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Greenhouse gas emissions are a global problem. Although the EU countries from 1990 to 2012 reduced
their total emissions by 19.2% (CO2 eq.), it is still necessary to limit their emissions. In the article the
possibility of using the taxonomic methods that allow grouping (classifying) objects described by many
attributes (variables) is presented. In particular, cluster analysis was used, in which some methods for the
isolation of homogeneous subsets of surveyed objects can be distinguished. One of such method is k-
means algorithm. As a measure of similarity of objects in clusters the Euclidean distance was applied. In
the analysis 28 European countries were taken as objects of research and they were described by four
attributes (variables), i.e. the emission levels of greenhouse gases such as carbon dioxide, methane, ni-
trogen oxides and nitrous oxide. The aim of the analysis is to grouping objects e the European countries
e into clusters that are most similar to each other in the same cluster and most unlike in other clusters.
The research was carried out according to total greenhouse gas emissions, and according to emissions of
these gases per capita of the countries surveyed. The analyses are based on Eurostat reports.
Copyright © 2016 Turkish National Committee for Air Pollution Research and Control. Production and

hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coal mining is a strategic sector of the Polish economy and plays
a key role in ensuring the energy security of the country (Burchart-
Korol et al., 2014). Poland ranks second in Europe in terms of vol-
ume of coal mining output and the fourth largest in terms of lignite
mining output (GUS, 2014). Coal is, and will be in the future, the
primary source of energy, as the share of coal fuel in electricity
generation in Poland is nearly 90% (Dubi�nski and Turek, 2014; PEP,
2014). State policy based on the principles of sustainable develop-
ment is closely linked with the mining industry, which is the main
pillar for the further development of society, growth of the life
quality of the population and the economic development of Poland,
as well as EU countries.

The extractive industry is one of the most significant sector in
shaping the global economic situation in the world (Ranosz, 2014).
This is confirmed by trends in the global market for mining of
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minerals, because countries that are rich in natural resources such
as Brazil, Russia, India and China were the fastest growing econo-
mies of the world that already in 2000e2008 accounted for 50% of
global economic growth (Pitfield et al., 2010).

Since 1990 a steady increase in world production of mineral
resources has been seen, which indicates the relationship between
mining and economic development (Dubi�nski, 2013). Despite
limiting the role of coal inmeeting energy needs in European Union
countries, coal will still serve an important role in the world, and its
share in energy production in 2035 will be at the level of 26.3% (EO,
2015). The share of coal in the global energy production by regions
of the world is presented in Fig. 1.

Undisputed is the fact of the negative impact of the use of
mineral resources on the environment. At the same time, however,
it should be stressed the significant involvement of mining com-
panies in the eco-friendly and pro-social activities (Pietrzyk-
Sokulska et al., 2015; Majer, 2013). The activity in this field con-
firms publications of integrated reports containing financial-
economic, environmental and social information, i.e. Corporate
Social Responsibility (CSR) reports (Hąbek, 2012, 2014; Hąbek and
Wolniak, 2016).

Burning fossil fuels causes emissions of pollutants into the at-
mosphere in the form of gas and dust. Poland by signing the United
Control. Production and hosting by Elsevier B.V. This is an open access article under
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Fig. 1. Coal's share of world energy production from 1990 to 2035.
Source: own work based on (EO, 2015).
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Nations Framework Convention in 1994 and the Kyoto Protocol in
2002 committed to activities that would stabilize greenhouse gas
(GHG) emissions (M�S, 2003). Poland reduced its GHG emissions in
2012 as required by 14.15% compared to the base year e 1990 (IEA,
2014). Meeting the requirements for reducing CO2 emissions
became the basis for the development of multi-technology research
in Carbon Capture and Storage (CCS) (Krzemie�n et al., 2013;
Luty�nski, 2014; Olajire, 2013; Uliasz-Boche�nczyk, 2010; Uliasz-
Boche�nczyk and Mokrzycki, 2014; Uliasz-Boche�nczyk et al., 2009).

Gas emission limits in the EU can, however, be inadequate to
protect the climate on a world scale, because the share of 28 EU
countries in global emissions amounted to only 10.5% in 2013.
Therefore, the Commission takes the view that to fight against
global warming should join the fastest growing economy in the
world such as China and India, which became the world's biggest
emitters of greenhouse gases. Share of selected countries in global
emissions in 1990 and 2013 is presented in Fig. 2 (NEAA, 2014).

In 2005, the developed countries accounted for about 40% of global
CO2 emissions, developing countries for about 56%, and the remaining
4% came from aviation and maritime transport, which emissions
according to the internationally accepted methodology are not allo-
cated to any particular region. At baseline, the developed countries
will account in 2030 for about 32% of CO2 emissions, developing
countries for about 63%, and aviation and maritime transport for 5%.
In 2030 it is expected that emissions per capita in developed countries
will be still at more than double compared to the developing coun-
tries (respectively 16 and 7 t CO2 eq. per year), although the expected
increase of 0.7% per year in developed countries will be about 2/3
lower than in developing countries (2.2% per year) (McKinsey, 2010).

