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For the variance of stationary renewal and alternating renewal processes N, ( · ) the pape r 
establishes upper and lower bounds of the form 

- B1 ~ varN,(O,x] - Ah ~ B2 (O < x < oo), 

where A = EN, (O, 1 ], with constants A, B 1 and 8 2 that depend on the first three moments of the 
interval distributions for the processes concerned. These results are consistent with the value of 
the constant A for a general stationary point process suggested by Cox in 1963 [ l ]. 
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1. Introduction, notation and bounds for the renewal process 

Let {Xn}, n = 0, ± L, . .. , be a strictly stationary sequence of non-negative 
random variables (r.v.s.), with EX,, = A- 1 > 0 and EX;, < oo. Define the partial sums 
{S,,} by 

So = O, S" = S,, _,+Xn = X,+···+X,, (n = l ,2, ... ), 

S- 11 - I = s_,, - x _,, = - (Xo+ ... + x _n) (n = 0, 1, ... ). 
(1.1) 

Set 

N(x) = inf{n:Sn > x} (all x ~ O), (1.2) 

and call its expectation the expectation function 

U(x) = EN(x). (1.3) 

The sequence of r.v.s. Xn is a generic stationary sequence of interval r.v.s. for some 
strictly stationary point process, Ns( · ) say, for which the variance of the number of 
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points in an interval of length x is given by 

V(x) =var Ns(O , x] = A (x {2( U(u )- AU )-1} du 
Jo (1.4) 

(e.g. Daley [2] when X; > 0 a.s., and more generally, see Section 4 below). Our 
interest lies in using (1.4) to find expressions of the form 

- B 1 ~ V(x) - Ah ~ 8 2 (all x;;:,: 0) (1.5) 

for non-negative constants A, B1i B2 to be expressed in terms of parameters of the 
sequence {Xn}, assuming of course that {Xn} satisfies such conditions as will ensure 
the existence of such constants. However, we have not found any such general 
results: we have found A, B 1 and B2 for a stationary renewal process, in which case 
{Xn} is a sequence of independent identically distributed (i.i.d.) r.v.s., and for a 
stationary alternating renewal process, in which case {X2n} and {X2n+ 1} are 
independent sequences of i.i.d . r.v.s . Cox [1] has given an heuristic explanation in 
terms of a central limit property of the sums Sn as to why it should be true more 
generally that 

A = Jim (,\ 2 var S,.)/n (1.6) 
n-ro 

when this limit exists. The two special cases just mentioned, as well as a cluster 
process in which the parent process is a renewal process (cf. Daley [3]), are 
consistent with ( 1.6 ). 

The key property that enables us to proceed when {X,,} are i.i.d. r.v.s. (and, by 
reduction to this renewal process case, for the alternating renewal process) is that 
Wald's !Uentity can be applied to the random sums 

N(x) 
ESN(x) = E L X, = EXEN(x) = EXU(x), 

I 

N(x) 

E L x~ = EX2EN(x) = EX 2 U(x). 
I 

Lorden [6] exploited this prope rty to study the excess r.v. 

R(x) = SN(x) - x, 

showing (amongst other results) that 

r ER(u)du = ~EX2 U(x) - !ER 2(x) = 

= ! EX2(h + ,\ ER(x)) - ! ER 2(x), 

( x ER 2(u)du = ~EX3 U(x) - ~ER 3(x), 
Jo 

where in the last form of ( 1.10), (I. 7) has been used . 

(1. 7) 

(1.8) 

( 1.9) 

( 1.10) 

(1.11) 
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Substituting from (1. 7) inside the integral of (1.10), we have r 2(U(u)-Au) du = A 2EX\x + ER(x)) - A ER\x). 
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(1.12) 

It now follows from (1.4) that the variance function , V, say, for a stationary renewal 
process satisfies 

V,(x)-(A 2 var X)Ax = A 2E{R(x)(AEX2 - R(x))} :s;; 

:s;;,\ 2(AEX2
)
2 /4 (all x), 

(l.13) 

since y(a-y):s;;a 2/4 for real a and all real y. 
Lorden [ 6] also showed that when EX3 <co, 

ER2(x) ,,;;;;~AEX3 (all x), (l.14) 

from which it follows with (1.13) that 

-~E(AX)3 :s;; V,(x)-var(AX)Ax,,;;;; (~E(AX)2)2. (l.15) 

The upper bound in (l.15) is the best possible, because for a stationary 
deterministic renewal process (e.g. example la of Daley [2]), var(AX) = 0 and 

V,(x) = {Ax}(l -{Ax}):s;;t (1.16) 

where for any real y, { y} denotes its fractional part. For renewal processes for which 
X has a non-lattice distribution, it is known (see e.g. Smith [1]) that 

V,(x) = var(AX)Ax + i{E(AX)2
)

2 - 1E(AX)3 +o(1) (x ~ ), (1.17) 

indicating that the lower bound at (1 .15) may not be the best poss ible. Indeed, we 
give in Section 3 a lower bound that is tighte r than (1.15). 

