CAM 1270

Letter Section

Analytical approximate solutions and error bounds for nonsymmetric Riccati matrix differential equations *

Lucas Jódar

Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Spain

Received 5 December 1991

Abstract

Jódar, L., Analytical approximate solutions and error bounds for nonsymmetric Riccati matrix differential equations, Journal of Computational and Applied Mathematics 41 (1992) 377-383.

In this paper we construct analytical approximate solutions for the nonsymmetric Riccati matrix differential equation. Given an admissible error $\epsilon > 0$, we determine an interval where we construct an approximate solution whose error is smaller than ϵ for all the points of the interval. The approximate solution is constructed in terms of matrices related to the data.

Keywords: Nonsymmetric Riccati equation; approximate solution; error bounds.

1. Introduction

In this paper we consider the nonsymmetric Riccati matrix differential equation

$$W'(t) = C - DW(t) - W(t)A - W(t)BW(t), \quad W(0) = W_0, \tag{1}$$

where W(t), C, D, B and W_0 are $n \times n$ complex matrices, elements of $\mathbb{C}_{n \times n}$. Such equations appear in the invariant imbedding context [9], and for the symmetric case, where A is the adjoint matrix of D, equation (1) is important in the optimal control theory [1]. Most general

Correspondence to: Prof. L. Jódar, Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, P.O. Box 22.012, Valencia, Spain.

* This work has been partially supported by the D.G.I.C.Y.T., grant PS90-0140.

0377-0427/92/\$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

methods to solve (1) are based on the transformation of (1) into the extended first-order linear system

$$\begin{bmatrix} U'(t) \\ V'(t) \end{bmatrix} = S \begin{bmatrix} U(t) \\ V(t) \end{bmatrix}, \quad \begin{bmatrix} U(0) \\ W(0) \end{bmatrix} = \begin{bmatrix} I \\ W_0 \end{bmatrix}, \quad S = \begin{bmatrix} A & B \\ C & -D \end{bmatrix};$$
(2)

then solve the reduced equation (2) by numerical integration techniques, see [6] for details. For the case where B is invertible, a closed-form solution of (1) has been recently given in [5], however, for the general case such an expression is unknown in the literature. This motivates the search of analytical approximate solutions of the problem whose error is smaller than a prefixed admissible error ϵ .

If P is a matrix in $\mathbb{C}_{n \times m}$, we denote by ||P|| its 2-norm, defined in [7, p.21]. We denote by I_m the identity matrix in $\mathbb{C}_{m \times m}$.

2. Analytical approximate solutions and error bounds

We begin this section with a lemma that guarantees an interval where the solution of (1) is defined.

Lemma 1. Let us consider (1) and let δ be the positive constant defined by

$$\delta = \|S\|^{-1} \ln\left(1 + \left\| \begin{bmatrix} I \\ W_0 \end{bmatrix} \right\|^{-1} \right), \tag{3}$$

where S is given by (2). Then the solution of (1) in the interval $|t| < \delta$ is defined by

$$W(t) = \left\langle \begin{bmatrix} 0, I \end{bmatrix} \exp(tS) \begin{bmatrix} I \\ W_0 \end{bmatrix} \right\rangle \left\langle \begin{bmatrix} I, 0 \end{bmatrix} \exp(tS) \begin{bmatrix} I \\ W_0 \end{bmatrix} \right\rangle^{-1}.$$
 (4)

Proof. From [8, p.28], the solution of (1) is defined by $W(t) = V(t)(U(t))^{-1}$, where U(t), V(t) are the block components of system (2), and this solution is defined in the interval where $U(t) = [I, 0] \exp(tS) \begin{bmatrix} I \\ W_0 \end{bmatrix}$ is invertible. Note that for t = 0, $U(0) = I_n$. From the Perturbation Lemma [7, p.32], U(t) is invertible at t if $||U(t) - I_n|| < 1$. Note that

$$U(t) - U(0) = [I, 0] \exp(tS) \begin{bmatrix} I \\ W_0 \end{bmatrix} - I = [I, 0] \left\{ \sum_{k \ge 1} \frac{(St)^k}{k!} \right\} \begin{bmatrix} I \\ W_0 \end{bmatrix}$$
$$= [I, 0] (\exp(tS) - I_{2n}) \begin{bmatrix} I \\ W_0 \end{bmatrix}.$$
(5)

