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The purpose of this paper is to introduce and study a class of set-valued
variational inclusions without compactness condition in Banach spaces. By using
Michael’s selection theorem and Nadler’s theorem, an existence theorem and an
iterative algorithm for solving this kind of set-valued variational inclusions in
Banach spaces are established and suggested.  © 2000 Academic Press
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1. INTRODUCTION

In recent years, variational inequalities have been extended and general-
ized in different directions, using novel and innovative techniques. Useful
and important generalizations of variational inequalities are variational
inclusions.

Recently, in [18, 19], Noor et al. introduced and studied the following
class of set-valued variational inclusion problems in a Hilbert space H.

For a given maximal monotone mapping A : H — H, a nonlinear map-
ping N(-,-): H X H - H, set-valued mappings 7,V : H - C(H), and a
single-valued mapping g: H - H, find u € H, w € T(u), y € V(u) such
that

6 N(w,y) +A(g(u)), (1.1)

where C(H) denotes the family of all nonempty compact subsets of H.
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For a suitable choice of the mappings 7,V g, A, N, a number of known
and new variational inequalities, variational inclusions, and related opti-
mization problems introduced and studied by Noor [19-24] can be ob-
tained from (1.1).

Inspired and motivated by the results in Noor [18, 19], the purpose of
this paper is to introduce and study a class of more general set-valued
variational inclusions without the compactness condition in Banach spaces.
By using the famous Michael’s selection theorem [15] and Nadler’s theo-
rem [17] an existence theorem and an approximate theorem for solving the
set-valued variational inclusions in Banach spaces are established and
suggested. The results presented in this paper generalize, improve, and
unify the corresponding results of Noor [18-24], Ding [7], Huang [9, 10],
Kazmi [12], Jung and Morales [11], Hassouni and Moudafi [8], Zeng [26],
and Chang et al. [3, 4].

2. PRELIMINARIES

Throughout this paper, we assume that E is a real Banach space, E* is
the topological dual space of E, CB(E) is the family of all nonempty
closed and bounded subsets of E, {-,-) is the dual pair between E and
E*, D(-,-) is the Hausdorff metric on CB(E) defined by

D(A,B) =max{sup d(x,B), sup d(A,y)}, A,B € CB(E).
x€A yEB

D(T) denotes the domain of T, and J: E — 2 is the normalized duality
mapping defined by
J(x) ={feE*:(x, 0 =lxl-NfLIUFIT=Nlxl},  x€E.

DEFINITION 2.1. Let A: D(A) c E - 2% be a set-valued mapping and
¢ :[0,0) — [0, ) be a strictly increasing function with ¢(0) = 0.

(1) The mapping A is said to be accretive if, for any x,y € D(A),
there exists j(x — y) € J(x — y) such that
(u—v,j(x—y) =0
for all u € Ax, v € Ay.

(2) The mapping A is said to be ¢-strongly accretive if, for any
x,y € D(A), there exists j(x —y) € J(x —y) such that for any u € Ax,
v € Ay,

(u—v,j(x=y) = é(lx—yl)lx =yl
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Especially, if ¢(z) = kt, 0 < k < 1, then the mapping A is said to be
k-strongly accretive.

(3) The mapping A is said to be m-accretive if A is accretive and
(I + pAXD(A)) = E for all o > 0, where I is the identity mapping.

(4) The mapping A is said to be ¢-expansive if for any x, y € D(A)
and for any u € Ax, v € Ay,

lu = vll > ¢(llx = yll).

Remark. 1t is easy to see that if A4 is ¢-strongly accretive, then A is
¢-expansive.

DEfFINITION 2.2. Let T,F:E — CB(E) be two set-valued mappings,
A:D(A) CE - 2% an m-accretive mapping, g: E — D(A) a single-val-
ued mapping, and N(-,-): E X E - E a nonlinear mapping. For any
given f € E and A > 0 we consider the following problem.

Find ¢ € E, w € T(q), v € F(q) such that

feN(w,v) +r4(g(q))- (2.1

This problem is called the set-valued variational inclusion problem in
Banach spaces.

A number of problems arising in pure and applied sciences can be
reduced to study this kind of variational inclusion problem (see, for
example, [6, 18, 19, 25]).

Next we consider some special cases of problem (2.1).

(1) If E = H is a Hilbert space and 4: D(A) = H — H is a maxi-
mal monotone mapping, then the problem (2.1) is equivalent to finding
g € H,w € Tq, v € F(q) such that

feN(w,v) + 2A(g(q)). (2.2)

This problem was introduced and studied in Noor [18] and Noor et al. [19]
under some additional conditions.

