obtain the function identically equal to
0, for example.

We can negate X by replacing it with dXd ‘u, and similarly for Y, where
d is as in the previous paragraph.

Now consider the recursion tree T for P(x, v). Transform this tree into
a 4-ary tree T’ applying the following procedure, beginning at the leaves
and working upward to the root. For a node with children p and q, repeat
the subtrees lying below p and q so that there are now four children labeled
p, q, p, q (in that order). If T has n leaves, T’ will have n* leaves. T’ is
easily defined in FO + RPR + BIT. Its nodes will be elements whose binary
representations have an odd number of bits. If nodes of T have representa-
tions requiring I bits, nodes of T’ have representations requiring 21- 1 bits.

260 COMPTON AND LAFLAMME

(To be precise we should say that nodes of T’ are represented by pairs of
elements. Use Power to determine m, the largest power not exceeding n. By
using pairs of elements less than m to represent integers, doubling, halving,
and all other arithmetical operations needed can be easily defined.) The
parent of a node in T’ is found by deleting its two low bits. The label of
a node in T’ is found by deleting every other bit beginning with the second
bit.

We describe how to define P(x, 0) in FO + RPR + BIT. We can define
P(x, c,) in the same way by considering just the subtree below y in T.

Rather than recursing upward in T, recurse downward in T’. (The proof
of RDTR works as well for 4-ary trees as for binary trees.) Each node in
T’ receives a pair (h, c) from its parent, where h, (2 E S,. Which values will
be passed on to its children? Suppose a node receives (h, c) from its parent.
Find the label y of the node by deleting every other bit. Suppose the
Boolean function given by 8 at j’ can be represented as a(X, Y) =
k, A%? Yk, Xk, Yk,. The first child receives (hk, , e), the second receives
(kz, e), the third receives (k7, e), and the fourth receives (k4, k,c).

Each leaf of T’ will have received a pair (h, c). Consider such a leaf and
suppose it has label ~1. Evaluate 0(x, J, p, p). If it is true associate the group
element hat; if it is false associate the group element hc. This association
can be done by means of a simple first-order formula. Observe that P(x, 0)
is true if and only if the product of the group elements associated with
leaves of T’ (in order) is CI. This product is easily determined using RPR.

Extending this proof to simultaneous recursions is cumbersome, but not
difficult. We increase the branching in the recursion tree because the value
of P, (x, 4’) is determined by the values of P, (x, 2~,) and P, (x, 2y + 1),
where ,j = 0, 1, I- 1. We may assume that I is a power of 2. The value
of P,(x, J)) does not correspond to the ,rth node of the tree, but rather to
the ylt ith node, but this is easily handled by taking I to be a power of 2.

Extending this proof to trees of height m log n is straightforward. 1

LEMMA 4.6. The relation Ones(x, J) holding precise111 when the binary
representation of y has e.uactly x l’s can he defined in FO + RPR + BIT.

ProqJ: In Compton and Laflamme (1988) we sketched a complicated
proof of this lemma showing that a bitonic sorting network can be defined
in FO + RPR + BIT to sort the bits in the binary representation of y.
Barrington, Immerman, and Straubing (1988) gave a much simpler proof
showing that Ones (which they call BSUM) is first-order definable from d
and BIT. Their idea is simple but clever. We sketch it here for the sake of
completeness.

Let k = rlog(n + 1)1 so that the bits in the binary representation of ,r are
given by BZT(y, 0), BIT(y, k - 1). Suppose that r of these bits are 1.

AN ALGEBRA AND A LOGIC FOR NC ’ 261

Consider the first-order formula Odd(l’, j) asserting that there is a 2 such
that BZT(z, j) and

(BZT(z, O)t, BZT(y, 0)) A (Vi>O)

x((BZT(2,i)ttBIT(z,i- I))++(1 BZT(y,i))).

This says there are an odd number of 1 bits in the binary representation
of y among those in positions 0, ,j.