Taking norms in (5), it follows that

$$||U(t) - U(0)|| \le \left\| \begin{bmatrix} I \\ W_0 \end{bmatrix} \right\| \{ \exp(||tS||) - 1 \}.$$

Thus ||U(t) - U(0)|| < 1 if $(\exp(||tS||) - 1)||[\frac{1}{W_0}]|| < 1$. Taking logarithms, this last inequality is

equivalent to the condition

$$|t| ||S|| < \ln\left(1 + \left\| \begin{bmatrix} I \\ W_0 \end{bmatrix} \right\|^{-1}\right)$$

Hence the result is established. \Box

For the sake of clarity in the presentation of the next results we recall some properties related to the differentiation in Banach spaces whose proofs may be tound in [3,4]. Let E and F be Banach spaces, let A be an open set in E and let f be a function from A into F. If $x \in A$ and f is Fréchet differentiable at x, we denote by Df(x) the Fréchet differential of f at x. It is well known that if f is a linear function, then, for any point $x \in A$, its Fréchet differential at x coincides with f, i.e., Df(x) = f. If E, F and G are Banach spaces and g is a bilinear function from $E \times F$ into G, then for any point $(x, y) \in E \times F$, g is Fréchet differentiable at (x, y) and Dg(x, y) is the linear function $(s, t) \rightarrow g(x, t) + g(s, y)$, see [3, Theorem 8.1.4].

If $f: E \to F$ is Fréchet differentiable at x and Df(x) is the linear mapping from E into F, we denote by $||Df(x)|| = \sup\{||Df(x)(z)||; z \in E, ||z|| \le 1\}$.

Lemma 2. Let A, B, C and D be matrices in $\mathbb{C}_{n \times n}$, let F be the Banach space of all matrices in $\mathbb{C}_{n \times n}$ endowed with the 2-norm, and let $f : \mathbb{R} \times F \times \mathbb{R} \to F$ be the function defined by

$$f(t, X, \lambda) = C - DX - XA - X(B + \lambda I)X.$$
(6)

Then f is differentiable at any point (t, X, λ) , admits partial Fréchet differentials $D_2 f(t, X, \lambda)$ and $D_3 f(t, X, \lambda)$ and

$$\|\mathbf{D}_{2}f(t, X, \lambda)\| \leq \|A\| + \|D\| + 2\|BX\| + 2|\lambda| \|X\|,$$

$$\|\mathbf{D}_{3}f(t, X, \lambda)\| = \|X^{2}\|.$$

(7)

Proof. Note that $f(t, X, \lambda)$ defined by (6) may be written in the form

$$f(t, X, \lambda) = C - DX - XA - XBX - \lambda X^{2}.$$
(8)

Now the function $g: F \to F$, defined by g(X) = XBX, is Fréchet differentiable at $X \in F$, and Dg(X) is the linear mapping from F into F, defined by Dg(X)T = XBT + TBX, for any matrix T in F. In fact, note that

$$\frac{g(X+T) - g(X) - (XBT + TBX)}{\|T\|} = \frac{TBT}{\|T\|}.$$
(9)

Taking norms in (9), it is clear that the right-hand side of (9) tends to zero as ||T|| tends to zero.

On the other hand, note that from (8) it is clear that $D_3 f(t, X, \lambda)$ is the linear mapping which takes the value $-\lambda X^2$ at λ . Hence from the previous comments the proof of (7) is established. \Box

Now let us consider (1) with B singular, which in terms of the function f defined by (6) may be written in the form

$$W'(t) = f(t, W(t), 0), \quad W(0) = W_0.$$
 (10)

