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1. Introduction

The recent cosmological observations, which are strongly in fa-
vor of a positive acceleration of the present universe, can be well 
approximated by the de Sitter (dS) universe [1]. Furthermore, de 
Sitter space–time plays an essential role in the inflationary sce-
nario of the very early universe [2,3]. So, its metric becomes im-
portant at large-scale universe. The quantum field theory on dS 
space–time is also of considerable interest. De Sitter space is max-
imally symmetric curved space–time and offers the opportunity of 
controlling the transition to the flat space–time by the so-called 
contraction procedure, in which one can quantize fields and obtain 
simple exact solutions. However, even for this very simple space–
time, this cannot be done always. Allen has shown that, for the 
dS minimally coupled massless scalar field, which plays a central 
role in the inflationary models [4] and the linear quantum grav-
ity in dS space, the covariant canonical quantization cannot be 
constructed over the Hilbert space because no invariant vacuum 
exists [5]. Actually, the origin of the problem is the presence of 
a constant solution, the so-called zero mode problem; although 
this zero mode has positive norm, it is not possible to be a part 
of the Hilbertian structure of the one particle sector. More accu-
rately, regarding the conformal time, the action of the de Sitter 
group on this mode generates all the negative frequency solutions 
of the field equation. Therefore, the constructed Fock space over 
the Hilbert space (generated by any complete set of modes in-
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cluding the zero mode; H+ = {∑k≥0 αkφk; ∑k≥0 |αk|2 < ∞}, φk is 
defined in [6]) is not closed under the action of the dS group.

The usual canonical quantization in which the Fock space is 
constructed over the Hilbert space (the scalar product is positive) 
had also failed in quantum electrodynamics. It is commonly ac-
cepted that the origin of this impossibility is the invariance of 
the Lagrangian under a gauge transformation. It is proved that co-
variance and gauge invariance in canonical quantization can be 
preserved solely by exploiting the Gupte–Bleuler formalism.1 In-
terestingly, the zero mode problem is deeply analogous to the QED 
case, since the Lagrangian

L = √|g|∂μφ∂μφ

of the free massless field is invariant under φ → φ + λ (λ is a con-
stant function), which is similar to a gauge transformation. So, it 
would not be surprising if a canonical quantization of the Gupta–
Bleuler type, would perform identically for the dS massless min-
imally coupled scalar field; the set N of constant functions will 

1 In this formalism, V g stands for the space of gauge states (longitudinal photon 
states), while the space of positive frequency solutions of the field equation which 
satisfy the Lorentz condition is defined by V . Meanwhile, V ′ is allotted to the all 
positive frequency solutions space which includes un-physical states. These spaces 
verify V g ⊂ V ⊂ V ′ . The Fock space is constructed over V ′ , which is not a Hilbert 
space, but an indefinite inner product space; the Klein–Gordon inner product deter-
mines the Poincaré and locally and conformally invariant indefinite inner product 
on V ′ . It should be noted that, all three spaces carry representations of the Poincaré 
group but V g and V are not covariantly complemented. The quotient space V /V g

of states up to a gauge transformation is the space of physical one-photon states 
(for more mathematical details, one can refer to [7,8]).
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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play the role of the space of gauge states, while K is a space of 
positive frequency solutions of the field equation equipped with 
the degenerate (but positive) Klein–Gordon inner product. How-
ever, the covariant quantum field cannot be constructed through 
a degenerate space of solutions [9]. Thus, by admitting K as an 
invariant subspace, a non-degenerate invariant space of solutions 
K must be built. These spaces, together with N , are ingredients 
of the so-called Gupta–Bleuler triplet N ⊂ K ⊂ K . It is proved 
that K is a Krein space, the direct sum of a Hilbert space and an 
anti-Hilbert space (a space with definite negative inner product). 
Indeed, the crucial point is originated in the fact that for the dS 
minimally coupled field a covariant decomposition, K =H+ ⊕H− , 
does not exist (though concerning the scalar massive field, such a 
decomposition exists, where H+ is the usual physical states space 
satisfying H∗+ =H−) [6]. It is shown [6,9] that through the Krein–
Gupta–Bleuler (KGB) structure, one can obtain a fully covariant 
construction of the minimally coupled quantum field on de Sitter 
space–time. This field is interestingly free of infrared divergence.2

The KGB method, therefore, provides a proposal to calculate gravi-
ton propagator on the dS background in the linear approxima-
tion, without any pathological behavior for largely separated points 
[10–16].