(2) If g =1, then the problem (2.1) is equivalent to finding g €
D(A), w € Tq, v € F(q) such that

fEN(w,v) + AA(q). (2.3)
This problem seems to be a new one. We will study this in another paper.

(3) Ifg=IF=0,T=1S:E — E is a single-valued mapping and
N(x,y) = Sx for all (x,y) € E X E, then the problem (2.1) is equivalent
to finding g € D(A) such that

feSq+ AAq. (2.4)

This problem was introduced and studied in Jung and Morales [11].
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(4) If E = H is a Hilbert space, A = 1, and A = dg, the subdiffer-
ential of a proper convex lower semi-continuous functional ¢: H - R U
{409}, then the problem (2.1) is equivalent to finding ¢ € H, w € Tg,
v € F(q) such that

(N(w,v) =f,x—g(q)) = ¢(8(q)) — ¢(x), forall x € H. (2.5)

This problem is called the generalized set-valued mixed variational in-
equality, which was introduced and studied by Noor et al. [19]. Recently,
this problem with N being some special case was also considered in the
setting of Banach spaces (see Chang [3]).

(5) If H is a Hilbert space, T, F, M : H —> 2% are three set-valued
mappings, and m, S, G : H — H are three single-valued mappings, K(z) =
m(z) + K, where K is a closed convex subset of E, N(x,y) = Sx + Gy
and

0, if x € K(z),

() =Lo(D) =\ o ity ¢ K(z),

then the problem (2.5) is equivalent to finding ¢ € H,w € T(q), v € F(q),
z € M(q) such that

g(q) €K(q), (Sw+Gv—f,x—g(q))=0,xeK(z). (2.6)

This problem is called the generalized strongly nonlinear implicit quasi-
variational inequality, which was studied in Huang [10].

Summing up the above arguments, it shows that for a suitable choice of
the mapping 7T, F, A, g, N and the space E, one can obtain a number of
known and new classes of variational inequalities, variational inclusions,
and the corresponding optimization problems from the set-valued varia-
tional inclusions problem (2.1). Furthermore, these types of variational
inclusions enable us to study many important problems arising in mathe-
matical, physical, and engineering sciences in a general and unified frame-
work.

DErFINITION 23. Let T,F:E — 2% be two set-valued mappings,
N(-,+): E X E - E anonlinear mappings, and ¢ : [0, ) — [0, ) a strictly
increasing function with ¢(0) = 0.
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(1) The mapping x — N(x, y) is said to be ¢-strongly accretive with
respect to the mapping 7, if for any x,, x, € E there exists j(x, — x,) €
J(x, — x,) such that for any u, € Tx,, u, € Tx,

<N(u1,y) — N(uy, ), j(x; —x2)> > ¢(llx; = x,l)llx; — x|l

forall y € E.

(2) The mapping y — N(x, y) is said to be accretive with respect to
the mapping F, if for any y,, y, € E there exists j(y, —y,) € J(y, —y,)
such that for any v, € Ty, v, € Ty,

(N(x,v;) = N(x,0,),j(y; —y,)) = 0
for all x € E.

DEFINITION 2.4. Let T:E — CB(E) be a set-valued mapping and
D(-, ) be the Hausdorff metric on CB(E). T is said to be ¢&Lipschitzian
continuous if, for any x,y € E,

D(Tx,Ty) < &llx —yll,

where £ > 0 is a constant.

The following lemmas play an important role in proving our main
results.

LEMMA 2.1 [1, 2]. Let E be a real Banach space and J : E — 25 be the
normalized duality mapping. Then for any x,y € E, the following inequality
holds,

lx +ylI> < llxll® + Ay, j(x +y)),

forall j(x +y) € J(x +y).

LEMMA 2.2. Let E be a real smooth Banach space, T,F : E — 25 two
set-valued mappings, and N(- ,-): E X E — E a nonlinear mapping satisfying
the following conditions:

(1)  the mapping x — N(x, y) is ¢-strongly accretive with respect to the
mapping T
(2) the mappingy — N(x, y) is accretive with respect to the mapping F.
Then the mapping S : E — 2F defined by
Sx = N(Tx, Fx)

is ¢-strongly accretive.
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Proof. Since E is smooth, the normalized duality mapping J: E — 25
is single-valued. For any given x,,x, € E and for any u;, € Sx,, i = 1,2,
there exists w; € Tx; and v; € Fx; such that u, = N(w,,v,), i = 1,2. By
conditions (1) and (2) we have

<”1 —uy, J(x, —x2)> =<N(W17U1) = N(w;,05),J(x, —x2)>
=<N(W17U1) — N(w,,0y),J(x; —x2)>
H(N(w,y,01) = N(wy,0,), (%, = X,))

> ¢d(llx; — x5 l)llxy — x5l

This implies that the mapping S = N(T(-), F(+)) is ¢-strongly accretive.

