BOUNDS FOR THE VARIANCE OF CERTAIN STATIONARY POINT PROCESSES

D. J. DALEY*
Australian National University, Canberra, Australia

Received 20 December 1977
Revised 23 March 1978

For the variance of stationary renewal and alternating renewal processes $N_{s}(\cdot)$ the paper establishes upper and lower bounds of the form

$$
-B_{1} \leqslant \operatorname{var} N_{s}(0, x]-A \lambda x \leqslant B_{2} \quad(0<x<\infty)
$$

where $\lambda=\mathbf{E} N_{s}(0,1]$, with constants A, B_{1} and B_{2} that depend on the first three moments of the interval distributions for the processes concerned. These results are consistent with the value of the constant A for a general stationary point process suggested by Cox in 1963 [1].

```
Stationary renewal process
stationary alternating renewal process
stationary point process variance function
```

```
Palm-Khinchin equations
```

Palm-Khinchin equations
variance function bounds

```
variance function bounds
```


1. Introduction, notation and bounds for the renewal process

Let $\left\{X_{n}\right\}, n=0, \pm 1, \ldots$, be a strictly stationary sequence of non-negative random variables (r.v.s.), with $\mathbf{E} X_{n}=\lambda^{-1}>0$ and $\mathbf{E} X_{n}^{2}<\infty$. Define the partial sums $\left\{S_{n}\right\}$ by

$$
\begin{array}{ll}
S_{0}=0, \quad S_{n}=S_{n-1}+X_{n}=X_{1}+\cdots+X_{n} \quad(n=1,2, \ldots), \\
S_{-n-1}=S_{-n}-X_{-n}=-\left(X_{0}+\cdots+X_{-n}\right) \quad(n=0,1, \ldots) . \tag{1.1}
\end{array}
$$

Set

$$
\begin{equation*}
N(x)=\inf \left\{n: S_{n}>x\right\} \quad(\text { all } x \geqslant 0) \tag{1.2}
\end{equation*}
$$

and call its expectation the expectation function

$$
\begin{equation*}
U(x) \equiv \mathbf{E} N(x) \tag{1.3}
\end{equation*}
$$

The sequence of r.v.s. X_{n} is a generic stationary sequence of interval r.v.s. for some strictly stationary point process, $N_{s}(\cdot)$ say, for which the variance of the number of

[^0]points in an interval of length x is given by
\[

$$
\begin{equation*}
V(x) \equiv \operatorname{var} N_{s}(0, x]=\lambda \int_{0}^{x}\{2(U(u)-\lambda u)-1\} \mathrm{d} u \tag{1.4}
\end{equation*}
$$

\]

(e.g. Daley [2] when $X_{i}>0$ a.s., and more generally, see Section 4 below). Our interest lies in using (1.4) to find expressions of the form

$$
\begin{equation*}
-B_{1} \leqslant V(x)-A \lambda x \leqslant B_{2} \quad(\text { all } x \geqslant 0) \tag{1.5}
\end{equation*}
$$

for non-negative constants A, B_{1}, B_{2} to be expressed in terms of parameters of the sequence $\left\{X_{n}\right\}$, assuming of course that $\left\{X_{n}\right\}$ satisfies such conditions as will ensure the existence of such constants. However, we have not found any such general results: we have found A, B_{1} and B_{2} for a stationary renewal process, in which case $\left\{X_{n}\right\}$ is a sequence of independent identically distributed (i.i.d.) r.v.s., and for a stationary alternating renewal process, in which case $\left\{X_{2 n}\right\}$ and $\left\{X_{2 n+1}\right\}$ are independent sequences of i.i.d. r.v.s. Cox [1] has given an heuristic explanation in terms of a central limit property of the sums S_{n} as to why it should be true more generally that

$$
\begin{equation*}
A=\lim _{n \rightarrow \infty}\left(\lambda^{2} \operatorname{var} S_{n}\right) / n \tag{1.6}
\end{equation*}
$$

when this limit exists. The two special cases just mentioned, as well as a cluster process in which the parent process is a renewal process (cf. Daley [3]), are consistent with (1.6).