From [8, p.28], if we consider the linear system

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} U(t,\,\lambda) \\ V(t,\,\lambda) \end{bmatrix} = S(\lambda) \begin{bmatrix} U(t,\,\lambda) \\ V(t,\,\lambda) \end{bmatrix}, \quad \begin{bmatrix} U(0,\,\lambda) \\ V(0,\,\lambda) \end{bmatrix} = \begin{bmatrix} I \\ W_0 \end{bmatrix}, \quad S(\lambda) = \begin{bmatrix} A & B+\lambda I \\ C & -D \end{bmatrix}, \quad (11)$$

then the solution of the perturbed problem (P_{λ}) ,

$$W'(t) = f(t, W(t), \lambda), \quad W(0) = W_0,$$
(12)

is given by $W(t) = V(t, \lambda)[U(t, \lambda)]^{-1}$, in the interval $(-c_0, c_0)$ where $U(t, \lambda)$ is invertible. Let h be a positive number such that

$$h \leq \inf\{\|S(\lambda)\|; \lambda \in (0, r(B))\},\tag{13}$$

where

$$r(B) = \begin{cases} 1, & \text{if } \sigma(B) = \{0\}, \\ \min\{|z|; z \in \sigma(B), z \neq 0\}, & \text{if } \sigma(B) \neq \{0\}, \end{cases}$$
(14)

and $\sigma(B)$ denotes the set of all eigenvalues of B. From Lemma 1, the matrix $U(t, \lambda)$ is invertible for

$$|t| < h^{-1} \ln \left(1 + \left\| \begin{bmatrix} I \\ W_0 \end{bmatrix} \right\|^{-1} \right) = c, \quad 0 < \lambda < r(B),$$
(15)

and

 $B(\lambda) = B + \lambda I$ is invertible for $0 < \lambda < r(B)$.

Let $\rho > 0$ and let H be the open ball in $\mathbb{C}_{n \times n}$ with centre at W_0 and radius ρ , $H = \{X \in \mathbb{C}_{n \times n}, \|X - W_0\| < \rho\}$. Let $\Omega = (0, r(B)), J = (-c, c)$, and note that from Lemma 2 it follows that

$$\sup\{\|\mathbf{D}_{2}f(t, X, \lambda)\|; (t, X, \lambda) \in J \times H \times \Omega\} \\ \leq \|D\| + \|A\| + 2(\|B\| + r(B))(\|W_{0}\| + \rho),$$

$$\sup\{\|\mathbf{D}_{3}f(t, X, \lambda)\|; (t, X, \lambda) \in J \times H \times \Omega\} \leq (\|W_{0}\| + \rho)^{2}.$$
(16)

Now if we denote by $W(t, \lambda)$ the solution of the problem (P_{λ}) defined by (12), and W(t) is the solution of (1), from [3, Theorem 10.7.3] it follows that

$$\|W(t, \lambda) - W(t)\| \leq \gamma \lambda, \quad \text{for } |t| < c, \ 0 < \lambda < r(B), \tag{17}$$

where

$$\gamma = \frac{\beta(\exp(c\alpha) - 1)}{\alpha}, \qquad \alpha = ||D|| + ||A|| + 2(||B|| + r(B))(||W_0|| + \rho),$$

$$\beta = (||W_0|| + \rho)^2.$$
(18)

Hence given an admissible error $\epsilon > 0$, if we take any value of λ such that

$$0 < \lambda < \min\left(r(B), \frac{\epsilon}{\gamma}\right), \tag{19}$$

where γ is determined by (18), then $W(t, \lambda)$, for $t \in (-c, c)$, is an approximate solution of (1), whose error is smaller than ϵ uniformly for $t \in (-c, c)$. Hence from [5, Corollary 1], the following result has been established.

Theorem 3. Let us consider (1) where B is a singular matrix in $\mathbb{C}_{n \times n}$ and let $\epsilon > 0$. If $\rho > 0$, c is defined by (15), r(B) is given by (14) and α , β and γ are defined by (18), taking $B(\lambda) = B + \lambda I$, $B(\lambda)^{1/2}$ a square root of $B(\lambda)$, $0 < \lambda < r(B)$, let us consider the matrix

$$Z = \begin{bmatrix} 0 & I \\ B(\lambda)^{1/2} (C + DB(\lambda)^{-1} A) B(\lambda)^{1/2} & B(\lambda)^{1/2} (DB(\lambda)^{-1} - B(\lambda)^{-1} A) B(\lambda)^{-1/2} \end{bmatrix},$$
(20)

let $J = \text{Diag}(J_1, \ldots, J_k)$ be the Jordan canonical form of Z, with $J_j \in \mathbb{C}_{m_i \times m_i}$, for $1 \le j \le k$, and let $M = (M_{ij})$ be an invertible matrix in $\mathbb{C}_{2n \times 2n}$, with $M_{ij} \in \mathbb{C}_{n \times m_i}$, for $1 \le i \le 2$, $1 \le j \le k$, such that MJ = ZM, then