At present in the scientific community still there is no clear
opinion on the size of the human impact on global warming that is
observed in recent years, and caused by the increase in greenhouse
gas emissions. On the one hand the position is maintained that most
of the observed increase in global average temperatures since the
mid-twentieth century iswith a high probability due to the observed
increase in anthropogenic greenhouse gas concentrations (Pachauri
and Meyer, 2014), which is reflected in activities on emission limits
for EU countries. On the other hand, there are differing opinions,
undermine this approach (Idso et al., 2013) and emphasizing the
complexity of this issue, among others, for the sake of the fact that
burning fossil fuels is only one of many factors affecting the level of
emissions of GHG such as e.g. a change in land use with comparable
effect. Therefore, there is an opinion that unilateral approach to
combating global warming by introducing restrictive CO2 emission
limits is not fully justified (Pawłowski and Cao, 2014).

Scientists in their research are looking for the sources and fac-
tors affecting the GHG emissions on the one hand, and on the other
they are searching the methods and strategies that could lead to a
reduction of these emissions. Among numerous publications on
this topic it is worth mentioning (Xia and Chen, 2012), where five
scenarios of energy abatement were evaluated, which were based
on the combinations of regulation strategies and allocation alter-
natives. The authors, among other things come to the conclusion
that the sector regulation strategy is more effective than the
regional regulation strategy. In turn, in Xia et al. (2015) structural
decomposition analysis is used to find the origins of changes of
environmental and economic variables and key factors that have
the greatest influence on these changes. Fuzzy cluster analysis is
conducted in Xia et al. (2011) to group industrial sectors (in China),
taking into account several indicators from the point of view of
energy security, efficiency and carbon emission. Li et al. (2016)
suggest that such strategies as displacing energy-intensive sectors
to other regions lead to “local reduction but overall rise”. They
analyse five energy abatement scenarios in order to find the
optimal abatement scenario for Beijing. Of course there is no cer-
tainty that such a scenario will work, for example in Europe, but
carried out “three-scale input-output” analysis can certainly be
used for other regions.

The aim of the article is to analyse the differences in the levels of
GHG such as carbon dioxide, nitrogen oxides, methane, and nitrous
oxides in European countries. These four groups of gases are
considered to be the greatest threat, and only data on emissions of
these gases are published by Eurostat. The result of the research is
to identify clusters of similar countries, i.e. homogeneous objects in
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Fig. 2. Share of countries in global emissions of CO2 in 1990 and 2013.
Source: own work based on (NEAA, 2014).
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terms of GHG emission levels. In the analysis the k-means method
was used, which belongs to the non-hierarchical cluster analysis
methods. The study was carried out according to both total emis-
sions, and according to the emissions per capita as well. The anal-
ysis was conducted on the basis of Eurostat reports on the GHG
emissions of European countries.

2. Research methodology e cluster analysis

The objective of cluster analysis is to group observations of
different type in such a way that the resulting clusters are as ho-
mogeneous as possible within each group and as different as
possible from each other. There is some similarity to the discriminant
analysis, where the objective was to obtain a linear combination of
the variables such that this transformed linear combination would
exhibit the largest difference between centroids but the smallest
variance within groups. However, in discriminant analysis, the
groups are known a priori, whereas the purpose of cluster analysis is
to form such groups; they are called “clusters” (Gatignon, 2010).

There are many methods to create such clusters. The most
generally these methods can be divided into hierarchical and non-
hierarchical. Among the hierarchical methods agglomerative and
divisive methods are distinguished, while among non-hierarchical
k-means methods, probabilistic clustering and the methods of self-
organizing are distinguished. The hierarchical methods allow to
create a tree structure (dendrogram) either by treating each
element as a separate cluster andmerge them in successively larger
clusters e in the agglomerative method, or by beginning with the
whole set and proceed to divide it into successively smaller clusters
e in the divisive method (Madhulatha, 2012).

In the first step of the agglomerative method it is assumed that n
observations constitute n separate clusters. On the basis of previ-
ously adopted distance measure, e.g. Euclidean distance, the two
“nearest” clusters are selected and combined into one single clus-
ter. Thus, one less cluster is obtained, that is n�1. The process is
repeated until all clusters will be merged into one. It should be
noted that the methods of selecting the nearest (most similar)
clusters are few. The most popular are single linkage, complete
linkage, centroid method orWard's method. Each of these methods
can give different results.

The algorithm for divisivemethod is reverse. At the beginning all
the observations are treated as a single cluster, then the following
divisions are carried out so long until n clusters are received.

The disadvantage of hierarchical methods is the difficulty to
determine the appropriate number of clusters, although, there are
some proposals to resolve this problem (Stanisz, 2007; Herbin et al.,
2001; Tibshirani et al., 2001).

Among the non-hierarchical methods probably the most pop-
ular is the k-means method. The name of this method is derived
from the representation of each cluster using the average or
weighted average. In this method the number of clusters are pre-
sumes a priori as well as the number of iterations. Algorithm for
creating clusters is strongly dependent on the value of k. The
number of clusters should be large enough that clusters will reflect
the specific characteristics of the data set. At the same time, how-
ever, the value of k must be significantly less than the number of
objects in the data set, because that is the meaning of the grouping.
Inmost publications, inwhich k-meansmethod is discussed usually
there are suggestions how to determine the appropriate values of k
(Pham et al., 2005; Ming-Tso Chiang and Mirkin, 2010).