LEMMA 2.3 (Michael [15]). Let X and Y be two Banach spaces, T : X —
2Y a lower semi-continuous mapping with nonempty closed convex values.
Then T admits a continuous selection; i.e., there exists a continuous mapping
h: X - Y such that h(x) € Tx for each x € X.

LEMMA 2.4.  Let E be a real uniformly smooth Banach space and T : E —
2% be a lower semi-continuous m-accretive mapping. Then the following
conclusions hold.

(1) T admits a continuous and m-accretive selection;

(2) In addition, if T is also ¢-strongly accretive, then T admits a
continuous, m-accretive and ¢-strongly accretive selection.

Proof. (1) It is well known that if E is a uniformly smooth Banach
space and T:E — 2% is a m-accretive mapping, then for each x € E,
T(x) is nonempty closed and convex (see, for example, Deimling [5, p.
293]). By Lemma 2.3, T admits a continuous selection 4 : E — E such that
h(x) € T(x) for all x € E.

Next we prove that h: E — E is m-accretive. In fact, since T: E — 2F
is accretive, for any x, y € E and for any u € Tx, v € Ty,

(u—v,J(x—y)) =0.
In particular, letting u = h(x) € Tx, v = h(y) € Ty, we have
(h(x) = h(y),J(x =y)) = 0.
This implies that #:E — E is a continuous accretive mapping. By a

well-known result due to Martin [14], & is a continuous m-accretive
selection.
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(2) In addition, if T is also ¢-strongly accretive, then the selection
h:E — E given in (1) is also ¢-strongly accretive. In fact, for any x,y € E
and for any u € Tx, v € Ty, we have

(u—0,1(x=y) = d(llx = ylhllx —yll. (2.7)

Letting u = h(x) € Tx, v = h(y) € Ty, from (2.7) we have
(h(x) = h(y),J(x —y)) = d(llx = yl)llx = yll.

This implies that /4 is ¢-strongly accretive.
This completes the proof of Lemma 2.4.

LEMMA 2.5 (Nadler [17]). Let E be a complete metric space, T : E —
CB(E) be a set-valued mapping. Then for any given € > 0 and for any given
x,y € E, u € Tx, there exists v € Ty such that

d(u,v) < (1+ €)D(Tx,Ty).

LEMMA 2.6 [13]. Let E be a uniformly smooth Banach space and
A:D(A) CE — 2F be an m-accretive and ¢-expansive mapping, where
¢ :[0,0) — [0,0) is a strictly increasing function with $(0) = 0. Then A is
surjective.

We now invoke Michael’s selection theorem and Nadler’s theorem to
suggest the following algorithms for solving the set-valued variational
inclusion (2.1).

Let {«,},{B,} be two sequences in [0, 1], f € E be any given point, and
A >0 be any given positive number. For given x, € E, u, € T(x,),
zy € F(x,), take

Yo € (1= By)xy + Bo(f“"% — N(uy, zy) — )\A(g(xo))
and
wy € Tyy, vy € Fy,.

Define

X € (1= ag)xy + ap(f+yy = N(wy,00) — AA(g(0)))-

Since u, € Tx,, z, € Fx,, by Nadler’s theorem, there exist u, € Tx,,
z, € Fx, such that

g — uyll < (1 + 1)D(T(x,),T(xy)),
20 - 2l (1+ 1) D(F(x,), F(x,)).
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For x, € E, u, € Tx,, z, € Fx,, define

yi€(1—=B)x + :Bl(f+xl - N(uy,zy) — )\A(g(x]))).

