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Abstracr: Orthogonal polynomials may be fully characterized by the following recurrence relation: P,(x) = (x - 
B,_l)P,_l(x)- yn_-1Pn_-2(x), with P,(x) =l, PI(x) =x-B, and y, f 0. Here we study how the structure and the 
spectrum of these polynomials get modified by a local perturbation in the fi and y parameters of a co-recursive 
(& + & + CL), co-dilated ( yk + Xy,) and co-modified (& + Pk + CL; yk + Xy,) nature for an arbitrary (but fixed) k th 
element (1 Q k). Specifically, Stieltjes functions, differential equations and distributions of zeros as well as representa- 
tions of the new perturbed polynomials in terms of the old unperturbed ones are given. This type of problems is 
strongly related to the boundary value problems of finite-difference equations and to the quantum mechanical study of 
physical many-body systems (atoms, molecules, nuclei and solid state systems). 

Keywords: Orthogonal polynomials, Stieltjes functions, distribution of zeros. 

1. Introduction 

Nowadays, it has become very common in the quantum mechanical study of many-body 
systems to write the Hamiltonian operator H in the form of a tridiagonal matrix [5,16,21,22,25]. 
This may be done either by using a Lanczos-like algorithm [l&21,22,25] or by means of the 
tight-binding approximation [16,25]. In both cases, one is led to the so-called chain model of the 
system. Then, one can transform the eigenvalue problem associated to H into a Jacobi matrix 
eigenvalue problem or, what is equivalent, into a problem of determining orthogonal polynomials 
from its associated Three-Term Recurrence Relation (TTRR) since the characteristic polynomi- 
als of the principal submatrices of a tridiagonal matrix form a system of orthogonal polynomials. 
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It is worthwhile to stress that the energies of the quantum levels of the physical system are 
represented by the eigenvalues of the associated Jacobi matrix, and then by the zeros of the 
corresponding orthogonal polynomial. 

So, within this framework, a perturbation of the physical system may be visualized as a 
perturbation of an element of the associated fictitious chain, which is equivalent to a modifica- 
tion of one or both links of that element with its two nearest neighbours. This problem was 
considered for the first time in the theory of orthogonal polynomials by Chihara [2]. Recently, a 
few works [6,7,19,20,24] have been dealing with analyzing the orthogonal polynomials which 
fulfil a TTRR with perturbed initial conditions. Associated to this problem, the so-called 
co-recursive [2,20,24], co-dilated [6] and co-modified [7,19] orthogonal polynomials have been 
introduced and its properties (differential equation, Stieltjes function, interlacing of zeros, . . .) 

have been studied. 
In the last decade it has become very common, because of their physical relevance, to make 

experiments with lasers which are able to produce an extremely localized perturbation anywhere 
in the surface of the target manybody system. To what extent the global properties (e.g., the 
spectroscopical ones such as the distribution of its quantum level energies) of the system get 
modified by the induced local perturbation is a very important physical question. 

In this paper, we consider a local perturbation of an arbitrary element (i.e., not necessarily the 
first one as all the authors have done until now) of the chain and we search its effects on the 
chain properties. In more mathematical terms, we analyze the structure of the orthogonal 
polynomials which verify a TTRR with coefficients altered in a generalized co-recursive, 
co-dilated and co-modified way. Specifically, in Section 2 we find representations for these 
families of perturbed orthogonal polynomials from the unperturbed ones. Section 3 contains the 
differential equation satisfied by the new perturbed polynomials. In Section 4 the Stieltjes 
functions of the new polynomials are provided in terms of the old ones by means of techniques 
of continued fractions. In particular, this result has allowed us to show that the Laguerre-Hahn 
class of orthogonal polynomials is invariant under the above-mentioned perturbation. 

On the other hand, in Section 5, we study how the distribution of zeros p(x) gets modified by 
the introduced perturbation. This is done by explicitly calculating the moments around the origin 
of p(x) directly in terms of the co-recursive, co-dilated and co-modified parameters. Finally, 
some concluding remarks are given. 

2. Representations of the new polynomials 

We start with an orthogonal polynomial family p,(x) -p, characterized by the recurrence 
relation 

p,(x) = (x - &-JPn-1 - Yn-lPn-27 Yn +o, n 2 1, 

p-1 = 0, PO= 1, Yo=l, 

and we intend to modify at any level k the coefficients &, and y,,, in order to generate a new 
family of orthogonal polynomials according to the Favard theorem [l] 
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We consider first a single modification: @, at level k, y,, at level k’, and both &, and y,, at the 
same level k and it is clear that these three cases, called respectively generalized co-recursive, 
generalized co-dilated and generalized co-modified, cover by “superposition” the general situa- 
tion in the finite case: any change at any level. 