Motivated by these capabilities, in this paper another popu-
lar subject in this curved space–time, the interaction of fluctu-
ating quantum fields with the background gravitational field and 
boundary conditions (Casimir effect), is investigated through the 
KGB structure. This effect demonstrates non-trivial characteristics
of the quantum vacuum and has significant indications on all mea-
sures, from subnuclear to cosmological. In this regard and due 
to the importance of the braneworld scenarios in cosmology and 
particle physics (e.g. see [17,18]), we calculate the Casimir energy–
momentum tensor in de Sitter space–time for a conformally cou-
pled scalar field subjected to Dirichlet boundary condition on a 
curved brane.

The layout of the paper is as follows. In Section 2, we study the 
energy–momentum tensor for a conformally coupled scalar field 
in de Sitter space–time. Then in Section 3, the Casimir energy–
momentum tensor in the presence of a curved brane as a boundary 
condition is computed. Finally we have enclosed the paper with a 
brief conclusion.

2. Covariant renormalization of the energy–momentum tensor 
through the KGB structure

To start, consider the 4 + 1 dimensional (4 + 1-D) dS static co-
ordinates, xi = (t, r, θ, ϑ, φ),

ds2
dS = gikdxidxk = (1 − r2

α2
)dt2 − dr2

1 − r2

α2

− r2d�2
3, (2.1)

and a conformally coupled massless scalar field, φ(x), on this back-
ground that satisfies the equation

(∇l∇l + ζ R)φ(x) = 0, ζ = 3

16
(2.2)

in which d�2
3 is the line element on the 3 dimensional unit sphere 

in Euclidean space, and the parameter α defines the dS curvature 

2 Let us recall that the infrared problem on Minkowski space–time is due to the 
existence of solutions of arbitrary small frequencies. One could think that this prob-
lem, and the symmetry breaking associated with it, will disappear on the de Sitter 
space–time because the frequencies are now discretized since the space–time is 
spatially compact. But this is not quite true in the sense that, as we have just seen, 
the covariance of the theory forces one to include the null frequency solution itself 
in the normal mode decomposition of the field. This is of course in perfect agree-
ment with Allen’s result cited above.
radius, ∇l and R are, respectively, the covariant derivative and the 
Ricci scalar for the corresponding metric. The inner product for the 
solutions space is defined as

(φ1, φ2) = −i

∫



φ1
←→
∂μφ∗

2d
μ, (2.3)

where d
μ = d
nμ , and d
 is the volume element in a given 
space-like hypersurface, and nμ is the time-like unit vector normal 
to this hypersurface. There exists a complete set of mode solutions 
of Eq. (2.2) which are orthonormal in the product (2.3), i.e.

(φk, φk′) = δkk′ , (φ∗
k , φ∗

k′) = −δkk′ , (φk, φ
∗
k′) = 0, (2.4)

the set of {φk, φ∗
k } are, respectively, positive and negative norm 

states.
As already discussed, in order to have a fully covariant quan-

tizing scheme in dS space–time, utilizing the Krein–Gupta–Bleuler 
structure is unavoidable. In this construction, the field acts on a 
space of states having the structure of a Fock space but containing 
both positive and negative norm vectors. Actually, respecting the 
field equation (2.2) and its complete set of mode solutions (2.4), 
the field operator ϕ would be as follows

ϕ = 1√
2

(∑
k

(akφk + a†
kφ

∗
k ) +

∑
k

(b†
kφk + bkφ

∗
k )

)
, (2.5)

ak|0〉 = 0, bk|0〉 = 0 determine the Fock vacuum state |0〉, while 
a†

k|0〉 = |1k〉, b†
k|0〉 = |1̄k〉 are the physical and un-physical states. 

Note that, [ak, a
†
k′ ] = δkk′ , [bk, b

†
k′ ] = −δkk′ and the other commuta-

tion relations are zero.
With these definitions, it turns out that the field itself is not 

an observable: this is as expected and can be seen by calculating 
the mean value. The components of the energy–momentum tensor 
on the other hand are observables. To see the point, consider the 
operator Tμν which obviously is not positively definite as an op-
erator on the full space of states. In order to compute expectation 
value of the energy–momentum tensor, 〈�k|Tμν |�k〉, in which |�k〉 is 
the excited physical state

|�k〉 ≡ |kn1
1 ...k

n j

j 〉 = 1√
n1!...n j !

