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The present paper considers a constrained matrix factorization problem which is 
a natural generalization of the classical triangular factorization. 

INTRODUCTION 

Denoting with WA [wii] and Zh [Yij] two n X n matrices, let S be a 
subset of {l,..., n)‘. W is S-Constrained if wij = 0 for ij 6? S; Z is S’- 
Constrained if yii = 0 for ij E S. The objective of the present paper is to 
state, prove and discuss the solution to the following S-Constrained Matrix 
Factorization Problem: given an n x n matrix A and a subset S c {l,..., n}‘, 
determine S-Constrained W and S’-Constrained Z so that 

A=(Z+ v-L(Z+ZJ (1) 

where Z is the identity matrix and (Z + w>-” is the left inverse of Z + W. 
Of a more general type than those usually considered in the technical 

literature, this factorization is of interest because (as will be illustrated in the 
sequel) it represents a key step in the solution of a number of digital signal 
and image processing problems. Also, by specializing the choice of the set S, 
it can be made to coincide with the familiar Schur Coleski triangular 
factorizations [2] as well as with the more recent angular factorizations 
considered in [4]. 
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THE MAIN RESULT 

Our main result is embodied in the following theorem. 

THEOREM. An n X n matrix A = I + Q always admits an S-constrained 
matrix factorization. One such factorization is characterized by 

W,, = -2 AiQPi(I + PiePi)-' 
i=l 

(2) 

where the matrices Ai and Pi are defined as follows: Ai 6 [a,,,,,], 6,, = Ofor 
nmf’ii, =l for nm=ii; Pi&Cj,,,Aj, Sic {jESi(ijES}; (Z+PiQPi)-L 
denotes the left inverse of I + PiQP’. A necessary and suflcient condition for 
this factorization to be unique is that I + PiQPi be invertible for each 
i E {I,..., n). 

COROLLARY 1 [2. Theorem 1, p. 201. For a given matrix A 6 [a,], 
ij E {l,..., n}*, let the leading submatrices Ai, i E (l,..., n} be nonsingular 
(Ai 4 P’AP’; Pi e Cj=, Aj; Ai & IS,,], 6,, = 0 for sl # ii, =l for sl = ii). Then 
A may be represented by the product 

A = (I + W) D(Z + V) 

where 

W is lower triangular (W B [ wij], wij = 0 for j > i); 
V is upper triangular (V 4 [v,], vii = 0 for i > j); 
D is zero lower/upper triangular (D 4 [d,], d, = 0 for i # j). 

COROLLARY 2 [4, Theorem 21. For a given array A 4 [atjst], &dE 
4, let the leading subarrays A,, ijE {l,..., n}*, be nonsingular 

Pi’ 6 cf= 1 CJ;= 1 A,, - A,; A, b [dstnm], astam = 0 for 
sl; nm # ij, =I for sl = nm = ij). Then A may be represented by the product 

A=@+ W)D(I+ V) 

where 

W is lower quadrangular (We [ wijnm], wijnm = 0 for: ij = nm; i > n or 
.i>m); 

V is upper quadrangular (Vg [vij,,,], vij,, = 0 for: ij = nm, i < n or 
j < m); 
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D is zero lower/upper quadrangular (D & [d,,,], dijnm # 0 only for: 
ij=nm;i>norj>m;i<norj<m). 

EXAMPLE. Consider a 4 x 4 matrix 

and let S = { 11, 12,3 1 }. The theorem says that the matrix Z + Q has the 
representation 

Z+Q=(Z+ w)-L(Z+r) 

with W and r, respectively, of the form 

xx00 

w= I 0000 
x 0 0 0 
0000 1 

ooxx 
xxxx Z-= 

1 I 
oxxx 
xxxx 

W and r can be computed by recognizing that in this particular case one has 
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Hence, P2 = P4 = 0, and 

It follows (using Eq. (2)) 

WI, WI2 0 0 

w,= [ 0 0 00 
w,, 0 0 0 
0 0 00 1 

with 

(1 + 422) 41, - 912921 

w1,= (1 +9,,)(1 +922)-4,292, 

w,, = 
412 

(1 + 4,lHl + 422) - 9,292, 

w,, =q31 
1 +q,; 

Using Eq. (1) one has r = -Q + W(I + Q). It follows 

with 

r,3 = q13(W,, - 1) + w,*q23 

r,4 = qdW1, - 1) + w12q24 

r2, = -921; I-22 = -922; r,, = -q23; r24 = -q24 

r3, = -q32 + w,,q,,; r,, = -q33 + w3 + q13 

r34 = -q34 + w,, q14 

r4,=--q41; r42 = -742; r4, = 334; r4, = -q44 s 
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By selecting a different set S a variety of other structure forms for the 
matrices W and r can be considered. 