It should be noted, however, that there is no perfect method for
determining k. Often, it is proposed to simply carry out several
cycles of calculations for different values of k and based on the
obtained statistics (e.g. the inner and the outer distance) to select
themost optimal number of clusters. The choice of the best solution
is based on a comparison of criterion of internal consistency, based
on minimizing deviations within the group (Jain, 2010). Another
method e elbow criterion e looks for the percentage of variance
explained as a function of the number of clusters. The elbow cri-
terion says that one should choose a number of clusters so that
adding another cluster doesn't add sufficient information. More
precisely, if one plots the percentage of variance explained by the
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clusters against the number of clusters, the first clusters will add
much information, but at some point the marginal gain will drop,
giving an angle in the graph (Madhulatha, 2012). Very simple rule
of thumb sets the number to ky

ffiffiffiffiffiffiffiffi
n=2

p
with n as the number of

objects (Mardia et al., 1979). It is also proposed to carry out earlier
grouping by hierarchical clustering in order to find the number of
clusters, and only then for that value to conduct clustering by k-
means method (Stanisz, 2007). In further analysis to estimate the
number of k the last two methods are used.

In the k-means method it is assumed (Morzy, 2013; Stanisz,
2007; Mirkin, 2011) that a set of n objects D ¼ fp1; p2;…;png is
given. Each object pi ¼ fpi1; pi2;…; ping represents a point of space
Rm, wherem is the number of attributes that describe the objects of
set D (the number of dimensions of space Rm). Let k is a pre-
determined number of clusters, and mk - the mean of cluster Ck. In
the Euclidean space the mean of cluster is calculated according to
formula:

mk ¼
1
jCkj

X
pi2Ck

pi

In the k-means method the aim is to find the division of a set of
objects D between the k clusters C1; C2;…;Ck, of means that min-
imizes the criterion function e(k) (Likas et al., 2003). In the basic
version of the algorithm the criterion function that is minimized, is
the sum of the squared error (Larose, 2005):

eðkÞ ¼
Xk

i¼1

X
pj2Ci

dist
�
pj;mi

�2
;

where:

pj e point in Rm space that represent object pj,
mi e mean of cluster Ci,
dist(pj, mi) e Euclidean distance (norm L2) between object
(point) pj and mean (centre) mi of the nearest cluster Ci.

Algorithm can be described as follows (Han and Kamber, 2006;
Hastie et al., 2009; Mirkin, 2011):

A data set containing n objects is given and the number of
clusters k is assumed.

1. Arbitrarily choose k objects from D as the initial cluster centres;
2. Repeat steps (a) and (b) until there are changes in the allocation

of objects to clusters:

a) (re)assign each object pi 2 D to the cluster Ci, to which the
object is most similar, based on the mean value of the objects pi
in the cluster Ci;

b) update the cluster means, i.e., calculate the mean value of the
objects for each cluster.

K-means method has several advantages. It is relatively simple
and the algorithm procedure is relatively efficient compared with
hierarchical methods. The reasons for the algorithm's popularity
are its ease of interpretation, simplicity of implementation, speed of
convergence and adaptability to sparse data (Dhillon and Modha,
2001). Another advantage is its flexibility with regard to the
accepted measure of distance. In the basic version of the algorithm
it is assumed that dist(pj, mi) is the Euclidean distance (L2 norm)
between the object (point) pj and the mean (centre)mi of cluster Ci.
But it is possible to use also other distance measures (Singh et al.,
2013). Selim and Ismail (1984) gave a rigorous proof of conver-
gence of the k-means e algorithm in a generalized form. Also, local
optimality of solutions obtained has been investigated, where it
was shown that under certain conditions, the k-means algorithm
may not yield local minimum solutions. In such cases, means of
obtaining local minima were presented.

Main disadvantage of k-means is the possibility of getting the
distorted results when there are outliers in the data e a single
outlier can increase the squared error dramatically (Rokach and
Maimon, 2010). Then these more typical objects will tend to be
classified into very few groups, but the outliers will tend to be put
in very small or even single clusters (Giudici, 2003).

There are many solutions to the problem of outliers. The
simplest solution is the removal of the objects, which differ
significantly from the centres of clusters. To avoid the error of
removing the wrong object, during several iterations of the algo-
rithm it is checked, whether a point, classified as an outlier, differs
significantly during the iteration of found clusters. However, in
many situations removal of outliers is not allowed. This applies, for
example, pattern recognition, image compression, the analysis of
financial data, or grouping objects into spatial databases where
each points (objects) is subjected to grouping (Morzy, 2013). In the
case of grouping the EU countries, each country should be assigned
to a cluster. Thus, in presented analysis outliers are not searched.