(a†
k1

)n1 ...(a†
k j

)n j |0〉, (2.6)

one should generally begin with

〈�k|∂μϕ(x)∂νϕ(x)|�k〉 =
∑

k

∂μφk(x)∂νφ∗
k (x) − ∂μφ∗

k (x)∂νφk(x)

+ 2
∑

i

ni�
(
∂μφ∗

ki
(x)∂νφki (x)

)
. (2.7)

In analogy with the conventional approach, the first term is re-
sponsible for the appearance of infinite divergences in the theory. 
However, in the KGB approach, the unusual presence of the second 
term with the minus sign which comes from the terms of the field 
including bk and b†

k , can automatically remove this term. Therefore, 
we have

〈�k|∂μϕ(x)∂μϕ(x)|�k〉 = 2
∑

i

ni∂μφ∗
ki
(x)∂μφki (x). (2.8)

Correspondingly, there exists an automatic renormalization of the 
Tμν ’s (no infinite term appears). A straightforward result of this 
construction, which assures a reasonable physical interpretation of 
the model, is the positivity of the energy for any physical state |�k〉; 
〈�k|T00|�k〉 ≥ 0 (= 0 ⇔ |�k〉 = |0〉).
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In addition, this procedure fulfills the so-called Wald axioms:

• The causality and covariance is assured since the field is.
• With respect to the above calculation, it turns out that for 

physical states, the formal results are preserved.
• The foundation of the above computation is as follows (note 

that [bk, b
†
k] = −1)

aka†
k + a†

kak + bkb†
k + b†

kbk = 2a†
kak + 2b†

kbk,

which is equivalent to reordering when the method is applied 
to physical states (on which bk vanishes).

The method, therefore, presents an interesting property linked 
to the vacuum energy issue in curved space–time. To have a deeper 
insight into the subject from the viewpoint of the KGB approach, 
let us reconsider the field equation (2.5) in a more explicit form as 
follows

ϕ =
∑

k

(
Akφk + A†

kφ
∗
k

)
, in which Ak ≡ ak + b†

k√
2

. (2.9)

Note that, the operators Ak no longer verify Ak|0〉 = 0. Neverthe-
less, by using the operator Dk = Ak A†

k + A†
k Ak , one can determine 

the Fock vacuum state as (the point is [bk, b
†
k] = (φ∗

k , φ∗
k ) = −1)

〈0|Dk|0〉 = 0, ∀k. (2.10)

Interestingly, it is proved that this equation is independent of Bo-
golubov transformations [19]. So in this method, in contrast to 
the usual approach where the vacuum is determined through the 
modes and it is usually said that the choice of the modes is equiv-
alent to the choice of the vacuum, the Fock vacuum is unique and 
therefore does not specify the physical space of states. However, 
this does not mean that the Bogolubov transformations which only 
modify the set of physical states are no longer valid in this con-
struction. Any physical state depends on the selected space–time 
and also on the observer; the physical states of an accelerated 
observer in Minkowski space are different from those of an in-
ertial observer (Unruh effect) [20]. While, the same representation 
of the field can be employed for both cases (it is invariant under 
Bogolubov transformations). Indeed, instead of having a multiplic-
ity of vacua, we have several possibilities for the space of physical 
states, so the usual ambiguity about vacua is not suppressed but 
displaced.

Note that, due to the automatic renormalization of the 〈Tμν 〉
through this construction, the expected value of all components 
of the energy–momentum tensor vanish in the vacuum, and 
hence there is no conformal anomaly in the trace of the energy–
momentum tensor. From this point of view, this renormalization 
scheme seems to be very different from the other ones which 
all present this anomaly. Of course, it is not very surprising that 
our field, which is covariant and conformally covariant in a rather 
strong sense [9], does not present any trace anomaly which, after 
all, can appear only by breaking the conformal invariance.

In the next section, with respect to the importance of brane-
world scenarios, we calculate the Casimir energy–momentum ten-
sor for a curved brane through the KGB method.

