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Abstract 

Jodar, L., Analytical approximate solutions and error bounds for nonsymmetric Riccati matrix differential 
equations, Journal of Computational and Applied Mathematics 41 (1992) 377-383. 

In this paper we construct analytical approximate solutions for the nonsymmetric Riccati matrix differential 
equation. Given an admissible error E > 0, we determine an interval where we construct an approximate 
solution whose error is smaller than E for all the points of the interval. The approximate solution is 
constructed in terms of matrices related to the data. 
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1. Introduction 

In this paper we consider the nonsymmetric Riccati matrix differential equation 

W(t) = c -DW(t) - W(t)A - W(t)BW(t), W(0) = I&, (1) 

where W(t), C, D, B and IV0 are n x n complex matrices, elements of (En xn. Such equations 
appear in the invariant imbedding context [9], anri for the symmetric case, where A is the 
adjoint Imatrix of D, equation (1) is important in the optimal control theory [l]. Most general 
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s to solve ( 1) are based on the transformation of (1) into the extended first-order linear 

then solve the reduced equation (2) by numerical integratton techniques, see [6] for details. For 
the case where B is invertible, a closed-form solution of (1) has been recently given in [5], 
however. for the general case such an expression is unknown in the literature. This motivates 
the search of analytical approximate solutions of the problem whose error is smaller than a 
prefixed admissible error E. 

Lf ? is a matrix in C,lX,)a, we denote by ]I P II its 2-norm, defined in [7, 
fppa the identity matrix in C,, ,,,,#. 

t. Analytical approximate solutions and error bounds 

We begin this section with a lemma that guarantees an interval where 
defined. 

Lemma 1. Let m comider ( 11 arrR let 6 be the positire comtmt defijled by 

p.211. We denote by 

the solution of (1) is 

where S is given by (2). Theta the so!ution of ( 1) in the intend I t 1 < S is tiefilled by 

[0, I] exp(tS) J 1 II 
r I 1\-1 

0 
[I, O] ew(tS)( w J} . 

i) i 

(3) 

(4) 

Proof. From 18, p.28], the solution of (1) is defined by W(t) = VWW(t))- ‘, where U(t), I/(t) 
are the block components of system (2), and this solution is defined in the interval where 
LB( t 1 = [I. O] exp( rs>[iJ is invertible. Note that for t = 0, U(0) = In. From the Perturbation 
Lemma [7, p-321, U(t) is invertible at t if ]I U( t ) - I,, II < 1. Note that 

U(t) - U(0) = [I, 0] exp(tS) [k(j-~=wl(&~~[~(~ 
= [I. O](ew(tS) -&,,) [ 1 

d - 
0 

Taking norms in (5), it follows that 

U(f) - U(O)II < 
li[ Ill IL 0 (exp( II tS II) - 1). 

(5) 

1 c/( t ) - U(O) I] < 1 if (exp( II tS II ) - 1) ]][1:;1] ]I < 1. Taking logarithms, this last inequality is 
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I t I II S II < In 1 + 
( llL4l-‘I~ 

Hence the result is established. 0 

For the sake of clarity in the presentation of the next results we recall some properties 
related to the differentiation in Banach spaces whose prool”s may be tound in [3,4]. Let E and 
F be Banach spaces, let A be an open set in E and leg f be a function from A into F. If .Y E A 
and f is Frechet differentiable at x, we denote by Dfcx) the Frechet differential of f at x. It is 
well known that if f is a linear function, then, for any point x EA, its Frechet differential at x 
coincides with f, i.e., Df(x) =f. If E, F and G are Banach spaces and g is a bilinear function 
from E x F into G, then for any point (x, y) E E X F, g is Frechet differentiable at (x, y) and 
Dg(x, y 1 is the linear function (s, t ) + g( x, I) + g(s, y ), see [3, Theorem 8.1.41. 