The key property that enables us to proceed when $\left\{X_{n}\right\}$ are i.i.d. r.v.s. (and, by reduction to this renewal process case, for the alternating renewal process) is that Wald's itdentity can be applied to the random sums

$$
\begin{align*}
& \mathbf{E} S_{N(x)} \equiv \mathbf{E} \sum_{1}^{N(x)} X_{i}=\mathbf{E} X \mathbf{E} N(x)=\mathbf{E} X U(x), \tag{1.7}\\
& \mathbf{E} \sum_{1}^{N(x)} X_{i}^{2}=\mathbf{E} X^{2} \mathbf{E} N(x)=\mathbf{E} X^{2} U(x) . \tag{1.8}
\end{align*}
$$

Lorden [6] exploited this property to study the excess r.v.

$$
\begin{equation*}
R(x) \equiv S_{N(x)}-x, \tag{1.9}
\end{equation*}
$$

showing (amongst other results) that

$$
\begin{gather*}
\int_{0}^{x} \mathbf{E} R(u) \mathrm{d} u=\frac{1}{2} \mathbf{E} X^{2} U(x)-\frac{1}{2} \mathbf{E} R^{2}(x)= \\
=\frac{1}{2} \mathbf{E} X^{2}(\lambda x+\lambda \mathbf{E} R(x))-\frac{1}{2} \mathbf{E} R^{2}(x), \tag{1.10}\\
\int_{0}^{x} \mathbf{E} R^{2}(u) \mathrm{d} u=\frac{1}{3} \mathbf{E} X^{3} U(x)-\frac{1}{3} \mathbf{E} R^{3}(x), \tag{1.11}
\end{gather*}
$$

where in the last form of $(1.10),(1.7)$ has been used.

Substituting from (1.7) inside the integral of (1.10), we have

$$
\begin{equation*}
\int_{0}^{x} 2(U(u)-\lambda u) \mathrm{d} u=\lambda^{2} \mathbf{E} X^{2}(x+\mathbf{E} R(x))-\lambda \mathbf{E} R^{2}(x) . \tag{1.12}
\end{equation*}
$$

It now follows from (1.4) that the variance function, V_{r} say, for a stationary renewal process satisfies

$$
\begin{align*}
& V_{r}(x)-\left(\lambda^{2} \operatorname{var} X\right) \lambda x=\lambda^{2} \mathbf{E}\left\{R(x)\left(\lambda \mathbf{E} X^{2}-R(x)\right)\right\} \leqslant \\
& \left.\quad \leqslant \lambda^{2}\left(\lambda \mathbf{E} X^{2}\right)^{2} / 4 \quad \text { (all } x\right), \tag{1.13}
\end{align*}
$$

since $y(a-y) \leqslant a^{2} / 4$ for real a and all real y.
Lorden [6] also showed that when $\mathbf{E} X^{3}<\infty$,

$$
\begin{equation*}
\left.\mathbf{E} R^{2}(x) \leqslant \frac{4}{3} \lambda \mathbf{E} X^{3} \quad \text { (all } x\right), \tag{1.14}
\end{equation*}
$$

from which it follows with (1.13) that

$$
\begin{equation*}
-\frac{4}{3} \mathbf{E}(\lambda X)^{3} \leqslant V_{r}(x)-\operatorname{var}(\lambda X) \lambda x \leqslant\left(\frac{1}{2} \mathbf{E}(\lambda X)^{2}\right)^{2} . \tag{1.15}
\end{equation*}
$$

The upper bound in (1.15) is the best possible, because for a stationary deterministic renewal process (e.g. example 1a of Daley [2]), $\operatorname{var}(\lambda X)=0$ and

$$
\begin{equation*}
V_{r}(x)=\{\lambda x\}(1-\{\lambda x\}) \leqslant \frac{1}{4} \tag{1.16}
\end{equation*}
$$

where for any real $y,\{y\}$ denotes its fractional part. For renewal processes for which X has a non-lattice distribution, it is known (see e.g. Smith [1]) that

$$
\begin{equation*}
V_{r}(x)=\operatorname{var}(\lambda X) \lambda x+\frac{1}{2}\left(\mathbf{E}(\lambda X)^{2}\right)^{2}-\frac{1}{3} \mathbf{E}(\lambda X)^{3}+o(1) \quad(x \rightarrow \infty), \tag{1.17}
\end{equation*}
$$

indicating that the lower bound at (1.15) may not be the best possible. Indeed, we give in Section 3 a lower bound that is tighter than (1.15).

2. Stationary alternating renewal process

Let F_{1}, F_{2} be the d.f.s of the generic r.v.s. $X_{1}^{\prime}, X_{2}^{\prime}$ defining an alternating renewal process. Every second point in such a process constitutes a regenerative epoch for the process, with lifetimes distributed like

$$
\begin{equation*}
X_{c} \equiv X_{1}^{\prime}+X_{2}^{\prime} \tag{2.1}
\end{equation*}
$$

which has as its d.f.

$$
\begin{equation*}
F_{c}(x) \equiv\left(F_{1} * F_{2}\right)(x)=\int_{0}^{x} F_{1}(x-y) \mathrm{d} F_{2}(y) . \tag{2.2}
\end{equation*}
$$