2. Stationary alternating renewal process 

Let Fi. F2 be the d.f .s of the generic r.v.s. x;, X2 defining an alternating renewal 
process. Every second point in such a process constitutes a regenerative epoch for 
the process, with lifetimes distributed like 

which has as its d.f. 

Fc(x) = (F1 * F2)(x) = (x F1(x - y)dF2 (y). Jo 
This embedded renewa l process has as its renewal function 

00 

" II• ) Uc(x) = '-- F c (x , 
0 

(2. l) 

(2 .2) 

(2 .3) 
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so the expectation function Ua for an alternating renewal process whose first 
interval is distributed like x; with probability! each for i = 1, 2, is given by 

(2.4) 

where the d.f. F is given by 

(2.5) 

and corresponds to a r.v. Xa say. Writing 

.A - 1 = f' x dF(x) = EXa =!E(X; +X2), 

so that 

(2.6) 

it follows from (1.4) that provided both x; and X2 are strictly positive r.v.s., a 
stationary alternating renewal process with generic lifetime r.v.s. x; (i = l, 2) has 
its variance function Va given by 

V"(x) = .Ar [2(Ua(u) - Au) - 1] du = 

= r [2[Uc(u)+(Uc * F)(u) - 2.Acu) - I] du. (2.7) 

The simple inequality (Uc* F)(x) :o;;; Uc(x) enables us to use the excess r.v . Re for 
the embedded renewal process in writing 

V"(x) :o;;; Ar [4.AcERc(u) - 1] du = 

= (2A ;Ex;- l)Ax +2AAc E{Rc(x)(Ac EX~- Rc(x))} 

,,;;; (2 var(AcXc)+ l)Ax + (E(AcXc)2
)

2 (2.8) 

as in Section l. However, substitution of the excess r.v. Re into (2 .7) leads to an 
inequality with the coefficient of Ax giving the exact asymptotic behavior of Va (x) 
for large x, as we now show. 

Ua(x) - Aax = Ac + AcERc(x)+ r Ac[(x - u)+ ERc(x - u)] dF(u) - 2.Acx = 

= X.cERc(x)+ Ac[x - EXa + E(Xa - x)+]+ r .AcERc(x - u) dF(u) - .Acx 

= AcERc(x)+ r AcERc(x - u)dF(u)+AcE(Xa - x)+-! . (2.9) 
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Thus, 

Ar [2(Ua(u) - Au) - 1] du = 

= 2A r [ AcERc(it)+ r-u AcERc(x - u -v) dF(v)+ AcE(X0 - u)+- 1 J du 

(2.10) 

where we have used the fact that J; g(u) du = £ g(x - u) du. Examining (2 .10) term 
by te1m, 

2A r AcERc(u) du = u ;Ex ;(x + ERc(x)) - AAcER ;(x ) oS 

oS A ;Ex; · Ax+ U c · *(AcE X ; )2; 

2A r du r-" AcERc(x - u - v) dF(v) = 

= H e r [AcEX;(x - v+ ERc(x - v)) - ER ;(x - v)] dF(v) 

oS A; Ex ; Ax + AA c*(AcEX; )2 - H ; (EXa - E(Xa - x)+); 

2A r (A cE(Xa - u)+- 1) du = Hc(EX~ - E(X0 - x)~) -2Ax. 

Combining (2. 11), (2. 12) and (2.13), 

Va(x) oS 2(A ;Ex ;- 1 )Ax+ (E(AcXc)2)2 + 

+ H e [EX~ - E(Xa - x )~ - Ac EX; (EXa - E(Xa - x )+ )] :!S 

oS A 2(t var Xe )Ax + (E(AcXc )2
)

2 + h ~ EX~ . 

