Table. Statistics for repeated whole-cycle and diastolic FFR measurements

<table>
<thead>
<tr>
<th></th>
<th>1st measurement</th>
<th>2nd measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson correlation coefficient (r)</td>
<td>0.980 (p<0.001)</td>
<td>0.976 (p<0.001)</td>
</tr>
<tr>
<td>Coefficient of determination (R²)</td>
<td>96.0%</td>
<td>95.3%</td>
</tr>
<tr>
<td>Area under ROC curve for FFR < -0.8</td>
<td>0.988</td>
<td>0.985</td>
</tr>
<tr>
<td>Linear fit (slope)</td>
<td>1.222</td>
<td>1.220</td>
</tr>
<tr>
<td>Linear fit (intercept)</td>
<td>-0.262</td>
<td>-0.257</td>
</tr>
<tr>
<td>Test/retest repeatability of FFR (bias/-SD)</td>
<td>-0.004 +/- 0.020</td>
<td></td>
</tr>
<tr>
<td>Test/retest repeatability of diastolic FFR</td>
<td>-0.003 +/- 0.030</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: Diastolic and whole-cycle FFR show a highly linear relationship and close diagnostic agreement. Therefore, it would be very difficult to demonstrate a difference between the two metrics in terms of diagnostic accuracy or clinical performance. Fundamentally, greater differences exist between rest and hyperemia than between whole-cycle and diastole at each flow level.

TCT-324
Influence Of Heart Rate On A Fractional Flow Reserve Measurement In Different Epicardial Territories – A Theoretical And Experimental Study In The Stenosis Model Of Porcine Coronaries

Przemyslaw J. Kwasiborski,1 Piotr P. Buszman,2 Pawel Kowalczyk,3 Agata Kruze,3 Adam Janas,1 Grzegorz J. Horszczaruk,2 Pawel E. Buszman,3 Jacek Przybylski1, Krzysztof P. Milewski1
1Warsaw Medical University, Warsaw, Poland; 2American Heart of Poland, Katowice, Poland; 3American Heart of Poland, Katowice, Silesia

Background: Coronary blood flow occurs primarily during diastole, therefore we hypothesize that heart rate (HR) by affecting the diastolic/stenotic ratio may exert a significant effect on the fractional flow reserve (FFR). The aim of the study was to develop a mathematical formula describing the relationship between FFR and HR to verify the results in an in vivo experimental setting using porcine model of coronary stenosis.

Methods: Literature data regarding the diastolic/stenotic ratio and assumption that coronary blood flow occurs during diastole were used to develop the mathematical model. The formula was than verified experimentally. Serial FFR measurements were performed in porcine coronary arteries. Coronary stenosis was obtained with the use of balloon inflation on a pressure wire within previously placed stents in LAD and RCA respectively. Subsequently, cardiac pacing was initiated and serial FFR measurements were made for achievable HR range of 60-180 per minute.

Results: The results are presented in fig. 1. In the experimental part 35 FFR measurements (14 RCA and LAD 19) were performed, which indicated a significant correlation of FFR and HR in LAD (r² = 0.79, p < 0.0001), which agreed with in silico model (p<0.11). In opposite, the results obtained in RCA indicate a lack of correlation between FFR and HR (r² = 0.03, p = 0.52).

Conclusions: Our study generates hypothesis that HR influences FFR in LAD, suggesting the necessity for clinical validation and algorithm correction. Although the model of FFR-HR dependency developed during the study is ready to implement in existing FFR modalities.

TCT-325
Influence of the amount of myocardium subtended by an intermediate coronary artery stenosis on FFR and iFR
Luigi Di Serio1, Maurizio Tarturo2, Carlo D’Agostino1
1P.O. Di Veneere, Bari, Italy

Background: Fractional Flow Reserve (FFR) has been shown to be related to the amount of myocardium subtended by a coronary stenosis; this has never been shown for the instantaneous wave-free pressure ratio (iFR). In addition, myocardial blood flow during the wave-free period has been shown to be nearly the same that measured during adenosine induced maximal hyperemia, but it is still not clear whether this equivalence is also depending of the amount of myocardium subtended to the coronary stenoses.