3. Research results and discussion

3.1. Grouping by k-means method according to the general emission
levels

In the first stage of the study grouping of the objectse European
countries ewas conducted according to general levels of emissions
of four GHG. These include carbon dioxide (CO2), nitrogen oxides
(NO), methane (CH4) and nitrous oxide (N2O). Data were obtained
from Eurostat (2015a), which reports data for those gases, although
it should be noted that the GHG also includes four another types of
gases collectively known as F-gases. Data of GHG emission used for
the analysis apply to 25 European Union countries (excluding
Malta, Cyprus and Luxembourg), and additionally Norway,
Switzerland and Turkey, i.e. 28 countries altogether.

In order to achieve comparability between data collected their
normalization method of standardization was made according to
the formula (Nisbet et al., 2009):

zi ¼
xi � x
Sx

where: x and Sx are respectivelymean and standard deviation of the
variable in experiment.

GHG emissions of EU countries for the year 2012 and their
standardized values are presented in Tables 1 and 2.

Using STATISTICA package the groupings of countries was car-
ried out by k-means algorithm. In this method, it is first necessary
to determine the number of clusters.

In the presented analysis in order to evaluate the values of k, the
preliminary calculations have been made with agglomerative
method, which resulted in evaluation the number of clusters k ¼ 4.
To confirm this value additional calculations were carried out with
k-means method, assuming successively k ¼ 3, 4 and 5. Finally, on
the basis of the statistics k was specified as equal 4. Some confir-
mation of appropriateness of such a number of clusters is the use of
a rule of thumb, whereby ky

ffiffiffiffiffiffiffiffiffiffiffi
28=2

p
y4.

The initial cluster centres were defined by sorting distances and
taking observations at a fixed interval. The resulting grouping and
correspondingdistances from the cluster centres are shown inTable 3,
and the analysis of variance anddescriptive statistics inTables 4 and 5.
Cluster no. 1 has 6 countries, including Poland, cluster no. 2 has 2



Table 1
Greenhouse gas emissions by the European countries 2012 [t].

Carbon dioxide Nitrogen oxides Methane Nitrous oxide

Austria 65 481 220 167 734 252 558 16 385
Belgium 102 316 098 203 640 304 233 22 464
Bulgaria 48 363 949 123 208 342 161 16 219
Croatia 19 422 629 59 002 163 154 10 582
Czech Republic 98 343 688 210 581 476 468 24 527
Denmark 78 117 285 1 089 108 262 535 21 557
Estonia 17 390 938 40 255 44 328 3259
Finland 53 873 231 188 237 194 242 16 031
France 360 238 250 1 058 080 2 401 841 184 352
Germany 890 328 607 2 040 910 2 322 716 181 874
Greece 88 981 101 256 752 463 073 21 325
Hungary 48 627 609 142 979 380 944 21 942
Ireland 38 052 133 74 669 574 956 23 927
Italy 395 866 681 1 041 005 1 655 672 89 729
Latvia 8 764 472 44 428 77 702 5894
Lithuania 18 154 743 81 999 145 796 13 487
Netherlands 203 179 743 485 949 717 835 24 761
Norway 55 211 146 268 391 201 965 10 616
Poland 328 462 794 873 038 1 954 677 95 755
Portugal 51 796 100 186 206 586 721 14 368
Romania 86 651 210 226 835 1 057 039 37 438
Slovakia 35 233 111 80 898 199 105 9019
Slovenia 16 520 613 56 296 88 944 3583
Spain 281 945 961 972 935 1 539 170 59 264
Sweden 53 634 514 255 998 228 030 20 436
Switzerland 47 399 192 91 204 175 703 9836
Turkey 357 498 161 1 088 062 2 934 440 47 700
United Kingdom 536 822 366 1 371 925 2 401 756 115 373

Source: EUROSTAT (2015a).

Table 2
Standardized data e greenhouse gas emissions by the European countries 2012.

Carbon dioxide Nitrogen oxides Methane Nitrous oxide

Austria �0.45074 �0.55737 �0.61858 �0.48034
Belgium �0.26866 �0.48805 �0.55921 �0.35700
Bulgaria �0.53535 �0.64333 �0.51564 �0.48371
Croatia �0.67841 �0.76728 �0.72129 �0.59808
Czech Republic �0.28830 �0.47465 �0.36134 �0.31516
Denmark �0.38828 1.22141 �0.60712 �0.37540
Estonia �0.68845 �0.80347 �0.85780 �0.74664
Finland �0.50811 �0.51778 �0.68558 �0.48752
France 1.00626 1.16150 1.85063 2.92740
Germany 3.62652 3.05892 1.75972 2.87713
Greece �0.33457 �0.38551 �0.37673 �0.38012
Hungary �0.53404 �0.60516 �0.47108 �0.36759
Ireland �0.58632 �0.73703 �0.24819 �0.32733
Italy 1.18237 1.12854 0.99339 1.00767
Latvia �0.73109 �0.79542 �0.81946 �0.69318
Lithuania �0.68467 �0.72288 �0.74123 �0.53913
Netherlands 0.22991 0.05697 �0.08405 �0.31040
Norway �0.50150 �0.36304 �0.67670 �0.59739
Poland 0.84919 0.80427 1.33690 1.12993
Portugal �0.51838 �0.52170 �0.23468 �0.52126
Romania �0.34609 �0.44327 0.30565 �0.05321
Slovakia �0.60025 �0.72501 �0.67999 �0.62979
Slovenia �0.69275 �0.77250 �0.80655 �0.74008
Spain 0.61926 0.99713 0.85954 0.38960
Sweden �0.50929 �0.38697 �0.64676 �0.39816
Switzerland �0.54012 �0.70511 �0.70688 �0.61320
Turkey 0.99272 1.21939 2.46250 0.15499
United Kingdom 1.87913 1.76740 1.85053 1.52795
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countries (Denmark and Spain), the third cluster consists of seven ob-
jects,while clusterno. 4e themostnumerouse includes13countries.