This embedded renewal process has as its renewal function

$$
\begin{equation*}
U_{c}(x) \equiv \sum_{0}^{\infty} F_{c}^{n^{*}}(x), \tag{2.3}
\end{equation*}
$$

so the expectation function U_{a} for an alternating renewal process whose first interval is distributed like X_{1}^{\prime} with probability $\frac{1}{2}$ each for $i=1,2$, is given by

$$
\begin{equation*}
U_{a}=U_{c}+\frac{1}{2}\left(U_{c} * F_{1}+U_{c} * F_{2}\right)=U_{c}+U_{c} * F \tag{2.4}
\end{equation*}
$$

where the d.f. F is given by

$$
\begin{equation*}
F=\frac{1}{2}\left(F_{1}+F_{2}\right) \tag{2.5}
\end{equation*}
$$

and corresponds to a r.v. X_{a} say. Writing

$$
\lambda_{c}^{-1}=\mathbf{E} X_{c}, \quad \lambda^{-1}=\int_{0}^{\infty} x \mathrm{~d} F(x)=\mathbf{E} X_{a}=\frac{1}{2} E\left(X_{1}^{\prime}+X_{2}^{\prime}\right),
$$

so that

$$
\begin{equation*}
\lambda=2 \lambda_{c}, \tag{2.6}
\end{equation*}
$$

it follows from (1.4) that provided both X_{1}^{\prime} and X_{2}^{\prime} are strictly positive r.v.s., a stationary alternating renewal process with generic lifetime r.v.s. $X_{i}^{\prime}(i=1,2)$ has its variance function V_{a} given by

$$
\begin{align*}
& V_{a}(x)=\lambda \int_{0}^{x}\left[2\left(U_{a}(u)-\lambda u\right)-1\right] \mathrm{d} u= \\
& \quad=\int_{0}^{x}\left[2\left[U_{c}(u)+\left(U_{c} * F\right)(u)-2 \lambda_{c} u\right)-1\right] \mathrm{d} u . \tag{2.7}
\end{align*}
$$

The simple inequality $\left(U_{c} * F\right)(x) \leqslant U_{c}(x)$ enables us to use the excess r.v. R_{c} for the embedded renewal process in writing

$$
\begin{align*}
& V_{a}(x) \leqslant \lambda \int_{0}^{x}\left[4 \lambda_{c} \mathbf{E} R_{c}(u)-1\right] \mathrm{d} u= \\
& \quad=\left(2 \lambda_{c}^{2} \mathbf{E} X_{c}^{2}-1\right) \lambda x+2 \lambda \lambda_{c} \mathbf{E}\left\{R_{c}(x)\left(\lambda_{c} \mathbf{E} X_{c}^{2}-R_{c}(x)\right)\right\} \\
& \quad \leqslant\left(2 \operatorname{var}\left(\lambda_{c} X_{c}\right)+1\right) \lambda x+\left(\mathbf{E}\left(\lambda_{c} X_{c}\right)^{2}\right)^{2} \tag{2.8}
\end{align*}
$$

as in Section 1. However, substitution of the excess r.v. R_{c} into (2.7) leads to an inequality with the coefficient of λx giving the exact asymptotic behavior of $V_{a}(x)$ for large x, as we now show.

$$
\begin{align*}
& U_{a}(x)-\lambda_{a} x=\lambda_{c}+\lambda_{c} \mathbf{E} R_{c}(x)+\int_{0}^{x} \lambda_{c}\left[(x-u)+\mathbf{E} R_{c}(x-u)\right] \mathrm{d} F(u)-2 \lambda_{c} x= \\
& =\lambda_{c} \mathbf{E} R_{c}(x)+\lambda_{c}\left[x-\mathbf{E} X_{a}+\mathbf{E}\left(X_{a}-x\right)_{+}\right]+\int_{0}^{x} \lambda_{c} \mathbf{E} R_{c}(x-u) \mathrm{d} F(u)-\lambda_{c} x \\
& =\lambda_{c} \mathbf{E} R_{c}(x)+\int_{0}^{x} \lambda_{c} \mathbf{E} R_{c}(x-u) \mathrm{d} F(u)+\lambda_{c} \mathbf{E}\left(X_{a}-x\right)_{+}-\frac{1}{2} . \tag{2.9}
\end{align*}
$$