Methods: Consecutive patients with at least one equivocal stenosis in one major coronary artery were enrolled. Both FFR, iFR and iFR with adenosine administration (iFRA) were measured. ∆%iFR was defined as the difference in percentage of Pa/Pd ratio assessed during conventional iFR measurement and iFR measurement during intra-venous adenosine infusion (iFRA). The amount of jeopardized myocardium was evaluated using the Duke Jeopardy Score (DJS). Two-dimensional quantitative coronary angiography (QCA) was used to assess the angiographic features of the coronary stenosis and both reference diameter (RD) and minimal lumen diameter (MLD) were calculated.

Results: We evaluated 42 intermediate coronary artery stenoses in 38 patients. Both FFR, iFR and iFRA were inversely correlated with DJS/MLD ratio (respectively, r²=0.32, p<0.001, r²=0.53, p<0.001, and r²=0.64, p<0.001). Moreover, the ∆%iFR was significantly correlated with the DJS/MLD ratio (r²=0.22, p=0.03), suggesting that myocardial resistance cannot be considered negligible during the wave-free period particularly in larger territories. Of note, DJS/MLD ratio had higher accuracy in predicting FFR value (ROC analysis: 0.89 [0.79-1.00], p<0.001).

Conclusions: Both FFR and iFR are related to the amount of myocardium subtended by a coronary artery stenosis and DJS/MLD ratio can reliably predict a positive FFR value. In addition, because of the not negligible resistance during the wave-free period, iFR should not be used for the assessment of coronary stenosis subtending larger myocardial territories.

TCT-326
Utility of Fractional Flow Reserve Assessment in Aortic Stenosis

Edward D. Coverstone1, George A. Heberton1, Brian R. Lindman2, Richard G. Bach2, Hersh Maniar3, Amit Amin2, Howard J. Kow2, John Lasala1, Jasvindar Singh4, Alan Zajarias1
1Washington University School of Medicine, St Louis, MO; 2Washington University School of Medicine, St. Louis, MO; 3Washington University School of Medicine - Cardiology Division, St. Louis, MO

Background: Assessment of the significance of coronary stenosis in patients undergoing aortic valve replacement is important as concomitant revascularization increases procedural mortality risk. Fractional flow reserve (FFR) is an essential tool for evaluating the functional significance of coronary artery stenosis that has been validated in patients without valvular disease. Its diagnostic utility has not been assessed in patients with symptomatic aortic stenosis (AS).

Methods: We retrospectively analyzed all patients with moderate to severe AS from July 1, 2005 to October 31, 2013 who underwent coronary angiography and FFR assessment at our institution. Clinical, echocardiographic, hemodynamic, and angiographic data were collected. Patients were stratified by the hemodynamic significance of their coronary artery disease (FFR <0.8). Longitudinal follow up was performed to determine the primary outcomes of death, myocardial infarction (MI), target lesion revascularization (TLR), or its combination (MACE).

Results: Patients (n=54) with moderate to severe AS (mean aortic valve area 0.88±0.23 cm², mean gradient of 32±14 mmHg) underwent FFR assessment of 76 coronary lesions. The mean angiographic severity was 64%. Mean duration of follow-up was 853 days. Of the lesions that underwent FFR assessment, 13(17.1%) lesions were treated with percutaneous intervention, 23(30.3%) were bypassed during cardiac surgery, and 40(52.6%) were treated medically. There was no difference between MACE or individual outcomes between lesions with an FFR ≤0.80 versus FFR >0.80: MACE 27.9% v 33.3% p=0.610, TLR 7% v 6% p=0.122, MI 9.3% v 15.2% p=0.434, Death 20.9% v 27.3% p=0.519. Utilization of a cutoff of >0.80 for medical management had a negative predictive value of 100% [95%CI 89.32%-100.00%] for freedom from TLR. Furthermore, there was no correlation in FFR result with severity of AS (p=0.730), even after adjusting for the degree of angiographic severity (p=0.530).

Conclusions: FFR can be utilized to diagnose hemodynamic significance of coronary artery disease in patients with moderate and severe AS. There appears to be no influence of the severity of AS on FFR results nor on clinical outcomes.