In Table 4 there are measures of intergroup and intragroup di-
versity of the corresponding variables together with degrees of
freedom (df). Obtained e as the ratio of intergroup diversity to
intragroup diversify - the value of F statistics allows for prioritiza-
tion of variables because of the discriminatory power (Panek,
2009). The analysis of variance shows that the biggest role in the
division to clusters by minimizing variability within clusters and
maximizing variability between clusters was methane because the
value of F statistic is the greatest and amounts to 65.47. The second
position has nitrogen oxides (F ¼ 46.64). On the third and fourth
places are respectively, nitrous oxide and carbon dioxide.

On the basis of descriptive statistics contained in Table 5 and the
averages presented in Fig. 3 it is seen that 13 countries creating the
cluster no. 4 is characterized by the lowest values of average emis-
sions of greenhouse gases. On the other side, cluster no. 1 has the
highest GHG emissions. Generally speaking, in this case the smaller
the number of cluster, the higher the average values of emitted
gases. An exception is cluster no. 2, in which the average standard-
ized values of nitrogen oxides emissions are significantly higher
than in clusters no. 3 and no. 4, though smaller than in cluster no. 1.

The most common elements in the fourth cluster are such
countries as Switzerland, Slovakia, Lithuania and Croatia because
their distances from the centres of clusters are the smallest. Most
outstanding countries in this cluster are Sweden, Estonia and
Hungary, as evidenced by the greatest distance from the cluster
centres. Cluster no. 1 form the major emitters of greenhouse gases
in Europe, which includes the United Kingdom, Italy, Poland,
France, Turkey and Germany. In this cluster the most typical ele-
ments are countries like the United Kingdom, Italy and Poland,
while Germany significantly differs from them; its distance from
the centre of cluster is almost three times higher than Poland.
Table 6 presents information about the Euclidean distances be-
tween the centres of clusters and their squares.

Table 7 shows the average values of emitted gases in tones in
each cluster.

3.2. Results of the clustering by k-means method according to the
levels of emissions per capita of European countries

In the second stage of the research the grouping of objects e the
European countries e was conducted according to emissions per



Table 3
Elements of clusters with distances form centres for the total emissions.

Cluster 1 Distances
from centre
of cluster 1

Cluster 2 Distances
from centre
of cluster 2

Cluster 3 Distances
from centre
of cluster 3

Cluster 4 Distances from
centre of
cluster 4

United Kingdom 0.205782 Denmark 0.487452 Czech Republic 0.073653 Switzerland 0.046434
Italy 0.545287 Spain 0.487452 Greece 0.086306 Slovakia 0.051843
Poland 0.597547 Portugal 0.154134 Lithuania 0.069080
France 0.748653 Belgium 0.172588 Croatia 0.079667
Turkey 0.882661 Ireland 0.210582 Finland 0.084685
Germany 1.425747 Romania 0.297642 Austria 0.098621

Netherlands 0.366363 Bulgaria 0.099560
Slovenia 0.133499
Latvia 0.138184
Norway 0.147746
Hungary 0.151264
Estonia 0.155264
Sweden 0.160044

Table 4
Analysis of variance for total emissions.

Variables Between SS df Inside SS df F Significance p

Carbon
dioxide

20.32800 3 6.671997 24 24.37411 0.000000183530800

Nitrogen
oxides

23.04719 3 3.952806 24 46.64472 0.000000000363261

Methane 24.06017 3 2.939833 24 65.47357 0.000000000010611
Nitrous

oxide
20.35669 3 6.643307 24 24.51393 0.000000174391900

Table 5
Descriptive statistics of clusters on the basis of standardized data for the total
emissions.

Means Standard deviation Variance

Cluster 1e6 objects
Carbon dioxide 1.589366 1.062400 1.128693
Nitrogen oxides 1.523338 0.814103 0.662765
Methane 1.708944 0.502192 0.252196
Nitrous oxide 1.604181 1.100729 1.211604
Cluster 2e2 objects
Carbon dioxide 0.115492 0.712434 0.507563
Nitrogen oxides 1.109267 0.158590 0.025151
Methane 0.126214 1.037087 1.075549
Nitrous oxide 0.007098 0.540936 0.292611
Cluster 3e7 objects
Carbon dioxide �0.301773 0.262962 0.069149
Nitrogen oxides �0.427606 0.240588 0.057883
Methane �0.222650 0.275487 0.075893
Nitrous oxide �0.323496 0.139493 0.019458
Cluster 4e13 objects
Carbon dioxide �0.588829 0.094018 0.008839
Nitrogen oxides �0.643486 0.149035 0.022211
Methane �0.688273 0.111035 0.012329
Nitrous oxide �0.567293 0.121080 0.014660
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capita of four types of gases (CO2, NO, CH4, N2O). The analysis also
applies to the same countries as in Section 3.1. Tables 8 and 9 show
GHG emissions per capita of EU countries and their standardized
values respectively.