Let k, = Lk/2_1. Define an integer y1 such that among BZT(y,, 0),
BZT(y,, k, - 1), Lr/2] bits are 1. Assert that BZT(J’~, i) holds if and only
if

(Oddo,, 2i) A 1 Odd(y, 2i+ 1))

v(Odd(y,2i+l)A lOdd(~,2i+2)r\2i+2<k).

For each i < rlog(k + l)], let k, = Lk/2’] and define an integer y, such that
among BZT(yi, 0), BZT(yi, ki - 1), Lr/2’] bits are 1. Note that the sum
of the integers kj is at most k so the pertinent bits of the integers yI can be
coded into a single variable ~1’. Set y0 = J and k. = k. It is easy to find a
first-order formula asserting that 4” exists and giving Odd(y,, k, - 1). This
is the ith bit in the binary representation of x, where x is the number of
l’s in the binary representation of J. 1

Remark. The main result of the section follows. Taking into considera-
tion the proof of Proposition 4.3 we ask if FO + RPR + BIT can be
replaced with monadic second-order logic plus BIT in the statement of the
theorem. A result of Lynch (1982) shows that this is unlikely. When BIT
is present, RPR is strictly weaker than monadic second-order quantifica-
tion. In Lemma 4.4 above we saw that addition on structures can be
defined in FO + RPR + BIT. Lynch showed that even with just existential
monadic second-order prefixes we get NP. Full monadic second-order
quantification gives the entire PTZME hierarchy.

THEOREM 4.7. NC ’ = FO + RPR + BIT.

ProoJ The proof is along the same lines as the proof of Theorem 3.3.
We generate the computation tree for a given random access alternating
Turing machine and then evaluate the tree. As before, we have pairs
(-% Yo), ..., (x,, yk) representing the index tape and k work tapes at each
node of the tree and z representing the state. Think of these as variables
which have new values assigned to them as we follow a branch down the
tree. The problem is that in the proof of Theorem 3.3 we needed full DTR
to generate these values, whereas now we have only RDTR.

The solution is to generate values in a bitwise fashion. Consider, for

262 COMPTONANDLAFLAMME

example, what information is needed to determine the jth bit of X, at a
given node in the computation tree. This bit is determined from the follow-
ing information in the parent node: the state, the first bits of yo, Jam
(these are the cells being scanned by the tape heads), and the (,i- 1)st, jth,
and (j+ 1)st bits of x,. Thus, there are just a constant number of bits, say
I bits, that are needed. Moreover, the positions of these bits do not depend
on tape contents. Now each one of these bits is determined in turn by 1
values in the grandparent node. Continuing, we obtain an I-branching tree.
It is not difficult to define an equivalent binary tree (of greater height) in
FO + RPR+ BIT by dividing each l-branching into log 1 levels of
2-branchings.

Now the leaves of this tree correspond to bits in the initial conliguration.
If there is a formula of FO + RPR + BIT giving these initial bits, we can
use RUTR to compute the value at the root. Such a formula can be
specified using RPR and the relation Ones. The reason is that as we move
from a node in the tree to one of its children we either change from the
position we are looking at to the initial position of one of the ~3,‘s or
change the position in the current string by - 1, 0, or 1. Using RPR we can
determine, for each branch, the lowermost node where we switch to the
initial position of some y,. Then use Ones to count the number of subse-
quent times the position is changed by 1 and the number of times it is
changed by - 1. In this way we can compute the position at the leaf.

Now let us return to evaluation of the original computation tree (not the
trees of bit histories discussed in the previous paragraph). Here RUTR
suffices since we only pass Boolean variables up the tree.

The other direction of the theorem is easy. Global relations constructed
using the connectives and quantifiers of first-order logic and the relation
BIT can clearly be evaluated by uniform polynomial size, log depth
circuits. To evaluate global relations constructed by RPR use divide and
conquer. Evaluate P(x, y) by dividing the interval [0, J] in two. To do the
evaluation on the second half we need to know the value of P(x, Ly/2 J);
but as there are just two possible values we do both computations and
choose the correct one when the value of P(x, L.421) becomes known. 1

RECEIVED February 22, 1989; FINAL MANUSCKIPT RECEIVED December 5, 1989

REFERENCES

ALLEN, B. (1989), “Arithmetizing Uniform NC,” Ph.D. thesis, University of Hawaii.
Honolulu.