Thus,

$$
\begin{align*}
& \lambda \int_{0}^{x}\left[2\left(U_{a}(u)-\lambda u\right)-1\right] \mathrm{d} u= \\
& \quad=2 \lambda \int_{0}^{x}\left[\lambda_{c} \mathbf{E} R_{c}(u)+\int_{0}^{x-u} \lambda_{c} \mathbf{E} R_{c}(x-u-v) \mathrm{d} F(v)+\lambda_{c} \mathbf{E}\left(X_{a}-u\right)_{+}-1\right] \mathrm{d} u \tag{2.10}
\end{align*}
$$

where we have used the fact that $\int_{0}^{x} g(u) \mathrm{d} u=\int_{0}^{x} g(x-u) \mathrm{d} u$. Examining (2.10) term by term,

$$
\begin{align*}
& 2 \lambda \int_{0}^{x} \lambda_{c} \mathbf{E} R_{c}(u) \mathrm{d} u=\lambda \lambda_{c}^{2} \mathbf{E} X_{c}^{2}\left(x+\mathbf{E} R_{c}(x)\right)-\lambda \lambda_{c} \mathbf{E} R_{c}^{2}(x) \leqslant \\
& \quad \leqslant \lambda_{c}^{2} \mathbf{E} X_{c}^{2} \cdot \lambda x+\lambda \lambda_{c} \cdot \frac{1}{4}\left(\lambda_{c} \mathbf{E} X_{c}^{2}\right)^{2} \tag{2.11}\\
& 2 \lambda \int_{0}^{x} \mathrm{~d} u \int_{0}^{x-u} \lambda_{c} \mathbf{E} R_{c}(x-u-v) \mathrm{d} F(v)= \\
& \quad=\lambda \lambda_{c} \int_{0}^{x}\left[\lambda_{c} \mathbf{E} X_{c}^{2}\left(x-v+\mathbf{E} R_{c}(x-v)\right)-\mathbf{E} R_{c}^{2}(x-v)\right] \mathrm{d} F(v) \\
& \quad \leqslant \lambda_{c}^{2} \mathbf{E} X_{c}^{2} \lambda x+\lambda \lambda_{c} \frac{1}{4}\left(\lambda_{c} \mathbf{E} X_{c}^{2}\right)^{2}-\lambda \lambda_{c}^{2}\left(\mathbf{E} X_{a}-\mathbf{E}\left(X_{a}-x\right)_{+}\right) \tag{2.12}\\
& 2 \lambda \int_{0}^{x}\left(\lambda_{c} \mathbf{E}\left(X_{a}-u\right)_{+}-1\right) \mathrm{d} u=\lambda \lambda_{c}\left(\mathbf{E} X_{a}^{2}-\mathbf{E}\left(X_{a}-x\right)_{+}^{2}\right)-2 \lambda x \tag{2.13}
\end{align*}
$$

Combining (2.11), (2.12) and (2.13),

$$
\begin{align*}
& V_{a}(x) \leqslant 2\left(\lambda_{c}^{2} \mathbf{E} X_{c}^{2}-1\right) \lambda x+\left(\mathbf{E}\left(\lambda_{c} X_{c}\right)^{2}\right)^{2}+ \\
& \quad+\lambda \lambda_{c}\left[\mathbf{E} X_{a}^{2}-\mathbf{E}\left(X_{a}-x\right)_{+}^{2}-\lambda_{c} \mathbf{E} X_{c}^{2}\left(\mathbf{E} X_{a}-\mathbf{E}\left(X_{a}-x\right)_{+}\right)\right] \leqslant \tag{2.14}\\
& \quad \leqslant \lambda^{2}\left(\frac{1}{2} \operatorname{var} X_{c}\right) \lambda x+\left(\mathbf{E}\left(\lambda_{c} X_{c}\right)^{2}\right)^{2}+\frac{1}{2} \lambda_{c}^{2} \mathbf{E} X_{a}^{2} \tag{2.15}
\end{align*}
$$

The last term in (2.15) can be replaced by the smaller quantity

$$
\begin{equation*}
\lambda \lambda_{c}\left(\mathbf{E}\left(\frac{1}{2}\left(X_{1}^{\prime}-X_{2}^{\prime}\right)\right)^{2}\right)^{2} / \mathbf{E} X_{a}^{2} \tag{2.16}
\end{equation*}
$$

because on examining the coefficient of $\lambda \lambda_{c}$ in (2.14), we can write

$$
\mathbf{E}\left(X_{a}-x\right)_{+}^{2} \geqslant\left[\mathbf{E} X_{a}^{2} /\left(\mathbf{E} X_{a}\right)^{2}\right]\left(\mathbf{E}\left(X_{a}-x\right)_{+}\right)^{2}
$$