As in Section 3.1 this part of the calculation using firstly
agglomerative method and then the k-means method for k ¼ 3, 4
and 5 the value of k was determined as equal 4.

Classification of countries in terms of total emissions of GHG,
and emissions per capita show significant differences in obtained
clusters. Clusters and distances from the centres of clusters are
presented in Table 10. Cluster no. 1 comprises of 9 countries
(including Poland), cluster no. 2 contains 6 countries, the third
cluster consists of 11 countries, and the fourth cluster has only two
countries (Denmark and Ireland). In Tables 11 and 12 the analysis of
variance and descriptive statistics are shown, and in Table 13 in-
formation about Euclidean distances between cluster centres and
their squares are shown.

The analysis of variance shows that the biggest role in the
creating clusters had a variable of nitrous oxide, since the value of F
is the highest and is equal 22.63. An equally large role variable of
CO2 had played e F ¼ 21.99. Less important were emissions (per
capita) of methane and nitrogen oxides and these gases had the
greatest influence on creating cluster no. 4 (Denmark and Ireland).
From Table 12, and Fig. 4 it is seen that in the cluster no. 4 emissions
per capita of GHG are the highest, although the level of emissions
per capita of CO2 is close to the level of CO2 emissions in the cluster
no 1. In clusters no 1, 2 and 3 significant differences exist in emis-
sions per capita of CO2 and N2O. The lowest level of CO2 and CH4
emissions per capita has reached the countries belonging to the
cluster no. 2. Countries in cluster no. 2 are characterized by higher
values of nitrous oxide than in cluster no. 1 and no. 3.

The most similar to each other in this respect are such countries
as Croatia, France, Latvia and Hungary, because their distances from
the centre of cluster are the smallest; while Sweden and Lithuania
are countries most outlying in this cluster, because their distances
are greatest.

As in Table 12 and Fig. 4 presented means refer to the stan-
dardized value, in Table 14 the average emissions of GHG in tones
per capita are shown.

Poland has been classified in the group of nine countries in
cluster 1, which is in the second place in terms of emissions per
capita of CO2, nitrogen oxides, and methane and in the third place
in terms of nitrous oxide. This group also includes the Czech Re-
public, Germany, Belgium, UK, Finland, the Netherlands and
Estonia. Themost typical object of this cluster is the Czech Republic,
and the most outlying is Estonia. Poland is most similar to Norway
and the Netherlands in terms of greenhouse gas emissions per
capita.

To the third cluster the following countries were classified:
Slovakia, Spain, Italy, Bulgaria, Greece, Slovenia, Austria,
Switzerland, Romania, Portugal and Turkey. These countries
represent a group of the average level of emissions per capita in
comparison with other clusters, i.e. in terms of CO2 they rank third,
in terms of NO and N2O fourth place, in terms of methane third
place. The most typical object of this cluster is Slovakia, and the
most outlying is Turkey.

The fourth cluster consists of the major emitters per capita of
greenhouse gases in the European countries; it is Ireland and
Denmark. The level of average emissions per capita in these two
countries in terms of CO2 is almost twice higher than in the 17
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Fig. 3. The mean standardized values in clusters for total emissions.

Table 6
Euclidean distances of clusters (under the diagonal) and squares of distance
(above the diagonal).

Number of cluster No 1 No 2 No 3 No 4

No 1 0.000000 1.849867 3.707396 4.975401
No 2 1.360098 0.000000 0.691772 1.140381
No 3 1.925460 0.831728 0.000000 0.101312
No 4 2.230561 1.067886 0.318295 0.000000

Table 7
The average values of total emissions of gases in clusters [t].

Carbon dioxide Nitrogen oxides Methane Nitrous oxide

Cluster 1 478 202 810 1 245 503 2 278 517 119 131
Cluster 2 180 031 623 1 031 022 900 852 40 411
Cluster 3 95 617 153 234 948 597 189 24 116
Cluster 4 37 544 413 123 125 191 895 12 099

Table 8
Greenhouse gas emissions per capita in the European countries 2012 [t/capita].