$$W(t, \lambda) = B(\lambda)^{-1/2} \left\{ \sum_{s=1}^{k} M_{2s} \exp(tJ_s) D_s \right\}$$
$$\times \left\{ \sum_{s=1}^{k} M_{1s} \exp(tJ_s) D_s \right\}^{-1} B(\lambda)^{-1/2} - B(\lambda)^{-1} A, \qquad (21)$$

where $D_s \in \mathbb{C}_{m, \times n}$, for $1 \leq s \leq k$, are determined by

$$\begin{bmatrix} D_1 \\ \vdots \\ D_k \end{bmatrix} = M^{-1} \begin{bmatrix} B(\lambda)^{-1/2} \\ \\ B(\lambda)^{1/2} W_0 + B(\lambda)^{-1/2} A \end{bmatrix},$$
(22)

is an approximate solution of (1), whose error is uniformly upper bounded by ϵ for all $t \in (-c, c)$.

Now we illustrate the availability of the previous result with an example in $\mathbb{C}_{2\times 2}$.

Example 4. Let us consider the nonsymmetric Riccati equation of type (1) where

$$A = D = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad W_0 = 0 \in \mathbb{C}_{2 \times 2}.$$

In this case B is singular and $\sigma(B) = \{0\}$. From (14) we have r(B) = 1 and straightforward computations show that $||A|| = ||D|| = (\frac{1}{2})^{1/2}(3+5^{1/2})^{1/2}$; and if we denote by $S(\lambda)$ the matrix defined in (11), then in this case

$$\|S(\lambda)\| = \left(\frac{1}{2}(3+5^{1/2})\right)^{1/2} + 2 + \left(1 + (1+\lambda^2)^{1/2} + \lambda^2\right)^{1/2}$$

$$\ge h = \|S(0)\| = 3.455\,346\,69.$$

Taking into account that in this case $W_0 = 0$, the constant c defined by (15) takes the value

$$c = h^{-1} \ln(2) = 0.200\,601\,34.$$

Taking $\rho = 1$, from (18) we have $\alpha = 9.236\,067\,977$, $\beta = 1$, $\gamma = 0.582\,222\,373$. Given $\epsilon > 0$, from (19), taking a positive value of λ such that $\lambda < \min(1, 1.717\,556\,807\,\epsilon)$, the solution of problem

 (P_{A}) is an approximate solution in (-0.20060134, 0.20060134) whose error is smaller than ϵ uniformly in this interval. In this example we have