3. Considering the theory in the presence of boundary condition

In this section, by considering de Sitter space–time as the grav-
itational background, we evaluate the Casimir energy–momentum 
tensor for the conformally coupled scalar field, see (2.2) and 
(2.5), subjected to Dirichlet boundary condition on the hypersur-
face S (we will determine the explicit form of the hypersurface 
in the next few lines). Technically, to make the maximum use 
of the flat space–time calculations, we present the dS line ele-
ment (2.1) in the form conformally related to the Rindler met-
ric. Regarding the coordinate transformation; xi → x′ i = (η, σ , X ′), 
X ′ = (x′ 2, x′ 3, x′ 4),

η = t

α
, σ =

√
α2 − r2

�
(in which � = 1 − r

α
cos θ), (3.1)

x′ 2 = r

�
sin θ cosϑ, x′ 3 = r

�
sin θ sinϑ cosφ,

x′ 4 = r

�
sin θ sinϑ sinφ, (3.2)

the dS line element (2.1) takes the form

ds2
dS = g′

ikdx′ idx′ k = �2(σ 2dη2 − dσ 2 − dX ′ 2), (3.3)

that is manifestly conformally related to the Rindler space–time

ds2
dS = �2ds2

R , ds2
R = ḡikdx′ idx′ k = σ 2dη2 − dσ 2 − dX ′ 2,

g′
ik = �2 ḡik. (3.4)

As the boundary condition, we choose an infinite plane moving 
by uniform acceleration normal to itself which can be determined 
by the coordinate σ = b in the right Rindler wedge. Note that, 
the curves σ = constant, X ′ = constant are worldlines of constant 
proper acceleration σ−1 and the surface σ = b represents the tra-
jectory of the barrier which has a proper acceleration b−1. In the 
dS static coordinates the boundary S is presented by the following 
curved brane√

α2 − r2 = b(1 − r

α
cos θ). (3.5)

As a Rindler counterpart one can consider the vacuum energy–
momentum tensor induced by S (as Dirichlet boundary condition 
is conformally invariant, the Dirichlet scalar in the curved bulk 
corresponds to the Dirichlet scalar in a flat space–time). Accord-
ingly, the problem under consideration would be a conformally 
trivial situation; a conformally invariant field on background of 
the conformally flat space–time. So, instead of evaluating Casimir 
energy–momentum tensor directly on dS background, with regard 
to the standard transformation formula for the VEV of the energy–
momentum tensor in conformally related problems [21], one can 
generate the results for dS space–time from the corresponding re-
sults for the Rindler space–time.

In this regard and in the beginning, we should pursue quan-
tizing procedure in Minkowski space–time for the massless scalar 
field, �φ(x) = 0, for which the inner product of a pair of its solu-
tions is defined by

(φ1, φ2) = −i

∫
(φ1(x)

←→
∂μφ∗

2(x))d3x. (3.6)

As already discussed, the field operator in the KGB quantization 
would be ϕ = 1√

2
(ϕ+ + ϕ−), in which

ϕ+(x) =
∫

d3�k[a(�k)φ(�k, x) + a†(�k)φ∗(�k, x)],

ϕ−(x) =
∫

d3�k[b(�k)φ∗(�k, x) + b†(�k)φ(�k, x)], (3.7)

where ϕ+(x) and ϕ−(x) are, respectively, physical and un-physical 
part of the field operator. φ(�k, x) = (4πω)−1/2ei�k·�x−iωt and
[a(�k), a†(�k′)] = δ(�k − �k′), [b(�k), b†(�k′)] = −δ(�k − �k′), the other com-
mutation relations are zero. The Fock vacuum state |0〉 is defined 
by a(�k)|0〉 = 0, b(�k)|0〉 = 0.
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Due to the presence of un-physical states in the KGB struc-
ture, when interacting fields are investigated, the unitarity of the 
S-matrix must be preserved. This would be obtained by the fol-
lowing procedure, which is the so-called unitarity condition [20]; 
let �+ be the projection over H+

�+ =
∑
{α+}

|α+〉〈α+|, |α+〉 ∈ H+.

