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Abstract In this article, we study an approximate analytical solution of linear and nonlinear time-

fractional order Klein–Gordon equations by using a recently developed semi analytical method

referred as fractional reduced differential transform method with appropriate initial condition. In

the study of fractional Klein–Gordon equation, fractional derivative is described in the Caputo

sense. The validity and efficiency of the aforesaid method are illustrated by considering three com-

putational examples. The solution profile behavior and effects of different fraction Brownian

motion on solution profile of the three numerical examples are shown graphically.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the recent years, fractional calculus theory gained a great
attention in various fields of science and engineering [1–10]

due to its wide range of applications to model a variety of real
world problems e.g., model based signal processing, the traffic
flow model, fluid flow model, diffusion models. It has been

observed that noninteger order derivatives are very valuable
to depict many physical phenomena such as rheology, damp-
ing laws, and diffusion process. Since fractional differential

equations have been substantially used to model complex phe-
nomena, therefore there is growing interest swiftly from engi-
neers and scientist to study fractal calculus in several fields
of fluid mechanics, mathematical biology, electrochemistry,
etc., to name a few, the nonlinear oscillation of earthquake
can be modeled with fractional derivatives [11], and the

fluid-dynamic traffic model with fractional derivatives [12]
can eliminate the deficiency arising from the assumption of
continuum traffic flow. He has suggested an exact fractional

order model for seepage flow in porous media to overcome
the continuity assumption of seepage flow [13]. Fractional dif-
ferential equations have been created attention among the
researchers due to exact description of nonlinear phenomena,

especially in fluid mechanics (e.g. nano-hydrodynamics) where
continuum assumption does not well, and hence fractional
model can be considered to be a best candidate (see [1–13]).

In order to show the advantage and efficiency of the fractional
calculus in aforesaid areas various methods have been devel-
oped by many researchers to solve linear and nonlinear frac-

tional differential equations [14–16].
The present work is concerned with time fractional order

Klein–Gordon equations as given below
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Da
t u ¼ D2

xuþ auþ bu2 þ cu3; t > 0; ð1:1Þ

subject to the initial condition

u x; 0ð Þ ¼ u0; x 2 R; ð1:2Þ

where Da
t u ¼ @au

@ta
, D2

xu ¼ @2u
@x2

, and a; b; c are real constants.

In particular, for a ¼ 1, Eq. (1.1) reduces to classical non-
linear Klein–Gordon equations, since nonlinear Klein–Gor-
don equations (KGEs) have wide range of applications in

science and engineering such as solid state physics, nonlinear
optics and quantum field theory [18]. The equation is consid-
ered as one of the important equations in mathematical phy-

sics and paid much attention in studying many problems
arising in solitons and condensed matter physics for studying
the interaction of solitons in a collision less plasma and the

recurrence of initial states [19–25]. Klein–Gordon equations
have been solved using many methods, e.g., Adomain
Decomposition method (ADM), Variational Iteration
Method (VIM) and Homotopy Perturbation method

(HPM) [23–27].
Before the nineteenth century, there was no scheme avail-

able for analytical solutions fractional order differential

equations. In 1998, Variational Iteration Method (VIM)
was first proposed to solve fractional differential equations
[13,28]. Thereafter, various analytical and numeric

approaches have been developed for the solution of such type
of fractional differential equations such as finite difference
scheme, an implicit finite-difference scheme, a compact differ-
ence scheme, higher-order numerical scheme, a composite

scheme combining alternating directions implicit approach
with a Crank Nicolson discretization and a Richardson
extrapolation and so on (see [29–35]). Recently, Gol-

mankhaneh et al. [17] have solved the fractional order KGEs
using Homotopy Perturbation Method (HPM). The major
disadvantage of aforesaid approach is that it requires a com-

plex and huge calculation. To overcome such type of draw-
backs, the fractional reduced differential transform method
(FRDTM) [36] has been employed. The FRDTM is the much

easier implementable analytical technique and provides
approximate analytical solution for both linear and nonlinear
fractional differential equations (refer [37–44]).