If f : E + F is Frichet differentiable at x and Df< x) is the linear mapping from E into F. 
we denote by IlDfcx) II = sup{ IIDfWWlI; z E E, II z II G 1). 

Lemma 2. Let A, B, C and D be matrices in C,, x,, , let F be the Banach space of all matrices in 
@ II x II endowed with the 2-storm, and let f : [w X F X IF8 + F be the function defined by 

f(t, X, A)=C-DX-X4-X(B+hI)X. (6) 

Then f is differentiable at any point (t, X, A), admits partial .F&=her dijferentials D, f ( t , X, A J 
ai& D3f{ t, X, A j and 

IID,f(t, X, A)II G IIAli+lIDll+2ll~~ll+~l~I IIXII, 
IlD,f(t, X A) II = II X’ 11. 

(7) 

Proof. Note that f( t, X, A) defined by (6) may be written in the form 

f(t, X, A)=C-DX-XA-XBX-AX’. (8) 

Now the function g : F --) F, defined by g(X) = XBX, is Fr&het differentiable at X E F, and 
Dg( X) is the linear mapping from F into F, defined by Dg( X)T = XBT + TBX, for any matrix 
T in F. In fact, note that 

g(X+T)-g(X)-(XBT+TBX) TBT 
-- = - 

II T II II T II l 
(9) 

Taking norms in (9), it is clear that the right-hand side of (9) tends to zero as II T II tends to 
zero. 

On the other hand, note that from (8) it is clear that D, f<t, X, A) is the linear mapping 
which takes the value -AX’ at A. Hence from the previous comments the proof of (7) is 
established. q 

Now let us consider (1) with B singular, which in terms of the function f defined by (6) may 
be written in the form 

W’(t) =f(t, W(t), O), W(O) = &* (10) 
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8. p.28], if we consider the linear system 

en the solution of the perturbed problem ( PAA 

) =f(t. W(t), A), W(O) = yp (12) 
. 

give t) = V(r, A)[U(t, A)]-‘, in the interval ( -c,, c,) where U(f, A) is invertible. Let 
be a number such that 

; A E (0, r(B))), (13) 
where 

r(B) = 
1, if c(B) = (01, 

zoo, z#O), if o(B)#(O), (14) 

and o(B) denotes the set of all eigenvalues of B. From Lemma 1, the matrix U(t, A) is 
invertible for 

[ ;dii-‘) =c, O<A <r(B), 

and 

B(A)=B+Al isinvertibleforO<A<r(B). 

Let p > 0 and let H be the open ball in C,,, 
<p)a Let &!=(O, r(B)), J=( 

with centre at W0 and radius p, H = {X E C, Xn, 
-c, c), and note that from Lemma 2 it follows that 

?f(r, X A)II; (t, X A)~JxHxi2) 

!I + 11 A if -+ 2( 11 E 11 +r( a))( iI W. 11 +p), (16) 

Qf(fr KA)k(t, X,A)EJXH~~)~(IIW,II+~)‘. 

Now if we denote by W(t, A) the solution of the problem (PA> defined by (121, and W(t) is the 
solution of (11, from [3, Theorem 10.7.31 it follows that 

w(t, A)- W(t)]] \<yA, for ftl <c, O<A <r(B), (17) 
where 

P@XP(W - 1) 
Y = , 

a 
a~ = II D II + II A II +2( II B II +r(B))( II W- li +P), 

s = ( II WfJ II +p I2 . 
Hence given an admissible error E > 0, if we take any value of A such that 

(18) 

, (19) 

where y is determined by (18), then W(t, A), for t E ( -c, c), is an approximate solution of (11, 
whose error is smaller than E uniformly for t E ( -c, c). Hence from [5, Corollary l], the 
following result has been established. 
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Theorem 3. Let us consider ( 1) where B is a singular matrix in @,, Xn and let e > 0. If p > 0, c is 
defined by (15), r(B) is given by (14) and cy, p and y are defined by (18), taking B(A) = B + AI, 
B(A)‘/’ a square root of B(A), 0 < A < r(B), let us consider the matrix 