Since w, € Ty,, v, € Fy,, again by Nadler’s theorem, there exist w, € Ty,
v, € Fy, such that

wo = will < (1 + 1) D(T(y0),T(¥1)),
llog = vyll < (1 + 1) D(F(y,), F(y1))-

Define

X, € (1 —ay)x; + al(f+Y1 = N(wy,vy) — /\A(g(Y1)))-

Continuing in this way, we can obtain the following algorithms:

ALGORITHM 2.1. For any given x, € E, u, € T(x,), and z, € F(x,),
compute the sequences {x,}, {y,}, {«,}, {z,}, {w,}, and {v,} by the iterative
schemes such that

() x € (= a)x, + a(f+y, = Nw,v,) = 248(3,))
(i) y, (1 =B)x, +B,(f+x, = N(u,,z,) = rg(x,)),

(i) wu, € Ix,, lu, —u, < |1+ —y 1)D(Txn,Tan),
) 1
(iv) z,€Fx,, llz, —z, 4l < |1+ —— D(Fx,, Fx, ), (2.8)

) wnenyn),nwn—wmns(u )D(Tyn,TynH),

n+1

1
(Vl) UneF(yn)’“Un_Un+l||S (1+ )D(Fyn7Fyn+l)7
n+1
n=0,1,2,....
The sequence {x,} defined by (2.8), in the sequel, is called the Ishikawa
iterative sequence.

In Algorithm 2.1, if 8, = 0 for all n > 0, then y, = x,. Take w, = u,,
z, = v, for all n > 0 and we obtain the following
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ALGORITHM 2.2. For any given x, € E, w, € Tx,, v, € Fx, compute
the sequences {x,}, {w,}, {v,} by iterative schemes such that

Xnt1 = (1 - an)xn + an(f+xn _N(Wn’Un) - /\Ag(xn))7

w, € Tx,, lw, —w, < (1+ n+1)D(Txn,Txn+1),

(2.9)
v, € Fx,, o, — v, 4l < 1+n+1)D(Fxn,Fxn+l)
n = 0.

The sequence {x,} defined by (2.9), in the sequel, is called the Mann
iterative sequence.

3. EXISTENCE THEOREM OF SOLUTIONS FOR
SET-VALUED VARIATIONAL INCLUSION

In this section, we shall establish an existence theorem of solutions for
set-valued variational inclusion (2.1). We have the following result.

THEOREM 3.1. Let E be a real uniformly smooth Banach space, T, F : E
— CB(E) and A:D(A) CE — 2F three set-valued mappings, g:E —
D(A) a single-valued mapping, and N(-,-): E X E —» E a single-valued
continuous mapping satisfying the following conditions:

(i) Aeg:E — 2F is m-accretive;

(i) T:E — CB(E) is u-Lipschitzian continuous;

(iii) F:E — CB(E) is &Lipschitzian continuous, where w and & are
positive constants;

(iv) the mapping x — N(x, y) is ¢-strongly accretive with respect to the
mapping T, where ¢ :[0,0) — [0,%) is a strictly increasing function with
#(0) = 0;

(v) the mapping y — N(x,y) is accretive with respect to the map-
ping F.

Then for any given f € E, A > 0, there exist g € E, w € T(q), v € F(q)
which is a solution of the set-valued variational inclusion (2.1).

Proof. Tt follows from conditions (iv), (v), and Lemma 2.2 that the
mapping S : E — 2% defined by

Sx = N(Tx, Fx), x€eE
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is ¢-strongly accretive. Since N(-,-) is continuous, 7 and F both are
Lipschitzian continuous, and so § is continuous and accretive. By Morales
[16], S is m-accretive and ¢-strongly accretive. By Lemma 2.4(2), S admits
a continuous, ¢-strongly accretive and m-accretive selection h: E — E
such that

h(x) € S(x) = N(Tx, Fx) forall x € E.
Next we consider the variational inclusion
feh(x)+AA(g(x)), A> 0. (3.1

By the assumption AA ° g is m-accretive and 4 : E — E is continuous and
¢-strongly accretive. Hence by Kobayashi [13, Theorem 5.3], 7 + AA - g is
m-accretive and ¢-strongly accretive. Therefore it is also an m-accretive
and ¢-expansive mapping. By Lemma 2.6, 1 + A4 g: E — 2F is surjec-
tive. Therefore for given f and A > 0, there exists a unique g € E such
that

feh(q) +2A4(8(q)) € N(T(q),F(q)) + rA(g(q))-

(The uniqueness of ¢ is a direct consequence of the ¢-strongly accretive-
ness of & + AA4 - g.) Consequently, there exist w € Tq and v € Fg such
that

feN(w,v) + rA4g(q)).

This completes the proof.