So, considering the field operator, one has

�+ϕ�+|α〉 =
{

ϕ+|α〉, if |α〉 ∈ H+,

0, if |α〉 ∈ H−.
(3.8)

Correspondingly, instead of a standard selection for the Lagrangian 
potential term, V (ϕ), we consider the restricted form of V to the 
positive energy modes as V ′(ϕ) ≡ V (�+ϕ�+). As a result, vacuum 
effects in the theory only include the interacting vacuum.

Therefore, with regard to the unitarity condition, the influence 
of applying physical boundary condition on the field operator is 
only upon the physical states. Accordingly, when physical boundary 
conditions are present, the field operator would be as

ϕ(x) =
∑

d

[a(�kd)φ(�kd, x) + a†(�kd)φ
∗(�kd, x)]

+
∫

d3�k[b(�k)φ∗(�k, x) + b†(�k)φ(�k, x)], (3.9)

here �kd are the eigen-frequencies of the system under considera-
tion.

Before calculating the energy–momentum tensor in view of 
the accelerated (Rindler) coordinates (defined by the coordinate 
transformation: t = σ sinhη, x = σ coshη, which cover the region 
|x| > |t| of Minkowski space), the construction of the Feynman 
Green function of the KGB method, G(x, x′), in the Rindler space 
is required. In this regard, it is easily seen that with respect to the 
quantum field of the theory, (3.9), it can be decomposed into two 
parts, physical and un-physical parts (the point is (φk, φ∗

k′) = 0 and 
[a(k), b†(k′)] = [a(k), b(k′)] = 0). Accordingly, we have

G(x, x′) = G+(x, x′) + G−(x, x′). (3.10)

Here, the physical part of the theory which is subjected to Dirich-
let boundary condition is determined by G+(x, x′), while G−(x, x′)
refers to the un-physical part of the theory which according to 
its definition would be G−(x, x′) = −G0(x, x′), where G0(x, x′) is 
the Feynman propagator for a free massless scalar field on the 
entire Minkowski manifold and the sign “−” is due to [bk, b

†
k] =

(φ∗
k , φ∗

k ) = −1. The corresponding propagators for the Dirichlet and 
the free field ones have been computed, respectively, in Refs. [22]
and [23]. So, for our considered case we have

G+(x, x′)

= G0(x, x′) − i

π

∫
dν

2π
exp[−iν(η − η′)]

×
∫

d2k

(2π)2
exp[ik · (x − x′)] Kiν(eiπkb)

Kiν(kb)
Kiν(kσ)Kiν(kσ ′),

(3.11)

G−(x, x′)
(

= −G0(x, x′)
)

= − i

π

∫
dν

2π
exp[−iν(η − η′)]

×
∫

d2k
2

exp[ik · (x − x′)]Kiν(kσ>)Kiν(eiπkσ<), (3.12)

(2π)
in which Kiν(kσ) is the modified Bessel function of imaginary or-
der.

Now respecting the Feynman Green function (3.10), the VEV of 
the energy–momentum tensor in view of the accelerated observer 
in Minkowski space–time would be

〈0|T ν
μ|0〉Rindler

= −i lim
x′→x

(
2

3
∇μ∇ν ′ − 1

3
∇μ∇ν − 1

6
gν
μ∇α∇α′

)G(x, x′). (3.13)

Considering (3.11) and (3.12) and after a straightforward calcula-
tions, we have

〈T ν
μ〉Rindler = diag(A, B, C, C), (3.14)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(σ ) = 1
12π3

∫ ∞
0 dν

∫ ∞
0 dk k Kiν (eiπ kb)

Kiν (kb)

×
[
k2 K

′2
iν(kσ) + 2k

σ Kiν(kσ)K ′
iν(kσ)

+
(

5ν2

σ 2 + k2
)

K 2
iν(kσ)

]
,

B(σ ) = − 1
12π3

∫ ∞
0 dν

∫ ∞
0 dk k Kiν (eiπ kb)

Kiν (kb)

×
[

3k2 K
′2
iν(kσ) + 2k

σ Kiν(kσ)K ′
iν(kσ)

+ 3
(

ν2

σ 2 − k2
)

K 2
iν(kσ)

]
,

C(σ ) = − 1
12π3

∫ ∞
0 dν

∫ ∞
0 dk k Kiν (eiπ kb)

Kiν (kb)

×
[
−k2 K

′2
iν(kσ) +

(
ν2

σ 2 + 2k2
)

K 2
iν(kσ)

]
.