(see Daley [4]) so the terms that depend on x are bounded above by

$$
\begin{align*}
& {\left[\mathbf{E} X_{\alpha}^{2} /\left(\mathbf{E} X_{a}\right)^{2}\right] \mathbf{E}\left(X_{a}-x\right)_{+}\left(\lambda_{c} \mathbf{E} X_{c}^{2}\left(\mathbf{E} X_{a}\right)^{2} / \mathbf{E} X_{a}^{2}-\mathbf{E}\left(X_{a}-x\right)_{+}\right) \leqslant} \\
& \quad \leqslant \frac{1}{4}\left[\left(\mathbf{E} X_{a}\right)^{2} / \mathbf{E} X_{a}^{2}\right]\left(\lambda_{c} \mathbf{E} X_{c}^{2}\right)^{2}, \tag{2.17}
\end{align*}
$$

and recalling that $\mathbf{E} X_{c}^{2}=2\left(\mathbf{E} X_{a}^{2}+\mathbf{E} X_{1}^{\prime} \mathbf{E} X_{2}^{\prime}\right)$, (2.16) follows on substituting (2.17) and simplifying.

By using the inequality at (1.14), and reviewing the steps yielding the inequalities at (2.11) and (2.12), it follows that

$$
\begin{equation*}
V_{a}(x) \geqslant \lambda^{2}\left(\frac{1}{2} \operatorname{var} X_{c}\right) \lambda x-2 \lambda \lambda_{c}\left(\frac{4}{3}\right) \mathbf{E}\left(\lambda_{c} X_{c}\right)^{3}-\frac{1}{2} \lambda_{c}^{2} \mathbf{E} X_{a}^{2} \tag{2.18}
\end{equation*}
$$

The last term can be reduced as at (2.16) and the term involving the third moment can also be reduced by methods similar to those in Section 3 applied to the renewal process variance lower bound at (1.15).

Two special cases of (2.15) (or, (2.15) with the refinement at (2.16)) deserve to be considered:
(1) a renewal process, so that X_{1}^{\prime} and X_{2}^{\prime} are identically distributed like X, say;
(2) a renewal-like process of doublets in which $X_{1}^{\prime}=\varepsilon \ll X_{2}^{\prime} \equiv X$ say, for some small $\varepsilon>0$.

In case (1), $\frac{1}{2} \operatorname{var} X_{c}=\operatorname{var} X, \mathbf{E}\left(\lambda_{c} X_{c}\right)^{2}=\frac{1}{4} \lambda^{2}\left(2 E X^{2}+2(\mathbf{E} X)^{2}\right)$, and

$$
\lambda \lambda_{c}\left(\mathbf{E}\left(\frac{1}{2}\left(X_{1}^{\prime}-X_{2}^{\prime}\right)\right)^{2}\right)^{2} / \mathbf{E} X_{a}^{2}=\frac{1}{2} \lambda^{2}\left(\frac{1}{2} \operatorname{var} X\right)^{2} / \mathbf{E} X^{2}
$$

so (2.15) implies that

$$
\begin{equation*}
V_{r}(x)-\lambda^{2} \operatorname{var} X \lambda x \leqslant \frac{1}{4}\left(\lambda^{2} \mathbf{E} X^{2}+1\right)^{2}+\frac{1}{8}\left(\lambda^{2} \operatorname{var} X\right)^{2} /\left(\lambda^{2} \mathbf{E} X^{2}\right) \tag{2.19}
\end{equation*}
$$

which is to be compared with the tight bound (1.13).
In case (2), examining the limit as $\varepsilon \downarrow 0, \lambda^{-1}=\frac{1}{2} \mathbf{E} X, \frac{1}{2} \operatorname{var} X_{c}=\frac{1}{2} \operatorname{var} X, \mathbf{E}\left(\lambda_{c} X_{c}\right)^{2}=$ $\frac{1}{4} \lambda^{2} \mathbf{E} X^{2}, \mathbf{E} X_{a}^{2}=\frac{1}{2} \mathbf{E} X^{2}$ and $\mathbf{E}\left(\frac{1}{2}\left(X_{1}^{\prime}-X_{2}^{\prime}\right)\right)^{2}=\frac{1}{4} \mathbf{E} X^{2}$, so (2.15) implies for this process that

$$
\begin{equation*}
V_{a}(x)-\lambda^{2}\left(\frac{1}{2} \operatorname{var} X\right) \lambda x \leqslant\left(\lambda^{2} \mathbf{E} X^{2}\right)^{2} / 16+\lambda^{2} \mathbf{E} X^{2} / 16 \tag{2.20}
\end{equation*}
$$