4. APPROXIMATE PROBLEM OF SOLUTIONS FOR
SET-VALUED VARIATIONAL INCLUSION

In Theorem 3.1, under some conditions, we have proved that there exist
q € E,w e Tq, and v € Fg which is a solution of set-valued variational
inclusion (2.1). In this section we shall study the approximate problem of
solutions for variational inclusion (2.1).

We have the following result:

THEOREM 4.1. Let E,T,F, A, g, N be as in Theorem 3.1. Let {a,},{ B,}
be two sequences in [0, 1] satisfying the following conditions:

@ «,—=0 B,—0;

(i) Y2_,a, = .
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If the ranges R(I — N(T(-), F())) and R(A - g) both are bounded, then for
any given x, € E, u, € Tx,, z, € Fx, the iterative sequences {x,}, {w,}, and
{v,} defined by (2.8) converge strongly to the solution q,w,v of set-valued
variational inclusion (2.1) which is given in Theorem 3.1, respectively.

Proof. In (i) and (ii) of (2.8) choose h, € Ag(x,), k, € Ag(y,) such
that

X1 = (1 —a)x, +a,(f+y, — N(w,,v,) — Ak,),

fo= (1= By + B 45— Nty z) — W), D
Let
P =f+y, = N(w,,v,) — Ak,
r, =f+x,—N(u,,z,) — Ah,.
Then (4.1) can be rewritten as
X1 = (1= a,)x, + a,p,, 42)

Yo = (1= B)x, + B,r,.
Since the ranges R(I — N(T(+), F(-))), R(A - g) are bounded, let
M = sup{llw —qll: w € (f +x — N(Tx, Fx) — AAg(x)), x € E}
+lx, — gll < oo,
This implies that

Ip, —qll <M,

for all n > 0. 4.3
Ir, — gqll < M, (43)

Since ||x, — gll < M, we have

lyo = all =](1 = By)(xg — q) + Bo(rg — q)|
< (1 = By)llxg — qll + Byllry — qll
<M.

This implies that

lx, —gll < (1 = ag)llxy — qll + ayllpy — qll < M;
ly, —qll < (1 = B)llx; —gll + Byllr, — qll < M.
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By induction we can prove that
llx, —qll < M,
(4.4)
Iy, —qll <M.

On the other hand, by (4.3), (4.4), and Lemma 2.1 we have

6,0 = al* =[I(1 = @) (x, = @) + a,(p, = D)’
< (1= a,)’lx, — gl
+2a,{p, = 4, I (X1 — )
= (1-a,)’llx, =gl + 2,{ p, = ¢, (v, — 9))
+2a{p, — I (Xyi1 =) = (v, — @)  (45)
Now we consider the third term on the right side of (4.5). Since
[(x0i1—a) = (v — D)l
=[x, = yall
=1 = @) (x, =) + (P, =30 |
< (1 - a,)Bllx, = rll + a{lp, —qll + 1y, — qll
< (1—-a,)Blx, —qll +llr, = qll} + a,{llp, —qll +lly, — ql}
<2((1-e,)B, +a,) M—0,

by the uniform continuity of J: E — 2%", we have
J(xp1=q) =J(y, —q) =0 (n—).
Since {p, — ¢} is bounded, this implies that
8y =Kpu =@ J(x1 =) = (3, =)= 0 (n ). (4.6)

Next we consider the second term on the right side of (4.5).
Since w, € Ty,, v, € Fy,, k, € Ag(y,), this implies that

N(w,,v,) + Ak, € [N(T(:), F()) + 14g()](3,)-
Again since g € E is a solution of the variational inclusion,

feh(q) +r4g(q) < [N(T(), F()) + A4g(1)](q)-
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This shows that f is a point of [N(T(-), F(-)) + A Ag(-)l(¢). By the assump-
tions of Theorem 4.1, N(T(-), F(:)) + A Ag(-): E — 2F is ¢-strongly accre-
tive, hence we have

<f_ (N(Wn’Un) + )\kn)’J(yN - q)>
= ~(N(w,,v,) + X, = f,J(y, — q))
=¢(lly, —qlhlly, — qll.

IA

Therefore we have
2a,{ Py = ¢ I (u — 7))
=2a,(f +y, = N(w,,0,) = Ak, = 4,7 (¥, = )|
=2a,(y, = 4, J(y, = @) ~(N(w,,v,) + Ak, = £, J (3, = a))}
<2a,(flly, — qll> = ¢(lly, — qll)lly, — qll}. (4.7)
Substituting (4.6) and (4.7) into (4.5) we have
I, 1 — gl < (1= a,)’lx, — gl

+ 2an{“yn - q”z - d)(”yn - q“)”yn - q”} + 20[,16”.