2. I. Generalized co-recursive polynomials 

Let us consider first a single modification, at level k, of the coefficient & 

Ph! =&+I4 &* =&, i#k. (1) 

The case k = 0 was introduced and studied by Chihara [3], the fourth-order differential equation 
satisfied by the co-recursive (k = 0) of the classical orthogonal polynomials was given by 
Ronveaux and Marcellan [20], and the extensions to the co-recursive of the semi-classical class 
and the Laguerre-Hahn class were investigated in detail by Dim [6], Dini et al. [7] and Ronveaux 
et al. [19] from the points of view of both the Stieltjes functions and the differential equations. 
Using the notation of [20] let us denote: 

p,% P, k) 3~:. 

The recurrence relations for the generalized co-recursive of the family p,, (defined from any p,, 
and y,, y,, # 0) are: 

p,* = (x - P,-,)P,~-, - Y~-~P,?-~, n <k, 

pl, = 0, PO* = 1, 

pk*+1=(x--Pk-11.)pk*-~k~k*-l, n=k+l, 

P,*,l = b - PJP,* - Y,PZ-1, n>k+l. (2) 

The general solution of this last recurrence can be written as: 

p,*=A,p,,+B,p,f!, or p,*=A,p,+B,p~‘kf~!lj, n>k+l, (3) 

where p:!!, is the rth associated of p,, of degree n - r, and A, and B, are polynomials, easily 
computed from the two initial conditions p$ and P$+~. 

Selecting the representation in terms of the associated of order k + 1 we obtain: 

(k+r) P,* =P, - PPkPn-(k+l), n>k+l, 

P,* ‘P,, n 6 k. 
(4) 

2.2. Generalized co-dilated polynomials 

The single modification, at level k’, of the coefficient yk( is now: 

$==hYk’> v,=Y,, r#k’, x > 0. (5) 

The case k’ = 1 was introduced by Dini [6], and investigated in [7,8,19], giving the differential 
equation for the co-dilated of the classical polynomials [17], and the Stieltjes function and the 
fourth-order differential equation for the co-dilated polynomials inside the Laguerre-Hahn class 
[7,191. 



206 F. Marcellan et al. / Orthogonal polynomials 

The TTRR for the generalized co-dilated polynomials of the p, family are (with the notation 
of [17]): 

P,(X, A) =A, 

P, = (x - PAL, - Yn-IA-29 n =z k’, 

p-1 = 0, AI=17 (6) 

&‘+l = (x - &&r - Xy,&_,, n = k’ + 1, 

A+1 =(~-~,-~)~~-~-y~_,~~n-~, n>k’+l. 

This last recurrence relation can again be solved in terms of pn and for instance p~“-;‘k!~lj with 
the initial condition jjkj and dkl+r and we easily obtain the representation: 

A=Pp,+O-v Y/cTP,t-lPZ$&, 

p,,=j&, n<k’. 
(7) 

2.3. Exceptional case (generalized co-modified) 

Before linking the results of Sections 2.1 and 2.2 in order to cover the general situation 
corresponding to two modifications p and h at levels k and k’, we need to solve the exceptional 
case where both modifications appear at the same level k. 

Let us denote therefore p,, the orthogonal family defined by the TTRR 

ii, = (x - A-I)~,-, - Yn-I?%-2, n <k, 

j-1 = 0, &=L, 

Pk+l=(~-Pk-~)Pk-X~kPk-l, n=k+l, 
(8) 

Al+1 = (x - PA% - Y,A-1, n>,k+l. 

The following representation is obtained again solving this last TTRR in terms of pn and 
pik_t2!1j with the initial conditions pk and P~+~: 

&=Pn+ [(l-U YkPk-1 - PPk] Pi”_;&, 
(9) 

p,=j,,, n<k. 

3. Differential equation 

The representation of the three families of polynomials of Sections 2.1-2.3 corresponding to a 
given unperturbed family p,, can be written as: 

P, = P, + QP:“_;:!I, 3 (10) 

where P,, stands for p,*, &, or j$, and Q is a polynomial in x of degree k (P,, = p,* and P, = j,,) 

or degree k- 1 (P,,=b,,). 
From these representations let us obtain a differential equation, of fourth-order in general, for 

the new families P, when p, is solution of a second differential equation (semi-classical class 
F31). 
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Let Lp,, = 0, the linear differential equation L having polynomial 
(independent of n). 

coefficients of fixed degree 

First we link any associated polynomials pi” to the first one p,? using the relation [6]: 
p;” = alIPS-l + boPn+r, a,, , b, polynomials in X. 01) 

A differential equation for pi” can be obtained in the following way starting with the differential 
relation satisfied by p:y 1: 

ivp;‘!, = alPritz + blPn+2, (12) 

where M is a second-order differential operator given explicitly in the classical case [18] and in 
the semi-classical case [19], with a, and b, polynomials. 