Carbon dioxide Nitrogen oxides Methane Nitrous oxide

Austria 7 889 304 20 209 30 429 1974
Belgium 9 744 390 19 394 28 975 2139
Bulgaria 6 363 678 16 212 45 021 2134
Croatia 4 414 234 13 410 37 080 2405
Czech Republic 9 547 931 20 445 46 259 2381
Denmark 14 466 164 201 687 48 618 3992
Estonia 13 377 645 30 965 34 099 2507
Finland 10 164 761 35 516 36 649 3025
France 5 838 545 17 149 38 928 2988
Germany 10 818 088 24 798 28 223 2210
Greece 8 016 315 23 131 41 718 1921
Hungary 4 862 761 14 298 38 094 2194
Ireland 8 648 212 16 970 130 672 5438
Italy 6 675 661 17 555 27 920 1513
Latvia 3 810 640 19 316 33 784 2563
Lithuania 5 339 630 24 117 42 881 3967
Netherlands 12 313 924 29 451 43 505 1501
Norway 11 747 052 57 105 42 971 2259
Poland 8 621 071 22 914 51 304 2513
Portugal 4 886 425 17 567 55 351 1355
Romania 4 030 289 10 550 49 165 1741
Slovakia 6 524 650 14 981 36 871 1670
Slovenia 8 260 307 28 148 44 472 1791
Spain 6 393 332 22 062 34 902 1344
Sweden 5 829 838 27 826 24 786 2221
Switzerland 6 319 892 12 161 23 427 1312
Turkey 4 766 642 14 507 39 126 636
United Kingdom 8 785 963 22 454 39 309 1888

Source: EUROSTAT (2015a).
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countries belonging to the second and the third clusters, and
slightly higher than in nine countries of the first cluster. The level of
emissions of nitrogen oxides is more than three times higher than
in other European countries, and the level of methane is over twice
as high as all other surveyed countries. The level of nitrous oxide is
also almost twice higher than in the other countries.

4. Conclusions and policy implications

The EU countries have seen a steady reduction of GHG emis-
sions, both total and per capita. The total GHG emissions from 1990
to 2012 dropped by 19.2%. To this decline contributed most Ger-
many and the United Kingdom, although both countries had still in
2012 the highest GHG emissions among the EU countries: Germany
20.6%, and UK 13.1%. In the same period also fell in the EU GHG
emissions per capita, from the level of 12 tonnes of CO2 eq. up to
9 tonnes of CO2 eq. To this decline to the greatest extent contributed
the reduction of CO2 (81.6%), and to a lesser extent, CH4 (8.9%) and
N2O (7.5%) (EEA, 2014).
There are different causes of this decline in GHG emissions in
individual countries, as well as different is the level of emissions
fromvarious types of gases. Also, various sectors in varying degrees,
contribute to GHG emissions. The largest share of these emissions
had in 2012 ‘energy excluding transport’ (57.9%), and ‘transport
including international aviation’ (21.9%). The latter rose from 15% in
1990. Lesser share had ‘agriculture’ (10.0%), ‘industrial processes’
(6.8%) and ‘waste’ (3.0%) (EUROSTAT, 2015b).



Table 9
Standardized data e greenhouse gas emissions per capita in the European countries
2012.

Carbon dioxide Nitrogen oxides Methane Nitrous oxide

Austria 0.03013 �0.23262 �0.60179 �0.30889
Belgium 0.67064 �0.25579 �0.67776 �0.13673
Bulgaria �0.49663 �0.34629 0.16056 �0.14235
Croatia �1.16972 �0.42597 �0.25428 0.13957
Czech Republic 0.60281 �0.22591 0.22523 0.11494
Denmark 2.30094 4.92799 0.34845 1.79185
Estonia 1.92511 0.07326 �0.41006 0.24579
Finland 0.81578 0.20267 �0.27680 0.78479
France �0.67795 �0.31964 �0.15778 0.74645
Germany 1.04136 �0.10211 �0.71705 �0.06343
Greece 0.07398 �0.14953 �0.01199 �0.36400
Hungary �1.01486 �0.40071 �0.20131 �0.07972
Ireland 0.29216 �0.32472 4.63521 3.29690
Italy �0.38891 �0.30809 �0.73284 �0.78875
Latvia �1.37813 �0.25800 �0.42652 0.30380
Lithuania �0.85021 �0.12148 0.04877 1.76561
Netherlands 1.55783 0.03021 0.08136 �0.80170
Norway 1.36211 0.81656 0.05347 �0.01265
Poland 0.28279 �0.15569 0.48879 0.25236
Portugal �1.00669 �0.30776 0.70023 �0.95287
Romania �1.30229 �0.50728 0.37703 �0.55122
Slovakia �0.44105 �0.38128 �0.26521 �0.62532
Slovenia 0.15822 �0.00685 0.13187 �0.49915
Spain �0.48639 �0.17993 �0.36810 �0.96497
Sweden �0.68095 �0.01602 �0.89659 �0.05160
Switzerland �0.51175 �0.46149 �0.96758 �0.99865
Turkey �1.04805 �0.39475 �0.14742 �1.70184
United Kingdom 0.33972 �0.16879 �0.13788 �0.39823

Table 11
Analysis of variance for emissions per capita.

Between SS df Inside SS df F Significance p

Carbon dioxide 19.79863 3 7.20137 24 21.99428 0.000000
Nitrogen oxides 11.97196 3 15.02804 24 6.37313 0.002482
Methane 13.49168 3 13.50832 24 7.99014 0.000727
Nitrous oxide 19.94771 3 7.05229 24 22.62837 0.000000

Table 13
Euclidean distances of clusters (under the diagonal) and squares of distance
(above the diagonal) for emissions per capita.

