and two leucine zipper domains and has limited homology to yeast kar5, which is critical for pronuclear fusion. Thus, bmb encodes a novel protein that potentially links the nuclear envelope to the underlying chromatin, and functions to maintain nuclear structure of the cleavage-stage blastomeres, possibly through promoting membrane fusion.

doi:10.1016/j.ydbio.2010.05.219

Program/Abstract # 179
CaMK-II mediates non-canonical Wnt-dependent morphogenic events during zebrafish gastrulation
McLeod Jamie, Sarah Rothschild, Ludmila Fratelli, Robert M. Tombess
Dept. of Biol., VCU, Richmond, VA, USA

In developing zebrafish embryos, formation and elongation of the anterior–posterior (AP) body axis depends on convergent extension, a dynamic process that involves alterations in cell adhesion, polarized cell movements and is regulated by Wnt/Ca2+ signaling. Zebrafish encode seven CaMK-II genes each with specific expression patterns during development. Several of these CaMK-II genes are expressed during the first 12hpf; including camk2b1, camk2b2, camk2g1 and camk2g2. Morpholino knockdown of camk2b1 and camk2g1 phenocopies Wnt5 and Wnt11 morphants, respectively. Wnt5 and Wnt11 are core members of the non-canonical Wnt/PCP pathway and have been shown to regulate convergent extension during early zebrafish development. To evaluate the role of camk2b1 and camk2g1 during early development, axial mesoderm, AP body axis length as well as cell shape and dispersal during gastrulation were assessed in camk2b1 and camk2g1 morphants. Our results show that both CaMK-II morphants exhibit a decrease in AP body axis length; however each morphant has separate primary defects with camk2b1 morphants showing broadened expression of axial chordal mesoderm and camk2g1 morphants affecting tail extension. Global CaMK-II disruption using dominant negative constructs also resulted in defects consistent with roles in convergent extension. With these results, we propose that Wnt11 signaling acts on gamma1 CaMK-II to affect the posterior region of the developing embryo and Wnt5 signals activate camk2b1 to affect media-lateral intercalation necessary for axis formation and extension. Supported by National Science Foundation IOS-0817658.

doi:10.1016/j.ydbio.2010.05.220

Program/Abstract # 180
Coordinated DV and AP patterning by multiple signals in zebrafish
Megumi Hashiguchi, Mary Mullins
Dept. of Cell & Dev. Biol., University of Pennsylvania, PA, USA

BMP signaling patterns dorsoventral (DV) tissues progressively temporally along the anteroposterior (AP) axis in zebrafish. To understand this, we tested if altered AP patterning alters the temporal function of BMP signaling to pattern DV tissues along the AP axis. Inhibition of FGF signaling caused expansion of anterior markers posteriorly, which we found were patterned during the same temporal interval as the normal smaller domain by BMP signaling. Overexpression of Wnt signaling caused a shift of posterior markers anteriorly and this expanded posterior tissue was patterned during the same temporal interval as the normally positioned posterior tissue. Thus the temporal patterning of DV tissues along the AP axis by BMP signaling is regulated by AP patterning possibly by FGF and Wnt themselves. We examined the molecular mechanism coordinating DV and AP patterning. Phosphorylations of Smad1 by MAPK and GSK3 inhibit the activity of the BMP receptor phosphorylated form of Smad1, P-Smad1Cter, in Xenopus embryos (Fuentealba et al., 2007), which is postulated to coordinate DV and AP patterning of the ectoderm by BMP, FGF/MAPK and Wnt/GSK3 signaling. To investigate if a similar mechanism regulates P-Smad1/5Cter function in zebrafish, we examined the localization pattern of P-Smad1/5GSK3 and P-Smad1/5MAPK. The localization of P-Smad1/5MAPK was maintained in the ventral marginal zone, where FGF/MAPK and BMP/ Smad1/5 signaling coexist, whereas P-Smad1/5GSK3 was not. These data are consistent with FGF signaling temporally regulating BMP signaling along the AP axis during gastrulation, providing novel insights into the coordination of DV and AP patterning.

doi:10.1016/j.ydbio.2010.05.222

Program/Abstract # 182
A chemokine receptor, CCR7, limits β-catenin activity during zebrafish axis formation
SHU-YU (Simon) WU, Lilianna Solnica-Krezel
Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA

Formation of the dorsal blastula organizer is one of the key early steps in establishing the proper dorsal–ventral (DV) axis of the vertebrate embryo. Accumulation in the dorsal blastula of β-catenin, an effector of the canonical Wnt signaling pathway, initiates the dorsal-specific gene network and axis formation. We report here that CCR7, a chemokine G-protein coupled receptor, regulates the early steps of DV axis specification in zebrafish embryo. Ccr7 gene is maternally and ubiquitously expressed, but its transcripts become asymmetrically distributed during gastrulation. Antisense morpholino oligonucleotides (MO) interference with CCR7 translation results in a typical dorsalized embryo phenotype, as judged by tail truncations and expanded or ectopic expression domains of dorsal at the expense of ventral markers. Conversely, injection of synthetic ccr7 RNA into zygotes causes ventralized phenotypes. Interestingly, injection of ccr7 MO can often induce incomplete double axes in ichabod mutants with reduced levels of maternal β-catenin. Moreover, overexpression of ccr7 RNA antagonizes the ability of β-catenin to suppress ventralized ichabod mutant phenotype. Further molecular analyses suggest that CCR7 negatively regulates the nuclear accumulation of β-catenin by a GSK3β-independent mechanism. In conclusion, we provided several lines of evidence indicating that CCR7 controls embryonic DV axis formation by restricting the dorsal blastula organizer domain in zebrafish. Current efforts aim at elucidating the molecular mechanisms underlying this unprecedented role for a chemokine receptor.

doi:10.1016/j.ydbio.2010.05.222