BARRINGTON, D. A. (1986), Bounded-width polynomial-size branching programs recognize
exactly those languages in NC’, in “Proc. 18th ACM Symp. on Theory of Computing,”
pp. 1-5, Association for Computing Machinery, New York.

AN ALGEBRA AND A LOGIC FOR NC ’ 263

BARRINGTON, D. A., AND TH~RIEN, D. (1987), Finite monoids and the fine structure of NC’,
in “Proc. 19th ACM Symp. on Theory of Computing,” pp. 101-109, Association for
Computing Machinery, New York.

BARRINGTON, D. A. M., IMMERMAN, N., AND STRAUBING, H. (1988), On uniformity within
NC’, in “Proc. 3rd IEEE Conf. on Structure in Complexity Theory.” pp. 47-59, IEEE
Computer Society Press, Washington, DC.

BENNETT, J. H. (1962), “On Spectra,” Ph.D. thesis, Princeton University.
B~~cHI, J. R. (1960), Weak second-order arithmetic and finite automata, Z. Math. Logik

Grundlag. Math. 6, 66-92.
Buss, S. R. (1986), “Bounded Arithmetic,” Studies in Proof Theory, Bibliopolis, Naples.
CLOTE, P. (1989), A first order theory for the parallel complexity class NC, Boston College

Computer Science Department Technical Report BCCS-89-01, Chestnut Hill, MA.
COBHAM, A. (1965), The intrinsic computational dilliculty of functions, in “Proc. 1964 Intl.

Conf. Logic, Methodology and Philosophy of Science” (Y. Bar-Hillel, Ed.), pp. 2430,
North-Holland, Amsterdam.

COUD, E. F. (1972), Relational completeness of data base sublanguages, in “Data Base
Systems” (R. Rustin, Ed.), pp. 65-98, Prentice-Hall, Englewood Cliffs, NJ.

COMPTON, K., AND LAFLAMME, C. (1988), A logic and an algebra for NC’, in “Proc. 3rd IEEE
Conf. on Logic in Computer Science,” IEEE Computer Society Press. Washington.

COOK, S. A. (1985), A taxonomy of problems with fast parallel algorithms, Inform. and
Conirol64, 2-22.

ELC;OT, C. C. (1961), Decision problems of tinite-automata design and related arithmetics,
Trans. Amer. Math. Sot. 98, 21-51.

FAGIN, R. (1974), Generalized first-order spectra and polynomial time recognizable sets,
in “Complexity of Computations” (R. Karp, Ed.), pp. 43-73, SIAM--AMS Proceedings,
Vol. 7, American Mathematical Society, New York.

GUREVICH, Y. (1983), Algebras of feasible functions, in “Proc. 24th IEEE Symp. on Founda-
tions of Computer Science,” pp. 21@214, IEEE Computer Society Press, Washington,
DC.

IMMERMAN, N. (1986). Relational queries computable in polynomial time, Inform. und Control
68, S&104.

IMMERMAN, N. (1987a), Expressibility as a complexity measure: Results and directions, in
“Proc. 2nd IEEE Conf. on Structure in Complexity Theory,” pp. 194-202, IEEE
Computer Society Press, Washington.

IMMERMAN. N. (1987b), Languages that capture complexity classes, S1,4M J. Cornput. 16,
341-354.

LIND, J. (1974), “Computing in logarithmic space,” Project MAC Technical Memo 52,
Massachusetts Institute of Technology, Cambridge, MA.

LYNCH, J. (1989), Complexity classes and theories of finite models, Math. Systems Theory 15,
127-144.

RITCHIE, R. (1963), Classes of predictably computable functions, Trans. Amer. Math. Sot. 106,
139-173.

RUZZO, W. (1981), On uniform circuit complexity, J. Compur. System Sci. 22, 365-383.
VARDI, M. (1982), Complexity of relational query languages, “Proc. 14th ACM Symp. on

Theory of Computing,” pp. 137-146, Association for Computing Machinery, New York,