$$\begin{split} & Z = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 - \lambda & -4 & 0 & 0 \\ 0 & 1 - \lambda & 0 & 0 \end{bmatrix}, \qquad J_1 = \begin{bmatrix} (1 - \lambda)^{1/2} & 1 \\ 0 & (1 - \lambda)^{1/2} \end{bmatrix}, \\ & J_2 = \begin{bmatrix} -(1 - \lambda)^{1/2} & 1 \\ 0 & -(1 - \lambda)^{1/2} & 1 \\ 0 & -(1 - \lambda)^{1/2} \end{bmatrix}, \\ & M = \begin{bmatrix} (1 - \lambda)^{1/2} & -2 & -(1 - \lambda)^{1/2} & -2 \\ (1 - \lambda)^{1/2} & 0 & -(1 - \lambda)^{1/2} & 0 \\ -(1 + \lambda) & -2(1 - \lambda)^{1/2} & -(1 + \lambda) & 2(1 - \lambda)^{1/2} \\ 1 - \lambda & 0 & 1 - \lambda & 0 \end{bmatrix}, \\ & M^{-1} = \begin{bmatrix} 0 & \frac{1}{2}(1 - \lambda)^{-1/2} & 0 & \frac{1}{2}(1 - \lambda)^{-1/2} \\ -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4}(1 - \lambda)^{-1/2} & -\frac{1}{4}(1 + \lambda)(1 - \lambda)^{-1/2} \\ 0 & -\frac{1}{2}(1 - \lambda)^{-1/2} & 0 & \frac{1}{2}(1 - \lambda)^{-1/2} \\ -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4}(1 - \lambda)^{-1/2} & -\frac{1}{4}(1 + \lambda)(1 - \lambda)^{-3/2} \end{bmatrix}, \\ & \exp(iJ_1) = \exp(i(1 - \lambda)^{1/2}) \begin{bmatrix} 1 & i \\ 0 & i \\ 0 & \lambda^{-1} \end{bmatrix}, \quad B(\lambda)^{1/2} = \exp(-i(1 - \lambda)^{1/2}) \begin{bmatrix} 1 & i \\ 0 & i \\ 1 \end{bmatrix}, \quad \exp(iJ_2) = \exp(-i(1 - \lambda)^{1/2}) \begin{bmatrix} 1 & i \\ 0 & i \\ 1 \end{bmatrix}, \\ & B(\lambda)^{-1} = \begin{bmatrix} \lambda^{-1/2} & -\lambda^{-3/2} \\ 0 & \lambda^{-1/2} \\ 0 & \lambda^{-1/2} \end{bmatrix}, \\ & M_{11} = \begin{bmatrix} (1 - \lambda)^{1/2} & -2 \\ (1 - \lambda)^{1/2} & 0 \end{bmatrix}, \quad M_{12} = \begin{bmatrix} -(1 - \lambda)^{1/2} & -2 \\ -(1 - \lambda)^{1/2} & 0 \end{bmatrix}, \\ & M_{21} = \begin{bmatrix} -(1 + \lambda) & -2(1 - \lambda)^{1/2} \\ 1 - \lambda & 0 \end{bmatrix}, \quad M_{22} = \begin{bmatrix} -(1 + \lambda) & 2(1 - \lambda)^{1/2} \\ 1 - \lambda & 0 \end{bmatrix}, \end{aligned}$$

The matrices D_1 and D_2 dot and by (22) take the form

$$D_{1} = \begin{bmatrix} 0 & \frac{1 + (1 - \lambda)^{1/2}}{2(1 - \lambda)\lambda^{1/2}} \\ -\frac{1 + (1 - \lambda)^{1/2}}{4(\lambda - \lambda^{2})^{1/2}} & \frac{(1 + \lambda)((1 - \lambda)^{3/2} + 1 - 2\lambda)}{4(\lambda - \lambda^{2})^{3/2}} \end{bmatrix},$$
$$D_{2} = \begin{bmatrix} 0 & \frac{1 - (1 - \lambda)}{2(1 - \lambda)\lambda^{1/2}} \\ \frac{1 - (1 - \lambda)^{1/2}}{4(\lambda - \lambda^{2})^{1/2}} & \frac{(1 + \lambda)((1 - \lambda)^{3/2} - 1 + 2\lambda)}{4(\lambda - \lambda^{2})^{3/2}} \end{bmatrix}.$$

Let us take $\epsilon = 10^{-2}$; then from the previous computations, taking $\lambda = 0.01717556806$ in the above expressions and putting the resulting expressions into the corresponding expression (21), one gets the required approximate solution.

References

- [1] M. Athans and P. Falb, Optimal Control (McGraw-Hill, New York, 1966).
- [2] R.S. Bucy and P.D. Joseph, Filtering for Stochastic Processes with Applications to Guidance (Interscience, New York, 1968).
- [3] J. Dieudonné, Foundations of Modern Analysis (Academic Press, New York, 1960).
- [4] T.M. Flett, Differential Analysis (Cambridge Univ. Press, Cambridge, 1980).
- [5] L. Jódar and E. Navarro, A closed form solution for nonsymmetric Riccati differential equations with invertible quadratic coefficient, *Appl. Math. Lett.* 4 (2) (1991) 17-20.
- [6] C.R. Kenney and R.B. Leipnik, Numerical integration of the differential matrix Riccati equation, *IEEE Trans. Automat. Control* AC-30 (1985) 962–970.
- [7] J.M. Ortega, Numerical Analysis, A Second Course (Academic Press, New York, 1972).
- [8] W.T. Reid, Riccati Differential Equations (Academic Press, New York, 1972).
- [9] M.R. Scott, Invariant Imbedding and its Applications to Ordinary Differential Equations (Addison-Wesley, Reading, MA, 1973).