The last term in (2.1 5) can be replaced by the smalle r quan tity 

because on examining the coefficient of AAc in (2. 14 ), we can write 

E(Xa - x)~ ;;i!: lEX~/(EXa )2](E(Xa - x)+)2 

(see Daley [4]) so the terms that depend on x are bounded above by 

[EX~/ (EXa )2]E(Xa - x )+(Ac EX; (EX0 )2 /EX~ - E(X0 - x )+) oS 

oS 4((EXa)2 /EX~)(AcEX;)2, 

(2.11) 

(2. 12) 

(2.13) 

(2.14) 

(2. 15) 

(2.16) 

(2. 17) 

and recalling that EX;= 2(EX~ + EXIEX~). (2.16) follows on substituting (2.17) 
and simplifying. 
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By using the inequality at (1 .14 ), and reviewing the steps yielding the inequalities 
at (2.11) and (2.12), it follows that 

(2.18) 

The last term can be reduced as at (2.16) and the term involving the third moment 
can also be reduced by methods similar to those in Section 3 applied to the renewal 
process variance lower bound at (1 .15). 

Two special cases of (2.15) (or, (2. l 5) with the refinement at (2.16)) deserve to be 
considered: 

(1) a renewal process, so that x; and X~ are identically distributed like X, say; 
(2) a renewal -like process of double ts in which x; = 6 « x~ = x say, for some 

smalls > 0. 
In case {l ), ! var Xe = var X, E(AeXe )2 = iA 2(2EX2 + 2(EX)2), and 

AAc(E(i (X; - xrn2
)

2 /EX~ = i A 2 (4 var X)2 /EX2
, 

so (2. 15) implies that 

V,(x ) - A 2 var XAx ,,.;; t(A 2EX2 + I )2 +k(A 2 var X)2 /(A 2 EX2
), (2 . ] 9) 

which is to be compared with the tight bound (l.13). 
In case (2), examining the limit as dO, A- 1 =iEX, har Xe = har X, E(AeXc)2 = 

iA 2EX2
, EX~ =4EX2 and E(i (X; - X2))2 = iEX2

, so (2.15) implies for this process 
that 

(2 .20) 

Now the expectation function for this process equals 4{2 Uc(x)+(2Uc(x) - l)}, so 
substitution in (1.4) yields 

Va(x) = 2A r [2(Uc(u) - Acu) - l] du ..;; 

,,.;; 4{(A ; var Xe )Acx +!(A ;Ex;)2
} 

= A 2 (4 var X)Ax +(A 2EX2
)
2 / 16. (2.2 1) 

Comparison of inequalities (2.20) and (2 .2 1) indicates that, in (2.15), the second 
term cannot be tightened: any further tightening to be effected must be either in 
(2.16) or in the step at (2.12) which replaces J~ dF( v) by I for all x. 

3. Refinements of the lower bound 

The lower bound at (1.15) is obtained via the steps A 2E{R(x)(AEX2 - R(x))} ~ 
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- A 2ER 2(x ) ;:a. -1E(AX)3
. If however we write 

A 2E{R(x )(AEX2
·- R(x ))} ;;;;. - A 2E{R(x)(R(x) - AEX2)+} = 

= - A2 f00 

y(y - AEX2)dP{R(x ) ~ y } 
AEX 2 

= - A 2 f00 

(2y - A EX2)P{R(x ) > y} dy, 
AEX 2 

(3. 1) 

the possibility arises of using an uppe r bound on the tail of the distribution of R (x ). 

ln the case of renewal processes, Lorden's [6] Theorem 4 can be tightened to show 
that 

supP{R(x ) > y } ~ AE(2X - y;X > y) (all y ;:a. O) (3.2) 
x 

(though, we would add , this tightening, which involves the argument y for O < y < 
AEX 2 ;;a. supx ER(x ), is of no concern in the application to (3. 1)). Hence the lower 
bound, in place of (1.15), 

- A3 f
00 

(2y - AEX 2)dy f (2x-y) dF(x ) = 
JAEX 2 y 

= - A3 f, 00 

[1 (x - b)3 + ~b(x - b)2+ b 2 (x - b)] dF(x ) (b = AEX 2
) 

" 
(3.3) 

We note in passing that for a stationary de te rministic renewal process (see around 
(l.16) above), this lower bound is zero , and therefore this lower bound (3.3) is 
sharp. 

A re finement of a diffe rent kind stems from the inequality, valid for renewal 
processes, that 

ER 2(x)~ ER 2(u) + ER 2(x - u) +2ER(u)ER(x - u) ~ 

~ ER 2(u) + ER 2(x - u) +2A EX 2 ER(u). 