In this work, we use FRDTM to investigate analytical solu-

tion and study the behavior of the nonlinear time-fractional
KGEs. Rest of the article is categorized as follows: in Section 2,
basic preliminaries and notations to the fractional calculus the-

ory are revisited. Section 3 provides the basic of FRDTM to
find the exact solution of nonlinear time-fractional KGEs. In
Section 4, the approximate analytical solutions of three test

problems are discussed and compared with the solutions avail-
able in the literature by using HPM while Section 5 concludes
the article.
2. Fractional calculus theory

In this Section, basic definitions and preliminaries based on

fractional derivatives have been revisited for the further ongo-
ing study. In the literature, several definitions of fractional
integrals and derivatives are proposed but the first major con-
tribution to give proper, reasonable and most meaningful def-

initions goes to Liouville [3,10].
Definition 2.1. A real valued function fðxÞ 2 R, x > 0 is said to

be in the space Cl; l 2 R if there exists a real number q > lð Þ
such that fðxÞ ¼ xqgðxÞ, where gðxÞ 2 C½0;1Þ, and is said to

be in the space Cm
l if f ðmÞ 2 Cl;m 2 N.

Definition 2.2. Let f 2 R. Riemann–Liouville fractional inte-
gral operator [2] of order a P 0 is defined by

Jax fðxÞ ¼ 1
CðaÞ

R x

0
x� tð Þa�1

fðtÞdt; a > 0; x > 0;

J0x fðxÞ ¼ fðxÞ:

(
ð2:1Þ

Carpinteri and Mainardi [2] proposed a modified fractional

differentiation operator Da
x to describe the theory of viscoelas-

ticity to overcome the discrepancy of Riemann–Liouville
derivative [3,10] while modeling the real world problems using
the fractional differential equations. They further demon-
strated that their proposed Caputo fractional derivative allows

the utilization of initial and boundary conditions involving
integer order derivatives which depicts straightforward physi-
cal interpretations.

Definition 2.3. The fractional derivative of fðxÞ 2 R, in the
Caputo sense [2], is defined as

Da
xfðxÞ ¼ Jm�a

x Dm
x fðxÞ

¼ 1

C m� að Þ
Z x

0

x� tð Þm�a�1
f ðmÞðtÞdt; ð2:2Þ

for m� 1 < a 6 m; m 2 N; x > 0; f 2 Cm
l ; l P �1.

The basic properties of the Caputo fractional derivative can
be given by the following lemma.

Lemma 2.1. If m� 1 < a 6 m; m 2 N and f 2 Cm
l ; l P �1,

then

Da
xJ

a
x fðxÞ ¼ fðxÞ; x > 0;

JaxD
a
x fðxÞ ¼ fðxÞ �

Xm
k¼0

f ðkÞ 0þð Þ xk

k!
; x > 0:

8><
>: ð2:3Þ

In this work, the Caputo fractional derivative is considered

because it allows the traditional initial and boundary conditions
to be included in the formulation of the physical problems, for
further important characteristics of fractional derivatives refer

[1–10].
3. Fractional reduced differential transform method (FRDTM)

In this section, basic preliminaries of the fractional reduced
differential transform method (FRDTM) are described [36–

39]. Let the function of two variables w x; tð Þ represents as a
product of two single-variable functions w x; tð Þ ¼ FðxÞGðtÞ.
Then by using the properties of the one-dimensional differen-

tial transform (DT) method, w x; tð Þ can be written as

w x; tð Þ ¼
X1
i¼0

FðiÞxi
X1
j¼0

GðjÞt j ¼
X1
i¼0

X1
j¼0

W i; jð Þxit j; ð3:1Þ

where W i; jð Þ ¼ FðiÞGðjÞ is cited as the spectrum of w x; tð Þ.
Let RD and R�1

D denote the operators for fractional reduced

differential transform (FRDT) and inverse fractional reduced
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differential transform. (IFRDT), respectively. The basic defini-
tion and properties of the FRDTM are depicted below.