Proof of the Theorem. Observe that the matrix WG [oij] is such that 
wij = 0 for ij 6E S if and only if for every vector pair xy E R” such that 
x = Wy one has 

x= c A,Wc Ajy= c AiW x Ajy. 
i=l j=1 i=l jeSi 

Clearly then, a necessary and sufficient condition for W to enjoy the 
property wij = 0 for ij & S is that W have the representation W = 
CyEl Ai WZ-” (th e notations are defined in the statement of the theorem). In 
the same vein, a necessary and sufficient condition for r to be such that 
yii=O for ijES is C~=ldiTPi=O. 

-To prove the first part of the theorem one then simply needs to show that 

W, = i Ai W,,P’ 
i=l 

and 

i Ai [(Z + W,)(Z + Q) - I] Pi = 0. 
i=l 

The first of these two properties follows by observing that 

The second property is proved by a direct inspection 

A,(Z + W,)(Z + Q) P’ - A,P’ 

=Ai (Z- 2 A,QP’(Z+P’QP’]~‘-J (Z+ Q)f’-AiPi 
i=l 

=AiPi+AiQPi-AiQP’(Z+PiQPi]-L(Z+PiQPi)Pi-AiPi 

=AiQPi-AiQPi=O. 

The uniqueness part of the theorem is obtained by verifying, again 
by a direct inspection, that under the hypothesis of the invertibility of 
Z + Pi&Pi, for each i E {l,..., n}, the properties W= CI=l Ai WP’ and 
CyEIAi[(Z+ W)(Z+Q)-ZIP’=0 imply W= W,,. 
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APPLICATION TO DIGITAL IMAGE PROCESSING 

Let the luminosity of a digital image be represented in terms of a family of 
random variables x(u) indexed by i E { l,..., p}, j E { l,..., m} and 
characterized by E[x(ij)] = 0 and E[x(ij) x(sl)] = qjjsr (the symbol E[r] 
denotes the expected value of r). Let I denote a family of zero mean 
value random variables independent from x(g) and such that 

E[rl(ij) W)l = 1 for ij= sl, =o for ijf sl; 

let z(ij) = x(g) + q(ij) describe the image corrupted by additive noise data. 
Consider the class of window constrained linear filters, IV, described by 

.iz= wz 

implies 

ith’, i+M, 

$(ij) = \‘ \’ 

s=i-N, p=y5f, 
wijs,z(sO 

(IV,, IV,, M, , M, assigned positive integers). Consider the problem of deter- 
mining, in this class, the filter which minimizes 

E x (i(ij) - x(Q))’ 0 J( W’). 
ij 

General background material regarding this problem can be found in 151. 
Following this reference, we represent the image x as given by a random 
n 4 p x m-dimensional vector (column scanning representation) 

x’ = [x(00) *. . x(Om) x( 10) . * * x( Im) . * ’ x(nm)] T. 

This random vector is characterized by a zero mean value and an n X m 
covariance matrix 

Qx ii [Sijl LA 
qoooo 

ii 

. . . qoonm 

4 nmoo . . . 4 nmnm 

The image corrupted by noise data is also represented by a zero mean valued 
random vector 

z = [zoo . . . z,JT 

with correlation matrix Q, = I + Q,. 
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A filter with the desired constraint is then represented in terms of the 
n x n matrix 

[ 

woooo -** woO”m 
w& i 

W nmoo **. wnmnm 

with entries subject to wijs = 0 for ijsl & S, where 

SD{ijslESI-N,<(s-i)<N,,-M,<l-j<M,}. - 

Observing that 

J(W)=tr{WQ,W’+ WW’- WQ,-Q,W’+Q,} 

where W’ denotes the transpose of W, it follows that given any two 
admissable filters W, and W one has 

where A W 6 W - W,. It follows that a necessary and sufficient condition 
for W, to be optimal is 

tr{ 1 WoV + QJ - Q,l A WI = 0. 

Clearly this condition is satisfied if and only if 

Wo(l + Q.x> - Qx 4 rA [YijslI 

is such that yijs, = 0 for ijsZ E S, which is equivalent to 

(I - W,>(I + Q,) = I + I- 

where We [cuijsl] is such that wiis, = 0 for ijsl& S and r4 [y,,,] is such 
that yijsl = 0 for ijsl E S. 

One can at this point apply Theorem 1, observing that I + Q, is positive 
definite and clearly I + P’Q,P’ is invertible. Theorem 1 says then that the 
optimal filter exists, is unique and is given by Eq. (2). 

The above development holds “verbatim” if instead of considering a 
window constrained filter we had considered other types of constraints such 
as column processing, row processing or row and column processing filters 
(see [5, Chapter 81). The difference in the consideration of one type of 
constraint over the other is merely in the appropriate choice of S. 
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