Lorden's me thod of deducing (l.14) shows that for a ll x ;;a. O, 

xER 2(x )- (A EX 2
)

2(x + ER(x )) + A EX2ER 2 (x ) ~ 

(3.4) 

~~[A EX3(x + ER(x )) - ER 3 (x )], (3.5) 

in which use of ER 3(x ) ;;a. ER(x )ER\x ) and ER(x ) ~ A EX 2 leads to 

ER 2(x ) ~iAEX3 + (AEX2)2. (3.6) 

This inequality is a re finement of ( l. 14) only when X has a long tail ; it is of interest 
in supporting the suggestion stemming from the asymptotic form of V,(x) at (l .17) 
that the coe fficient 1 of the third moment at (1 .15) or from (3.3) is too large. 
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4. The PaJm-Khinchin equation for the variance function 

The object of this section is to indicate an elementary derivation of eq. (1.4) 
when the interval lengths Xn may be zero, that is, the corresponding strictly 
stationary point process Ns( · ) need not be orderly. 

As in section 7.2 of Daley and Vere-Jones [5], let 

7T; = lim P{N, (O, h] = i I N, (O, h] > O}, 
/o!O 

and for those i for which 'TT; > 0, set 

Oi1;(x) = lim P{N, (O, x] ~ j I N, ( - h, O] = i}, 
h!O 

setting q1;( · ) = 0 when 7T; = 0. De fine 

A* = lim P{N,(O, h] > O}/ h, 
'1!0 

00 . ,~ . 
m = t.. l'TT;, 

; - 1 

so that by the generalized Korolyuk equation, 

µ = EN..(O, l] = A *m. 

In this notation, what we seek to show is that 

V(x) = µ r [2(U(u) - µu) - l]du. 

It should be noted that 

P{ # { n = 0, ± I , ... : S,, = O} = i} = i7T;/ m , 

and since (cf. (1. 3)) U(x) = E( # {n = 0, 1, ... : S,, ~ x}), we can also write 

E( #{n = O, ± 1, .. . : IS,,l ~ x) = 2U(x) - l. 

Finally with 
00 

U;(x) = limE(i\i'., (O,xJIN.( - h,O] = i) = L (1 - 0i1;(x)) 
h!O j = O 

when 7T; > 0, U; (x ) = 0 otherwise, 

00 

2 U(x) - 1 = l: (i7T;/m)(i+ 2u;(x)) . 
1- 1 

By using the relations 

P{N, (O, x] ~ j. N. ( - h, OJ = i} = A *7T;q 11 (x )h +o(h) (hiO) 

(4.1) 

(4 .2) 

(4.3 ) 

(4.4) 

(4.5) 

(4 .6) 

(4.7) 

(4.8) 

(4.9) 

(4 .10) 
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and the monotonicity of Qi\;(x) in j and x, it is not difficult to deduce that 

Now 

(x oo 

1 - Pi(x) = P{Ns(O,x]> j} = .A * Jo ;~1 1T;(Oi\;(u) - q_; \; (u))du = 

oo (x 
= .A * ; ~ i 7T; Jo [(1 - Oi- i\;(u)) - (1 - Qi\;(u))] du. 

00 

2: 2j(l - Pi(x )) = E(N:,(O, x ](Ns(O, x ] - 1)) = 
j=I 

= V(x)+(µ.x) 2 - µ.x , 

so by monotone convergence, 

V(x)+(µ.x) 2 - µ.x = 

= A* I 7T; r !~m J I [2j(1 - 0j- i\i(u)) - 2j(1 - Qi li (u))] du. 

For those i for which 7T; > 0 , taking k > i, the integrand equals 

i - 1 k- i k 

L 2j+ L 2(j+i)(1 - Qi\; (u)) - L: 2j(1 - Qi\;(u)) = 
j = I j = O j = O 

k- i k 
= i(i - l)+ 2 i 2: (l - q ,;(u)) - 2 2: j(l - Qi\; (u)) 

j=O j- k- i+I 

~ i(i - l) + 2 iU;(u) (k ~ oo) 
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(4.11) 

(4.12) 

provided only that U;(u) de fined a t (4.9) is finite, for its finite ness and the mono
tonicity in j Of Qj\i(u) for fixed U e nsures that ] - Qili (u) = o(j- I) (j ~OO) by a 

Tauberian theorem. Thus 

V(x )+ (µ.x)2- µ.x = A* I i7T; r (i - 1+ 2 U;(u)) du = 

= A*m r (2 U(x) - 2 )du = µ. r (2 U(u) - 2 )du, Jo Jo 
which is equivalent to (4.6). 
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