Definition 3.1. Assume the function w x; tð Þ be an analytic and

continuously differentiable with respect to space variable x and
time variable t in the domain of interest, then

(i) FRDT of w x; tð Þ is given by
Tabl

tran

Orig

w x;ð
u x;ð
a1uð
xmtn

Dl
xuð

DNa
t ð

xm
WkðxÞ ¼ 1

C kaþ 1ð Þ Dk
t w x; tð Þð Þ� �

t¼t0
: ð3:2Þ
(ii) The inverse FRDT of w x; tð Þ is defined as
w x; tð Þ ¼
X1
k¼0

WkðxÞ t� t0ð Þka; ð3:3Þ
where a is a parameter which describes the order of time-
fractional derivative. Throughout the article, w x; tð Þ (lower-
case) is used for the original function and WkðxÞ (uppercase)

refers the fractional reduced transformed function.
From Eq. (3.2) and (3.3), we have

w x; tð Þ ¼
X1
k¼0

1

C kaþ 1ð Þ Dk
t w x; tð Þð Þ� �

t¼t0
t� t0ð Þka: ð3:4Þ

In particular, for t0 ¼ 0, Eq. (3.4) becomes

w x; tð Þ ¼
X1
k¼0

1

C kaþ 1ð Þ Dk
t w x; tð Þð Þ� �

t¼0
tka: ð3:5Þ

Let uðx; tÞ and v x; tð Þ be any two analytic and continuously dif-
ferentiable functions with respect to space variable x and time

variable t such that u x; tð Þ ¼ R�1
D UkðxÞ½ � and

v x; tð Þ ¼ R�1
D VkðxÞ½ �, then the fundamental operations of

FRDTM are described in Table 1, In Table 1, symbol �
denotes the fractional reduced differential transform of the

multiplication, C denotes the Gama function, defined as

CðzÞ :¼ R1
0

e�ttz�1dt; z 2 C, and the function d is defined by

dðkÞ :¼ 1 if k ¼ 0
0 otherwise

�
.

4. Numerical computations

In this section, the illustrated method (FRDTM) in Section 2 is
implemented by taking three numerical examples of linear and
nonlinear time fractional KGEs.
e 1 Basic properties of the fractional reduced differential

sform method.

inal function Fractional reduced differential transformed

function

tÞ RD wðx; tÞf g ¼ WkðxÞ
tÞv x; tð Þ UkðxÞ � VkðxÞ ¼

Pk
r¼0UrðxÞVk�rðxÞ

x; tÞ � a2v x; tð Þ a1UkðxÞ � a2VkðxÞ
u x; tð Þ xmUk�nðxÞ; 8k P n;

0; else:

x; tÞ Dl
xUkðxÞ

u x; tð ÞÞ C 1þðkþNÞað Þ
C 1þkað Þ UkþNðxÞ

xmdðkÞ
Example 4.1. Consider the linear time fractional order Klein–

Gordon equation [17]:

Da
t u�D2

xu� u ¼ 0; t P 0; ð4:1Þ

subject to the initial condition

u x; 0ð Þ ¼ 1þ sinðxÞ: ð4:2Þ

The following recurrence relation is obtained on applying
FRDTM to Eq. (4.1)

C kaþ aþ 1ð Þ
C kaþ 1ð Þ Ukþ1ðxÞ ¼ D2

xUk þUk: ð4:3Þ

Now, we obtain the following expression by using FRDTM to
the initial condition (4.2)

U0ðxÞ ¼ 1þ sinðxÞ: ð4:4Þ
Using Eq. (4.3) into Eq. (4.2), the following values of UkðxÞ are
obtained successively

U1ðxÞ ¼ 1

C 1þ að Þ ;U2ðxÞ ¼ 1

C 1þ 2að Þ ; . . . ;