Now the expectation function for this process equals $\frac{1}{2}\left\{2 U_{c}(x)+\left(2 U_{c}(x)-1\right)\right\}$, so substitution in (1.4) yields

$$
\begin{align*}
& V_{a}(x)=2 \lambda \int_{0}^{x}\left[2\left(U_{c}(u)-\lambda_{c} u\right)-1\right] \mathrm{d} u \leqslant \\
& \quad \leqslant 4\left\{\left(\lambda_{c}^{2} \operatorname{var} X_{c}\right) \lambda_{c} x+\frac{1}{4}\left(\lambda_{c}^{2} \mathbf{E} X_{c}^{2}\right)^{2}\right\} \\
& =\lambda^{2}\left(\frac{1}{2} \operatorname{var} X\right) \lambda x+\left(\lambda^{2} \mathbf{E} X^{2}\right)^{2} / 16 \tag{2.21}
\end{align*}
$$

Comparison of inequalities (2.20) and (2.21) indicates that, in (2.15), the second term cannot be tightened: any further tightening to be effected must be either in (2.16) or in the step at (2.12) which replaces $\int_{0}^{x} \mathrm{~d} F(v)$ by 1 for all x.

3. Refinements of the lower bound

The lower bound at (1.15) is obtained via the steps $\lambda^{2} \mathbf{E}\left\{R(x)\left(\lambda \mathbf{E} X^{2}-R(x)\right)\right\} \geqslant$
$-\lambda^{2} \mathbf{E} R^{2}(x) \geqslant-\frac{4}{3} \mathbf{E}(\lambda X)^{3}$. If however we write

$$
\begin{align*}
& \lambda^{2} \mathbf{E}\left\{R(x)\left(\lambda \mathbf{E} X^{2}-R(x)\right)\right\} \geqslant-\lambda^{2} \mathbf{E}\left\{R(x)\left(R(x)-\lambda \mathbf{E} X^{2}\right)_{+}\right\}= \\
& \quad=-\lambda^{2} \int_{\lambda \mathbf{E} X^{2}}^{\infty} y\left(y-\lambda \mathbf{E} X^{2}\right) \mathrm{d} \mathbf{P}\{R(x) \leqslant y\} \\
& \quad=-\lambda^{2} \int_{\lambda \mathbf{E} X^{2}}^{\infty}\left(2 y-\lambda \mathbf{E} X^{2}\right) \mathbf{P}\{R(x)>y\} \mathrm{d} y, \tag{3.1}
\end{align*}
$$

the possibility arises of using an upper bound on the tail of the distribution of $R(x)$. In the case of renewal processes, Lorden's [6] Theorem 4 can be tightened to show that

$$
\begin{equation*}
\sup _{x} \mathbf{P}\{R(x)>y\} \leqslant \lambda \mathbf{E}(2 X-y ; X>y) \quad(\text { all } y \geqslant 0) \tag{3.2}
\end{equation*}
$$

(though, we would add, this tightening, which involves the argument y for $0<y<$ $\lambda \mathbf{E} X^{2} \geqslant \sup _{x} \mathbf{E R}(x)$, is of no concern in the application to (3.1)). Hence the lower bound, in place of (1.15),

$$
\begin{align*}
- & \lambda^{3} \int_{\lambda \mathbf{E} X^{2}}^{\infty}\left(2 y-\lambda \mathbf{E} X^{2}\right) \mathrm{d} y \int_{y}^{\infty}(2 x-y) \mathrm{d} F(x)= \\
& =-\lambda^{3} \int_{b}^{\infty}\left[\frac{4}{3}(x-b)^{3}+\frac{5}{2} b(x-b)^{2}+b^{2}(x-b)\right] \mathrm{d} F(x) \quad\left(b \equiv \lambda \mathbf{E} X^{2}\right) \\
& =-\frac{4}{3} \lambda^{3} \mathbf{E}\left[\left(X-\lambda \mathbf{E} X^{2}\right)+\left(X^{2}-\frac{1}{8}\left(X \lambda \mathbf{E} X^{2}+\left(\lambda \mathbf{E} X^{2}\right)^{2}\right)\right)\right] \tag{3.3}
\end{align*}
$$

We note in passing that for a stationary deterministic renewal process (see around (1.16) above), this lower bound is zero, and therefore this lower bound (3.3) is sharp.