The function a,,p~~r_l verifies now a differential equation of the same type: 

N [ ad:),-,] = aA+r + b2Pnfr7 (13) 

where again a2 and b, can be reduced to polynomials (instead of rational functions) by an 
appropriate definition of N. 

The application of N to equation (11) gives again a differential relation ( a3 and b, 
polynomials) : 

Np;” = a3PAr + b,Pn+,* (14 

In this step, ( b,p, +r) ” can be eliminated from Lp,,, = 0. The fourth-order differential equation 
satisfied by p:‘) can now be obtained in the determinantal form: 

a3 b3 Np:” 

a4 
b4 [Np;“]’ =O. (15) 

a5 b, [ Np;“]” 

The functions a4, b4 and a5, b, (are polynomials after appropriate multiplication) are deduced 
from a3 and b, and elimination of the second derivatives of p, + r from Lp,, + r = 0. 

Using the same technique, a fourth-order differential equation (in determinantal form) can be 
obtained for P,, acting on (10) with an operator R, (acting on Qpi!+,:‘,) eliminating the second 
derivative of p, from Lp,, = 0, and generating two new equations by derivation. 

However the family P, is a solution of a second-order differential equation for the classical 
families p, for which the associated polynomials coincide with p,. This happens for the 
Tchebychev family U,. In this case the second-order differential equation can be obtained 
directly from (10) using techniques already described [17]. 

4. The Stieltjes functions 

Following Chihara [3], let us consider 

(4 s(x)= c *= X-Do- x_p:‘_ . . . 
[ 

-7 

n>O X 1 
06) 

(17) 

and 

~k+l(X)=[x-&+,- x_p,y:;? . . . 1-l’ 
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which are, respectively, the complete Stieltjes function and the Stieltjes function for the (k + l)st 
associated polynomial sequence, where (u), is the sequence of the moments for the regular linear 
functional u whose manic orthogonal polynomial sequence satisfies 

xp,(x> =P,+i(x) + P&(X) + Y?J%&)? n 2 09 

p-1 = 0, PO= 1, Yo’1, y,#O, n>,l. 

4.1. Generalized co-recursive polynomials 

In the first situation (generalized co-recursive) of the above section, it is very simple to prove 
the next proposition. 

Proposition 1. 

s* = s,(x) = A(x)S ck+l)(X) + B(x) 
C(x)S(k+‘) (4 + Nx) ’ 

where 

44 = YktlPm4 B(x) = -pP’(x) + /ALpi?l(X), 

c(x) = Yk+lPkW, W4 = -P/c+l(x) + ~Pk(X). 

As an immediate corollary, if we take p = 0: 

YkilS 
(k+l)(X) = Pk+l(+W -PW) 

Pk(XNW -Pm-4 * 

Proposition 2. 

q4w + qLb) 
sdx) = c,(x)s(x) + D,(x) ’ 

where 

4(x) = Jj*Y” - ~PfUX)Pk(X), I$(4 = P[ Pi%x)]*, 

This proposition is easily proved using (see [3, Chapter III, formula 4.41) 

PN4PkW -PiuX)P,+1(4 = fIoY”. 

08) 

09) 

(20) 

Proposition 3. If the sequence pk(x) belongs to the Laguerre-Hahn class (L-H), then p,*(x) 
belongs to the Laguerre-Hahn class. 

By definition pk( x) E L-H iff S(x) satisfies a Riccati equation. From Proposition 2 it follows 
that S,(x) satisfies a Riccati equation. 
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4.2. Generalized co-dilated polynomials 

Proposition 4. 

h44S(X) +A4 
lY= Ax) = ,c(x)s(x) +Jl(x) ’ (21) 

where (k > 1): 

A4 = ?I Y” + (I- ~>Y,PLb)P,b), A-4 = -Y/Al - uP~L(4P~1L(x), 
v=l 

a4 = YkO - QPR(X)Pk-l(X)> 

By using continued fraction techniques 

Ax) = 
yk+Ippl(x)S(k+l) - [ Piw + YkO - VPLb)] 

Yk+lPkbw+‘) - [ P/c+dX) + Y/J - X)Pk-*(x)1 
(22) 

and, from (19) this result follows, and also the following result. 

Proposition 5. If the sequencep,,( x) belongs to the Laguerre-Hahn class, then pk( x) belongs to the 
Laguerre-Hahn class. 

4.3. Generalized co-modified 

As a very interesting situation we can consider the simultaneous perturbation in the coeffi- 
cients of order k (k >, 1): 

P;=Pk+P, Y;=xYk, K=P,, Y;=Y,, for m f k. 

It is very easy to prove the next proposition. 

Proposition 6. 