UkðxÞ ¼ 1

C 1þ kað Þ ; . . . ð4:5Þ

Now, using the inverse FRDTM, we obtained

u x; tð Þ ¼
X1
k¼0

UkðxÞtka ¼ U0ðxÞ þ
X1
k¼1

UkðxÞtka

¼ 1þ sinðxÞ þ
X1
k¼1

tka

C 1þ kað Þ : ð4:6Þ

Eq. (4.6) represents the exact solution of Eq. (4.1). The same
solution was obtained by Golmankhaneh et al. [17] using

HPM. In particular, for a ! 1, Eq. (4.6) reduced to

u x; tð Þ ¼ 1þ sinðxÞ þ
X1
k¼1

tk

C 1þ kð Þ ; ð4:7Þ

which is the exact solution of the classical Klein–Gordon Eq.
(4.1) with a ¼ 1.

It is evident that the above result is in complete agreement
with the results provided by Golmankhaneh et al. [17] using

HPM. Fig. 1 depicts the physical solution behavior of uðx; tÞ
corresponding to a ¼ 0:5; 1:5 and 2.5, respectively for Example
4.1. Fig. 2 shows the solution nature behavior of uðx; tÞ for dif-
ferent fraction Brownian motion, a ¼ 0:6; 0:7; 0:8; 0:9 and 1.0.
From Fig. 2, it can be observed that as the value of fraction
Brownian motion, a decreases toward zero, the solution profile

uðx; tÞ grows, and in other words, as the value of a tends
toward integer (non-fractional) order (i.e., a ! 1), the solu-
tion profile uðx; tÞ decays.

Example 4.2. Consider the nonlinear time fractional order

Klein–Gordon equation [17]:

Da
t u�D2

xuþ u2 ¼ 0; t > 0; ð4:8Þ
subject to the initial condition

u x; 0ð Þ ¼ 1þ sinðxÞ: ð4:9Þ



Figure 1 Physical behavior of uðx; tÞ corresponding to a ¼ 0:5; 1:5 and 2.5 from left to right.

Figure 2 Solution profile of uðx; tÞ vs. time t for different values

of a.
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The following recurrence relation is obtained on applying
the FRDTM to Eq. (4.8)

C kaþ aþ 1ð Þ
C kaþ 1ð Þ Ukþ1ðxÞ ¼ D2

xUk �
Xk

r¼0

UkUk�r: ð4:10Þ

Now, using FRDTM to the initial condition (4.10), the follow-

ing expression is obtained

U0ðxÞ ¼ 1þ sinðxÞ: ð4:11Þ
Using Eq. (4.10) into Eq. (4.9), the following values of UkðxÞ
are obtained successively
U1ðxÞ ¼ � 1

C 1þ að Þ 1þ 3 sinðxÞ þ sin2ðxÞ� �
;

U2ðxÞ ¼ 1

C 1þ 2að Þ 11 sinðxÞ þ 12 sin2ðxÞ þ 2 sin3ðxÞ� �
;

U3ðxÞ ¼ 1

C 1þ 3að Þ 18� 57 sinðxÞ � 160 sin2ðxÞ � 82 sin3ðxÞ�
� 10 sin 4xð ÞÞ;

..

. ð4:12Þ
Using inverse FRDTM of UkðxÞ, we obtain the solution of Eq.

(4.8) as

u x; tð Þ ¼
X1
k¼0

UkðxÞtka ¼ 1þ sinðxÞ � ta

C 1þ að Þ 1þ 3 sinðxÞð

þ sin2ðxÞ�þ t2a

C 1þ 2að Þ 11 sinðxÞ þ 12 sin2ðxÞ�
þ 2 sin3ðxÞ�þ t3a

C 1þ 3að Þ 18� 57 sinðxÞ � 160 sin2ðxÞ�
� 82 sin3ðxÞ � 10 sin 4xð Þ� . . . ð4:13Þ

Eq. (4.13) is the series solution for the nonlinear time frac-
tional Klein–Gordon equation, clearly in complete agreement

with the results given by Golmankhaneh et al. [17] using
HPM. Fig. 3 shows the physical characteristics of uðx; tÞ corre-
sponding to a ¼ 0:5; 1:0 and 1.5, respectively for Example 4.2.