0 I 

‘= B(h)“2(C+DB(A)-1~)B(A)1’2 B(A)‘/‘(DB(A)-’ -B(A)-1A)B(A)-1’2 ’ 1 
(20) 

let J = Diag(J,, . . . , JJ be the Jordan canonical form of Z, with Jj E Q=m,X,a,, for 1 <j < k, and let 
M = (M,,) be an invertible matrix in @2nx2n, with Mij E a=nX,,,,, for 1 <i < 2, 1 <j < k, such that 
MJ = ZM, then 

W(t, A) = B(A)-“’ i M,, exp(rJ,)D, 
s=l I 

i 

k 

I 
-1 

x c 4s exPWs)i), B(A)-1’2 - B(A)-‘A, (21) 
S=l 

where Q E Q=,n,Xnr for 1 < s < k, are determined by 

B(A)-“’ 

I 

9 

B(A)‘%,-, + B(A)-‘/‘A 

(22) 

is an approximate solution of (l), whose error is uniformly upper bounded by E for all t E ( -c, c). 

Now we illustrate the availability of the previous result with an example in C2X2. 

Example 4. Let us consider the nonsymmetric Riccati equation of type (1) where 

A=D=[; -:I, B=[; ;], c=[ -; _;], w#,=o~c~~~. 

In this case B is singular and a(B) = (0). From (14) we have r(B) = 1 and straightforward 
computations show that 11 A 11 = II D II = ($)‘I*(3 + 51/2)1/2; and if we denote by S(A) the 
matrix defined in (1 l), then in this case 

11 S(A) 11 = (+(3 + 51i2))1’2 + 2 + (1 + (1 + A2)1’2 + A2)1’2 

>, h = II S(0) II = 3.455 34669. 

Taking into account that in this case W. = 0, the constant c defined by (15) takes the value 

c = h-’ ln(2) = 0.20060134. 

Taking p = 1, from (18) we have cy = 9.236067 977, p = 1, y = 0.582 222373. Given E > 0, from 
(19), taking a positive value of A such that A < min( 1, 1.717556 $07~1, the solution of problem 
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is an approximate soluriun in ( - 0.200 60134, 0.200 60134) whose error is smaller than c 
l/y in this intenjal. In this example we have 

0 0 1 0 
0 0 01 

I-A -4 0 1-A 0 0’ 1 0 0 

J, = 
-(l -A)*" 1 

0 -(l -A)“* 

(1 -Afi’ -2 

M = (i -A)‘:’ 0 

-(I +A) _q1 - /\y 

l-A 0 1-A 0 _I 
0 i(l -A)-*” 0 i(l -A)-‘/’ 

I -- 1 4 

0 -j(l -‘A) l/Z 

-f(l -A)+ -;(l +A)(1 -A)-‘/’ 

- 0 $(l -A)-‘/* ’ 

I, = 
‘(1 -A)“’ ‘1 1 

I 0 (1 -A,“$ 

-(I -A)‘i’ -2 

-(l -A)*” 0 

-(1 +A) 
I 

2(1 -A)“’ ’ 

I I -- 4 3 ;(l _A)-“’ $(l +A)(1 -A)-3’7 

and D, L! ~(1 by (22) take the form 

2( I - A)A”’ 

(1 +A)((1 -A)““+ 1 -2A) ’ 

D,= 

0 
1 -(l-A) lJ 

2( 1 - A)A”’ I 
1 - (1 -A)“’ (1 +A)((1 -A)3’*- 1+2A) 1’ 

I 

4(A -Al)“’ 4( A - A’)“’ 
1 
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Let us take E = lo-‘; then from the previous computations, taking A = 0.017 17556806 in the 
above expressions and putting the resulting expressions into the corresponding expression (21), 
one gets the required approximate solution. 
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