$(,) = ~Wfx) + m 
c(x)s(x) +5(x) ’ 

where 

T(x) = fi Y, +Pkb)[o - VYkPLbX) - ~PfU-41~ 
v=l 

B(x) =P~lL(x)[~PLb) - Y/Al - VPLb)] > 

w = Pkb)[ -!JPdX) + YkO - QPk-lb)l~ 

m = IfI Y” -PMX)[(l - 9YkPk-I(X) - ~Pk(41. 
V=l 

(23) 

Remark 7. The new functions defined in this section fulfil a type of transformations of Stieltjes 
functions which represents invariants on a Riccati equation. 
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An open question is the characterization of the new orthogonal polynomial when the Stieltjes 
function has a general form 

A &4a4 + B(x) 
s(x) = c(x)s(x) + D(x) ’ (24) 

with A, B, C, D arbitrary but fixed polynomials. 

5. Distribution of zeros 

Here we study the effect of a single perturbation of recursive type and of dilated type and a 
double perturbation of recursive-dilated type by analyzing the distribution of zeros p(x) of the 
corresponding co-recursive, co-dilated and co-modified polynomials, respectively, already consid- 
ered in the previous sections. Up to now, the only work on zeros of these polynomials is that of 
Slimm [24], who has just studied the influence of a single perturbation of recursive type at the 
beginning of the chain on the interlacing properties of the zeros. Our analysis is done by means 
of the moments around the origin: 

$“‘= n-1 r 2 XI> r=l, 2, . . . . 
J=l 

of the unknowns p(x) that are explicitly expressed in terms of the coefficients of the three-term 
recurrence relation of the polynomials. For the first two moments, one obtains the following 
values. 

(i) Generalized co-recursive polynomials p,*(x; p, k). 
The centroid PI”’ and the second moment pL2 (n) of the distribution of zeros are 

pp+p+ :, /L;(n)=&++ $4p+2P*)], (25) 

provided n > k, and where pL(ln) and py) denote the centroid and the second moment of the 
unperturbed polynomial, respectively. 

From this equation one immediately has the searched effect. In particular, one notices that the 
centroid undergoes a shift of p/n which does not depend on the direction of the chain in which 
you have done the perturbation. 

(ii) Generalized co-dilated polynomials pn,( x; X, k’). 
In this case, the centroid p’,“’ is not affected, of course, by the dilatation so that 

P’,“’ = /&‘1”’ 

and the second moment ,C$“’ gets modified as 

~1”‘=~.1”‘+2n-‘(A_l)y,~, (26) 

provided that n > k’. 

(iii) Polynomials 3,(x; p; h; k). 
Here, the centroid /.~i -cn) has the same value as in the recursive case (25) since the dilatation 

does not produce any effect to it and the only perturbation is of recursive type and produced at 
the kth level. So: 
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On the other hand, the second moment $$’ is: 

n > k. (27) 

The expressions (25)-(27) follow in a straightforward manner from the well-known formulas 
[4,5] of the first two moments of the distribution of zeros of a polynomial which verify a TTRR 
considered in Section 2, namely 

/.lY) = i i pi-1, &)=i &3:1+2n&Ji . 

i=l i i=l i=l I 

The remaining moments py), r > 3, may also be calculated from the general expression [4] of the 
moments of zeros of polynomials fulfilling a TTRR of generic type: 

for r = 1, 2, . . . , n. The first summation extends over all the partitions ( ri’, r,, ri, . . . , q’+,) of 
the number r subject to: 

j+l 

64 ig r,’ + 2 c r, = r. (29) 
i=l 

(b) If rs = 0 (i < s +j) then r, = ri = 0 for each i > s. 
In addition, j = [ir] is the integer part of r, and t denotes the number of nonvanishing rj’s 

involved in the corresponding partition of r. The factorial coefficients F are given by 

p 
F(r1’, r, ,..., rp_l, r,‘) =nn (Y,_l + 1;’ + ri’-J! 

i=l (ri_l - l)!r,‘!r,! ’ 

with ra = rP = 1, and the convention F( rl’, r,, r2/, . . . , ‘J’_ i, 0, 0) = F( rl’, rl, rl, . . . . y~‘_~) is used. 
In spite of the nonlinearity of the general expression (28), it may be easily used to study the 

effect of a single or even a double perturbation in the three-term recurrence relation of a system 
of orthogonal polynomials on the distribution of zeros of such polynomials by means of the first 
few moments. 

Indeed, for r = 3 and r = 4 one easily obtains from (28): 

(30) 

/AT)=; fBj-~+4~~1r,iR,B.-,B,+8:+ia)+4~~2~~~~l) 
i 

(31) 
i=l i=l i=l 

for the third and fourth moments. Then, one can eventually work in a parallel manner as alone 
with the first two moments, to evaluate the effects of the local perturbation on the quantities 
&“), ~(4”) and eventually on any other moment. This is left to the reader. 
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