Fig. 4 shows the solution behavior of uðx; tÞ for different frac-
tion Brownian motion a ¼ 0:6; 0:7; 0:8; 0:9 and 1.0. Similar to
numerical Example 4.1, we notice the same solution behavior
for different fraction Brownian motion, a.



Figure 3 Physical characteristics of uðx; tÞ corresponding to a ¼ 0:5; 1:0 and 1.5 from left to right.

Figure 4 Solution profile pattern of uðx; tÞ vs. time t for different

values of a.
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Example 4.3. Consider the nonlinear time fractional Klein–
Gordon equation [17]:

Da
t u�D2

xuþ u� u3 ¼ 0; t > 0; ð4:14Þ
subject to the initial condition

u x; 0ð Þ ¼ � sec hðxÞ: ð4:15Þ
The following recurrence relation is obtained on applying

the FRDTM to Eq. (4.14)

C kaþ aþ 1ð Þ
C kaþ 1ð Þ Ukþ1ðxÞ ¼ D2

xUk þUk � RD u3
� �

: ð4:16Þ

Now, using FRDTM to the initial condition (4.15), the follow-
ing expression is obtained
U0ðxÞ ¼ � sec hðxÞ: ð4:17Þ
Using Eq. (4.17) into Eq. (4.16), the following values of UkðxÞ
are obtained successively

U1ðxÞ¼� 1

C 1það Þ 2sechðxÞ�3sech3ðxÞ� �
;

U2ðxÞ¼� 1

C 1þ2að Þ 3sechðxÞ�34sech3ðxÞ�18sech5ðxÞ� �
;

U3ðxÞ¼� 1

C 1þ3að Þ 64sech3ðxÞ�288sech5ðxÞþ240sech7ðxÞ� �
;

..

.

ð4:18Þ
Now, using inverse fractional reduced differential transform,
we obtain

u x; tð Þ ¼
X1
k¼0

UkðxÞtka ¼ � sec hðxÞ � ta

C 1þ að Þ 2 sec hðxÞð

� 3 sec h3ðxÞ�� t2a

C 1þ 2að Þ 3 sec hðxÞð

� 34 sec h3ðxÞ � 18 sec h5ðxÞ�
� t3a

C 1þ 3að Þ 64 sec h3ðxÞ�
� 288 sec h5ðxÞ þ 240 sec h7ðxÞ�� . . .

ð4:19Þ
Eq. (4.19) is the series solution for the nonlinear time frac-
tional Klein–Gordon equation. The same solution was



Figure 5 Physical behavior of uðx; tÞ corresponding to a ¼ 0:01; 0:5 and 1.0 from left to right.

Figure 6 Solution pattern of uðx; tÞ vs. time t for different values

of a.
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obtained by Golmankhaneh et al. [17] using HPM. It is clear
that the above result is in complete agreement with the results
due to Golmankhaneh et al. [17]. Fig. 5 depicts the physical
behavior of uðx; tÞ corresponding to a ¼ 0:01; 0:5 and 1.0 for

Example 4.3. Fig. 6 shows the solution behavior of uðx; tÞ
for different fraction Brownian motion. The same type of solu-
tion profile pattern observation can be seen as it was observed

in Examples 4.1 and 4.2.
5. Conclusions

In this work, implementation of the fractional reduced differ-
ential transform method has been done successfully to study
analytically linear and nonlinear time fractional order Klein–
Gordon equations. To validate the efficacy and accurateness
of the method for Klein–Gordon equations, three computa-
tional examples have been carried out. From the computa-

tional examples, we notice that as the fraction Brownian
motion tends toward non-fraction Brownian motion, the solu-
tion profile decays. We also notice that the proposed series

solutions obtained by the fractional reduced differential trans-
form method are in excellent agreement with the solution given
by homotopy perturbation method. Moreover, the performed

computations show that the described method is much easier
to apply than homotopy perturbation method as it takes very
small size of computation.
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