(3.15)

It is trace-free, A + B + 2C = 0, and conserved, A = d
dσ (σ B). We 

should emphasize that, in Ref. [22] by P. Candelas and D. Deutsch, 
the above regularized result was obtained by subtracting the value 
that it would have if evaluated relative to the Minkowski vacuum. 
In our method, however, the VEV of the energy–momentum tensor 
is automatically regularized.

From now on, therefore, in analogy with the procedure that was 
proposed in [22] to evaluate the above integrals, one can find:

• The asymptotic form, σ/b → ∞, for T ν
μ in the frame of an 

observer with proper acceleration σ−1 as follows

〈T ν
μ〉Rindler ∼ −1

2π2σ 4

∞∫
0

ν3dν

e2πν − 1
diag(−1,

1

3
,

1

3
,

1

3
), (3.16)

which presents a negative energy density with a Planckian 
spectrum with the temperature T = (2πσ)−1, corresponding 
to the absence from the vacuum of black-body radiation. This 
result is independent of particular boundary conditions and of 
the acceleration of the barrier in the sense that it depends 
only on the acceleration σ−1 of the local Killing trajectory. It 
means that regarding the gravitational analogy, at sufficiently 
large distances to the barrier, VEV of the energy–momentum 
tensor depends purely on the local gravitational field.
Note that, when σ is comparable with b, one would expect the 
deviation from a black-body spectrum since the temperature 
corresponds to a wavelength comparable with the distance 
from the barrier. So, the effects of the boundary conditions 
become important; the rate at which these effects decline 
far from the barrier can be found by proceeding to the next 
order in the asymptotic expansion of T ν

μ . It turns out that 
the terms dependent on the boundary condition are of order 
(σ 4 ln3 σ)−1
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T ν
μ = [−(480π2σ 4)−1 − (144σ 4 ln3 σ/b)−1]

× diag(−1,
1

3
,

1

3
,

1

3
)

+O[(σ 4 ln4 σ/b)−1] (σ/b −→ ∞). (3.17)

• At the moderate distance, further analytical simplification can-
not be applied to the integral representations (3.15). Therefore, 
the numerical quadrature should be used to evaluate T ν

μ in 
this intermediate region. It is found that the energy density is 
always negative and decreases monotonically towards the bar-
rier [22].

• In the limit of small separation from the barrier, σ/b −→ 1, 
boundary conditions are not effective and it is again possi-
ble to compute the explicit asymptotic forms for the energy–
momentum tensor which has been shown to vary as the in-
verse cube of the distance from the barrier, and is therefore 
unbounded.⎧⎪⎨
⎪⎩

A = [360π2b(σ − b)3]−1 +O[(σ/b − 1)−2],
B = −[720π2b2(σ − b)2]−1 +O[(σ/b − 1)−1],
C = −[720π2b(σ − b)3]−1 +O[(σ/b − 1)−2].

(3.18)

Note that, the above results are relevant to the right Rindler wedge. 
By imposing the replacements Iiν −→ Kiν , Kiν −→ Iiν in Eq. (3.15), 
one can straightforwardly obtain the expression for the boundary 
part of the vacuum energy–momentum tensor in the region σ < b.

The vacuum energy–momentum tensor on the static de Sitter 
space Eq. (2.1), therefore, can be easily obtained by the standard 
transformation law between conformally related problems as fol-
lows

〈T ν
μ〉dS = �−5〈T ν

μ〉Rindler. (3.19)

Now considering Eq. (3.10), one can easily realize that G(x, x′) is 
finite for σ > b since the singular parts of G+ and G− cancel as 
x′ −→ x. However, if x is a point on this brane then

G(x, x′) = G+(x, x′) + G−(x, x′) = −G0(x, x′),

because G+ vanishes at the barrier due to the choice of Dirichlet 
boundary condition. If we now let x′ −→ x, we find that G(x, x′)
exhibits the same singularity as the Minkowski space propagator 
i 
[
4π2(x − x′)2

]−1
. Regarding this reasoning T ν

μ could, a priori, di-

verge as (σ − b)−4. However, when the acceleration of the barrier 
is reduced to zero, b −→ ∞, the energy–momentum tensor must 
vanish. So, the reproduction of the result for a single barrier at rest 
entails the leading behavior of T ν

μ , as is found, be at worst of order [
b(σ − b)3

]−1
[22]. Note that, in order to have a finite T ν

μ there, 
accurate cancellations are required, which do not occur for mass-
less scalar field subjected to Dirichlet boundary condition. Never-
theless, selecting such a field, apart from the braneworld models 
motivation, is due to the relevant important considerations of this 
field which greatly encourage one to pursuit this path to study the 
electromagnetic field.