(4.8)
Next we make an estimation for |y, — q||2. We have
1y, = ql* =1 = B)(x, = q) + B(r, = D)
< (1= B, lx, = ql* +2B8r, = 4. 7(y, — )
< (1 -8 lx, —ql* +28,lr, — qll-1ly, — 4l
<llx, — ql* + 28,M>. (4.9)

Substituting (4.9) into (4.8) and simplifying, we have
lysy = al* < (1= @,)llx, — gl + 2, {llx, — qll” +28,M°}
~2a,6(Ily, — gy, — qll + 2a,3,
=llx, = qlI* = a,¢(lly, — ql)lly, — 4l
— a,{o(lly, — gy, — 4l
~4B,M? — a,llx, — ql* - 28,}. (4.10)
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Let
o= infnz()”yn - q”

Next we prove that o = 0. Suppose the contrary, ¢ > 0. Then we have
lly, — gll = o> 0 for all n > 0. It follows from (4.10) that

Ix, i1 = ql” < llx, = ql* = a,{¢(0) o)
—a,{d(c)o—4B,M* — a,M* - 25,}. (4.11)
Since B, > 0, @, — 0, and §, — 0, there exists n, such that for n > n,
¢(o)-o—4B,M* — a,M* — 25, > 0.

Therefore from (4.11) we have

lx,., —ql> <llx, — qlI> — a,{ ()0} for all n > n,,
i.e.,

afd(o)a} <lx, —qllz—llx,m —ql? for all n > n,.
Hence for any m > n, we have

af¢(o)o) <lx, —aql® =lx,. —ql’

0

13

n
2
<llx,, —qll.

Letting m — o, we have

afd(o)o) <lx, — qll>.

8
II
ey

n=ng

This is a contradiction. Therefore o = 0, and so there exists a subsequence
{ynj} c {y,} such that Yo, = 4> 1€,

Yn = (1 B B"j)x”j + BuTa, > 4

Since B, = 0, @, — 0, and {r,},{p,} both are bounded, this implies that
X, = ¢, and so

xn/Jrl = (1 - anj)xnj + anjpn/- - 4.
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Hence
ynj+1 = (1 - an+1)xnj+l + an/+1rn/-+1 —4q.
By induction, we can prove that

X414 and Yujvi =4 forall i > 0.

This implies that
X =4 and Yn = 4.

Since T is w-Lipschitzian and F is &Lipschitzian, it follows from (iii)
and (iv) in (2.8) that

1
lu, —u, Il < (1 + "

+ I)D(Txn7Txn+])

1
SM(1+ n+1)||xn—xn+1||,
and
1
||Zn_Zn+1||S 1+ n+1 D(Fxn7Fxn+l)
s§(1+ n+1)||xn—xn+l||.

This implies that the sequences {u,},{z,} both are Cauchy sequences. By
the same way we know that {w,},{v,} are also Cauchy sequences. There-
fore there exist u®, w*,v*, z* € E such that

*
u, >u
*
w, > w (n - )
o n .
v, >V
*
z, >z

Next we prove that

u* = w* = w; z¥ =p* =p.
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In fact, since
d(w*,Tq) <d(w*,w,) +d(w,,1q)
<d(w*,w,) + D(Ty,,Tq)
<d(w*,w,) + ully, —4qll =0,
this implies that w* € Tq. Similarly we can prove that u* € Tg.
Again since
d(z*,Fq) <d(z*,z,) +d(z,, Fq)
<d(z*,z,) + D(Fx,, Fq)
<d(z*,z,) + €&llx, —qll— 0,

this implies that z* € Fg. Similarly we can prove that v* € Fgq.
Next we prove that w* = u* = w. In fact, we have

d(W*,W) < d(W*awn) + d(Wn,W)
<d(w*,w,) + D(Ty,,Tq)
<d(w*,w,) + ully, —qll > 0.

This implies that w* = w.
Again since

d(u*,w) <d(u*,u,) +d(u,,w)
<d(u*,u,) + D(Tx,,Tq)
<d(u*,u,) + plx, —qll -0,

this implies that u* = w.

Similarly we can prove that z* = v* = 0.

Summing up the above arguments we know that the sequences {x,},
{w,}, and {v,} defined by (2.8) converge strongly to the solution (g, w, v) of
(2.1), respectively. This completes the proof.
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