A refinement of a different kind stems from the inequality, valid for renewal processes, that

$$
\begin{align*}
& \mathbf{E} R^{2}(x) \leqslant \mathbf{E} R^{2}(u)+\mathbf{E} R^{2}(x-u)+2 \mathbf{E} R(u) \mathbf{E} R(x-u) \leqslant \\
& \quad \leqslant \mathbf{E} R^{2}(u)+\mathbf{E} R^{2}(x-u)+2 \lambda \mathbf{E} X^{2} \mathbf{E} R(u) \tag{3.4}
\end{align*}
$$

Lorden's method of deducing (1.14) shows that for all $x \geqslant 0$,

$$
\begin{align*}
& x \mathbf{E} R^{2}(x)-\left(\lambda \mathbf{E} X^{2}\right)^{2}(x+\mathbf{E} R(x))+\lambda \mathbf{E} X^{2} \mathbf{E} R^{2}(x) \leqslant \\
& \quad \leqslant \frac{2}{3}\left[\lambda \mathbf{E} X^{3}(x+\mathbf{E} R(x))-\mathbf{E} R^{3}(x)\right] \tag{3.5}
\end{align*}
$$

in which use of $\mathbf{E} R^{3}(x) \geqslant \mathbf{E} R(x) \mathbf{E} R^{2}(x)$ and $\mathbf{E} R(x) \leqslant \lambda \mathbf{E} X^{2}$ leads to

$$
\begin{equation*}
\mathbf{E} R^{2}(x) \leqslant \frac{2}{3} \lambda \mathbf{E} X^{3}+\left(\lambda \mathbf{E} X^{2}\right)^{2} . \tag{3.6}
\end{equation*}
$$

This inequality is a refinement of (1.14) only when X has a long tail; it is of interest in supporting the suggestion stemming from the asymptotic form of $V_{r}(x)$ at (1.17) that the coefficient $\frac{4}{3}$ of the third moment at (1.15) or from (3.3) is too large.

4. The Palm-Khinchin equation for the variance function

The object of this section is to indicate an elementary derivation of eq. (1.4) when the interval lengths X_{n} may be zero, that is, the corresponding strictly stationary point process $N_{s}(\cdot)$ need not be orderly.

As in section 7.2 of Daley and Vere-Jones [5], let

$$
\begin{equation*}
\pi_{i}=\lim _{h \downarrow 0} \mathbf{P}\left\{N_{s}(0, h]=i \mid N_{s}(0, h]>0\right\} \tag{4.1}
\end{equation*}
$$

and for those i for which $\pi_{i}>0$, set

$$
\begin{equation*}
Q_{j \mid i}(x)=\lim _{h \downarrow 0} \mathbf{P}\left\{N_{s}(0, x] \leqslant j \mid N_{s}(-h, 0]=i\right\} \tag{4.2}
\end{equation*}
$$

setting $Q_{i \mid i}(\cdot)=0$ when $\pi_{i}=0$. Define

$$
\begin{align*}
& \lambda^{*}=\lim _{h \downarrow 0} \mathbf{P}\left\{N_{s}(0, h]>0\right\} / h, \tag{4.3}\\
& \dot{m}=\sum_{i=1}^{\infty} i \pi_{i} \tag{4.4}
\end{align*}
$$

so that by the generalized Korolyuk equation,

$$
\begin{equation*}
\mu \equiv \mathbf{E} N_{s}(0,1]=\lambda^{*} m \tag{4.5}
\end{equation*}
$$

In this notation, what we seek to show is that

$$
\begin{equation*}
V(x)=\mu \int_{0}^{x}[2(U(u)-\mu u)-1] \mathrm{d} u . \tag{4.6}
\end{equation*}
$$

It should be noted that

$$
\begin{equation*}
\mathbf{P}\left\{\#\left\{n=0, \pm 1, \ldots: S_{n}=0\right\}=i\right\}=i \pi_{i} / m \tag{4.7}
\end{equation*}
$$

and since (cf. (1.3)) $U(x)=\mathbf{E}\left(\#\left\{n=0,1, \ldots: S_{n} \leqslant x\right\}\right)$, we can also write

$$
\begin{equation*}
\mathbf{E}\left(\not \#\left\{n=0, \pm 1, \ldots:\left|S_{n}\right| \leqslant x\right)=2 U(x)-1\right. \tag{4.8}
\end{equation*}
$$

Finally with

$$
\begin{equation*}
U_{i}(x)=\lim _{h \downarrow 0} \mathbf{E}\left(N_{s}(0, x] \mid N_{s}(-h, 0]=i\right)=\sum_{j=0}^{\infty}\left(1-Q_{j \mid i}(x)\right) \tag{4.9}
\end{equation*}
$$

when $\pi_{i}>0, U_{i}(x)=0$ otherwise,

$$
\begin{equation*}
2 U(x)-1=\sum_{i=1}^{\infty}\left(i \pi_{i} / m\right)\left(i+2 u_{i}(x)\right) \tag{4.10}
\end{equation*}
$$