Remarks on the renormalization: It is worth to mention that in 
the standard QFT (the Fock space is built on a Hilbert space), 
any prescription for renormalizing the energy–momentum tensor, 
which is consistent with Wald axioms, must yield precisely the 
trace, modulo the trace of a conserved local curvature term [24]. 
And for the studied case in this paper, a conformally coupled quan-
tum field on the conformally flat background, as has been proved 
in [21], the gravitational part of the energy–momentum tensor 
is entirely determined by the trace anomaly. The above calcula-
tions, however, reveal that the manifestation of the gravitational 
background (the trace anomaly), which corresponds to the situa-
tion without boundaries, does not appear. It is not surprising since 
the KGB structure preserves covariance and conformally covariance 
in a rather strong sense, therefore the trace anomaly, which can 
appear only through the conformal anomaly (breaking the confor-
mal invariance when quantum corrections are included), vanishes. 
In this respect, we should also underline that although the trace 
anomaly is absent, Wald axioms are well preserved in the con-
text of the KGB construction. Moreover, the covariant automatic 
renormalization of the energy–momentum tensor, as a significant 
achievement of this theory, can be helpful in further studying 
of quantum field theory in curved space–time, where the usual 
scheme of renormalization includes complexity and somewhat am-
biguity.

4. Discussion

In this paper, we discussed the bulk Casimir effect for a confor-
mal scalar field when the bulk represents 5-D de Sitter space–time 
with one 4-D dS brane, which may be similar to our universe. Due 
to the fact that the braneworld corresponds to a 5-D manifold with 
a 4-D dynamical boundary, it is obvious that, regarding the 5-D 
quantum field theory, the non-trivial vacuum energy should ap-
pear. Furthermore, in the context of the brane QFT, the non-trivial 
brane vacuum energy also emerges. In this regard, the bulk Casimir 
effect should conceivably serve as the cornerstone in the construc-
tion of the consistent braneworlds. Indeed, it gives contribution to 
both the brane and the bulk cosmological constants. Therefore, one 
expects that it can be helpful in the resolution of the cosmologi-
cal constant problem. Indeed, as almost commonly accepted, this 
problem is mainly a question about quantum gravity, since classi-
cally it would be more or less natural to just decide – as Einstein 
did – that we do not like the cosmological constant, and set it to 
zero. Accordingly, in the investigation and resolution of the cosmo-
logical constant problem the inclusion of the dynamics of quantum 
gravity would be a crucial step [25,26].

Accordingly, the Krein–Gupta–Bleuler structure is considered in 
this paper to perform the computations. The authors would like to 
emphasize the fact that the method not only fulfills the so-called 
Wald axioms but also is consistent with the de Sitter linear grav-
ity requirements; the causality and the covariance of the theory 
are assured and contrary to what happened in previous treat-
ments of this problem, the model does not suffer from infrared 
divergences [10–16]. Here, it is also worth to mention that, as ac-
curately discussed in Ref. [20], considering the unitarity condition 
(see (3.8) and related discussion) when interaction is present – in 
the Minkowskian limit – the behavior of the method, more pre-
cisely, the so-called radiative corrections are the same as the usual 
QFT. Indeed, in the flat limit, vanishing of the free field vacuum 
energy in the KGB structure is the only difference between our 
approach and the usual one. In this regard, we also showed that 
utilizing the method does not destroy black holes thermodynamics 
and it is able to retrieve the very result for Hawking radiation even 
regarding the fact that 〈0|T ν

μ|0〉 of the free theory is zero [19]. In 
this respect, we hope that the current study based on the Krein–
Gupta–Bleuler construction can be extended to the related issues, 
such as calculation of the Casimir force, due to quantum gravity in 
dS space.
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