Number of cluster No 1 No 2 No 3 No 4

No 1 0.000000 1.001100 0.678348 4.694629
No 2 1.000550 0.000000 0.414941 5.955931
No 3 0.823619 0.644159 0.000000 6.904243
No 4 2.166709 2.440478 2.627593 0.000000

Table 12
Descriptive statistics of clusters on the basis of standardized data for the emissions
per capita.

Mean Standard deviation Variance

Cluster 1e9 objects
Carbon dioxide 0.955349 0.562631 0.316553
Nitrogen oxides 0.023824 0.333287 0.111080
Methane �0.152300 0.407379 0.165957
Nitrous oxide �0.001651 0.444041 0.197172
Cluster 2e6 objects
Carbon dioxide �0.961969 0.279742 0.078255
Nitrogen oxides �0.256970 0.160976 0.025913
Methane �0.314618 0.323832 0.104867
Nitrous oxide 0.470683 0.702296 0.493219
Cluster 3e11 objects
Carbon dioxide �0.492675 0.475401 0.226006
Nitrogen oxides �0.297807 0.146415 0.021437
Methane �0.156841 0.496808 0.246818
Nitrous oxide �0.717999 0.433154 0.187622
Cluster 4e2 objects
Carbon dioxide 1.296551 1.420425 2.01761
Nitrogen oxides 2.301637 3.714224 13.79546
Methane 2.491829 3.031196 9.18815
Nitrous oxide 2.544375 1.064230 1.13259
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Eurostat publishes statistics for the four main types of gases
which in this study were included in the analysis. This makes it
possible to indicate, for example, the largest and smallest issuers. But
it can also beuseful to get information about homogeneous groups of
countries, taking into account all the analysed types of gases.

To group objects taxonomic method referred to as cluster
analysis is preferred. There are many useful methods, hierarchical
and non-hierarchical (see Section 2). It should be noted that there
may be discussion of which cluster analysis method to apply. As
previously mentioned, there is no perfect method, just as there is
no ideal method of setting the number of clusters in k-means
method.

The aim of the analysis was to examine the diversity of European
countries in terms of emissions of four greenhouse gases, i.e. carbon
dioxide, nitrogen oxides, methane and nitrous oxide according to
total emissions and emissions per capita using one of the non-
hierarchical clustering method, i.e. k-means method.

In both analyses, the surveyed EU countries were grouped in
four clusters in which the belonging countries are the most
Table 10
Elements of clusters with distances form centres for the emissions per capita.

Cluster 1 Distances
from centre
of cluster 1

Cluster 2 Distances
from centre
of cluster 2

Czech Republic 0.292736 Croatia 0.215059
Germany 0.294114 France 0.215199
Belgium 0.336748 Latvia 0.231063
United Kingdom 0.378676 Hungary 0.291224
Finland 0.413963 Sweden 0.432579
Norway 0.457261 Lithuania 0.678183
Poland 0.489919
Netherlands 0.514223
Estonia 0.517335
homogeneous internally and the most different from each other.
There are significant differences in the results of clustering the
countries in these two perspectives. Thus using the resulting
grouping, it should be decided whether we follow total emission of
each country or more important is emission per capita.

The research does not cover wide range of subject of measure-
ment and evaluation of greenhouse gas emissions. It should be
Cluster 3 Distances
from centre
of cluster 3

Cluster 4 Distances
from centre
of cluster 4

Slovakia 0.086555 Denmark 1.807408
Spain 0.172888 Ireland 1.807408
Italy 0.294810
Bulgaria 0.329576
Greece 0.349780
Slovenia 0.399867
Austria 0.400913
Switzerland 0.436811
Romania 0.503036
Portugal 0.513332
Turkey 0.566979
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Fig. 4. Chart for the mean values standardized in clusters (emissions per capita).

Table 14
The average values of emissions of gases per capita in clusters [t/capita].

Carbon dioxide Nitrogen oxides Methane Nitrous oxide

Cluster 1 10 568 980 29 227 39 033 2269
Cluster 2 5 015 941 19 353 35 926 2723
Cluster 3 6 375 136 17 917 38 946 1581
Cluster 4 11 557 188 109 329 89 645 4715
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noted that the problem is complex and multi-threaded, among
other things, due to the ambiguous impact of emissions on global
warming, but also due to the fact that Europe is not the biggest
emitter of greenhouse gases in the world. Considering only three
major regions of CO2 emitters, which were responsible in 2013 for
more than half of total CO2 emissions (55%), the European Union
emitted just 11% (3.7 billion tonnes), whereas China was respon-
sible for 29% (10.3 billion tonnes of CO2), and USA for 15%
(5.3 billion tonnes CO2) (NEAA, 2014). Given the analysis presented
in the article, it is advisable while setting limits on greenhouse gas
emissions to take into account on the one hand, membership of a
given country to a particular cluster, and on the other hand to
determine the criterion regarding emission limits e total GHG
emissions or GHG emissions per capita.

As indicated in the Section 1, scientists are trying to identify the
various factors that influence the size and diversity of GHG emis-
sions, as evidenced by, among others, cited earlier publications,
however mainly for the China region. Undoubtedly, it would be
worth in further studies, based on the experience of Chinese sci-
entists, verify them for the area of Europe.
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