By using the relations

$$
\mathbf{P}\left\{N_{s}(0, x] \leqslant j, N_{s}(-h, 0]=i\right\}=\lambda^{*} \pi_{i} Q_{j \mid i}(x) h+\mathrm{o}(h) \quad(h \downarrow 0)
$$

and the monotonicity of $Q_{j \mid i}(x)$ in j and x, it is not difficult to deduce that

$$
\begin{align*}
1 & -P_{j}(x) \equiv \mathbf{P}\left\{N_{s}(0, x]>j\right\}=\lambda^{*} \int_{0}^{x} \sum_{i=1}^{\infty} \pi_{i}\left(Q_{j \mid i}(u)-Q_{j-i \mid i}(u)\right) \mathrm{d} u= \\
& =\lambda^{*} \sum_{i=1}^{\infty} \pi_{i} \int_{0}^{x}\left[\left(1-Q_{j-i \mid i}(u)\right)-\left(1-Q_{j \mid i}(u)\right)\right] \mathrm{d} u . \tag{4.11}
\end{align*}
$$

Now

$$
\begin{aligned}
& \sum_{j=1}^{\infty} 2 j\left(1-P_{j}(x)\right)=\mathbf{E}\left(N_{s}(0, x]\left(N_{s}(0, x]-1\right)\right)= \\
& \quad=V(x)+(\mu x)^{2}-\mu x,
\end{aligned}
$$

so by monotone convergence,

$$
\begin{align*}
& V(x)+(\mu x)^{2}-\mu x= \\
& =\lambda^{*} \sum_{i=1}^{\infty} \pi_{i} \int_{0}^{x} \lim _{k \rightarrow \infty} \sum_{j=1}^{k}\left[2 j\left(1-Q_{j-i \mid i}(u)\right)-2 j\left(1-Q_{j \mid i}(u)\right)\right] \mathrm{d} u . \tag{4.12}
\end{align*}
$$

For those i for which $\pi_{i}>0$, taking $k>i$, the integrand equals

$$
\begin{aligned}
& \sum_{j=1}^{i-1} 2 j+\sum_{j=0}^{k-i} 2(j+i)\left(1-Q_{j \mid i}(u)\right)-\sum_{j=0}^{k} 2 j\left(1-Q_{i \mid i}(u)\right)= \\
& \quad=i(i-1)+2 i \sum_{j=0}^{k-i}\left(1-Q_{j \mid i}(u)\right)-2 \sum_{j=k-i+1}^{k} j\left(1-Q_{j \mid i}(u)\right) \\
& \quad \rightarrow i(i-1)+2 i U_{i}(u) \quad(k \rightarrow \infty)
\end{aligned}
$$

provided only that $U_{i}(u)$ defined at (4.9) is finite, for its finiteness and the monotonicity in j of $Q_{i \mid i}(u)$ for fixed u ensures that $1-Q_{i \mid i}(u)=\mathrm{o}\left(j^{-1}\right)(j \rightarrow \infty)$ by a Tauberian theorem. Thus

$$
\begin{aligned}
& V(x)+(\mu x)^{2}-\mu x=\lambda^{*} \sum_{i=1}^{\infty} i \pi_{i} \int_{0}^{x}\left(i-1+2 U_{i}(u)\right) \mathrm{d} u= \\
& =\lambda^{*} m \int_{0}^{x}(2 U(x)-2) \mathrm{d} u=\mu \int_{0}^{x}(2 U(u)-2) \mathrm{d} u
\end{aligned}
$$

which is equivalent to (4.6).

Acknowledgment

It is a pleasure to thank Professor David Cox for asking about bounds on $V_{r}(x)$ and for the reference concerning (1.6), and Professor Ross Leadbetter for his interest.

References

[1] D.R. Cox, Some models for series of events, Bull. Inst. Internat. Statist. 40 (1963) 737-746.
[2] D.J. Daley, Weakly stationary point processes and random measures, J. Roy. Statist. Soc. Ser. B 33 (1971) 406-428.
[3] D.J. Daley, Asymptotic properties of stationary point processes with generalized clusters, Z. Wahrs. 21 (1972) 65-76.
[4] D.J. Daley, Inequalities for moments of tails of random variables, with a queueing application, Z. Wahrs. 41 (1977) 139-143.
[5] D.J. Daley and D. Vere-Jones, A summary of the theory of point processes, in: P.A.W. Lewis, ed., Stochastic Point Processes: Statistical Analysis, Theory, and Applications (Wiley, New York, 1972) 299-383.
[6] G. Lorden, On excess over the boundary, Ann. Math. Statist. 41 (1970) 520-527.
[7] W.L. Smith, On the cumulants of renewal processes, Biometrika 46 (1959) 1-29. [Corrigenda, 502]

[^0]: * Work done while Visiting Professor, Statistics Department, University of Wyoming, and partially supported by Office of Naval Research Contract N00014-75-C-0809.

