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Abstract

In this work we present some classes of models whose the corresponding two coupled first-order nonlinear equations can
be put into a linear form, and consequently be solved completely. In these cases the so-called trial orbit method is completely
unnecessary. We recall that some physically important models as, for instance, the problem of tiling a plane with a network of
defects and polymer properties are in this class of models.

0 2005 Elsevier B.VOpen access under CC BY license.

PACS 11.27.+d; 11.30.Er

A rapid look at the history of physics is enough to differential equations can be reduced to the solution
lead anyone to conclude that, fortunately, the most part of corresponding first-order equations, the so-called
of the natural physical systems can be studied by using Bolgomol'nyi-Prasad—Sommerfield (BPS) topologi-
linear differential equations, with their good proper- cal solitong17], one can obtain a differential equation
ties like the superposition principle. Notwithstanding, relating the two coupled fields which, once solved,
there are some classes of important systems with areleads to the general orbit connecting the vacua of the
intrinsically nonlinear and, nowadays, there is a grow- model. In fact, the “trial and error” methods histori-
ing interest in dealing with such systeifis-16]. Un- cally arose as a consequence of the intrinsic difficulty
fortunately, as a consequence of the nonlinearity, in of getting general methods of solution for nonlinear
general we lose the capability of getting the complete differential equations. About two decades ago, Rajara-
solutions. In this work we show that for those sys- man[18] introduced an approach of this nature for the
tems in 14+ 1 dimensions, whose the second-order treatment of coupled relativistic scalar field theories

in 1+ 1 dimensions. His procedure was model inde-
pendent and could be used for the search of solutions
 E-mail address: dutra@feg.unesp.§A. de Souza Dutra). ir? arbitrary coupled scalar n_10(.jells in'_H'l dimen-
1 permanent institution. sions. However, the method is limited in terms of the
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generality of the solutions obtained and is convenient
and profitable only for some particular, but important,
cases[19]. Some years later, Bazeia and collabora-
tors [20] applied the approach developed by Rajara-
man to special cases where the solution of the nonlin-
ear second-order differential equations are equivalent
to the solution of corresponding first-order nonlinear
coupled differential equations. By the way, Bazeia and
collaborators wisely applied their solution to a vari-
ety of natural systems, since polymers up to domain
walls. In this work we are going to present a procedure
which is absolutely general when applied to systems
like those described if20], namely the BPS topolog-
ical solutions. Furthermore, we are going also to show
that many of the systems studied [20—25] can be
mapped into a first-order linear differential equation
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whereg; andy; are theith vacuum state of the model
[22].

In this case, one can easily see that solutions with
minimal energy of the second-order differential equa-
tion for the static solutions in + 1 dimensions, can
be solved through the corresponding first-order cou-
pled nonlinear equations

dx
-5 = W ) ) - = W ) ) 6
7e = We(@- 0 7 = Va (8.0 (6)
where W, = 3% and W, = 3% Here, it is impor-

tant to remark that the BPS solutions settle into vac-
uum states asymptotically. In other words, the vacuum
states act as implicit boundary conditions of the BPS
equations.

Now, instead of applying the usual trial-orbit ap-

and, as a consequence, can be solved in order to gefroach[20-25] we note that it is possible to write the

the general solution of the system. After that, we trace

some comments about the consequences coming from 44

these general solutions.

In order to deal with the problem, following the
usual procedure to get BP37] solutions for non-
linear systems, one can particularize the form of the
Lagrangian density

1 1
L=5(8M¢>2+5(a#x>2—w¢,x), (1)

by imposing that the potential must be written in terms

of a superpotential like
2 2
}<3W(¢,X)) +}(3W(¢,X)>' )

2 a¢p 2 ax

The energy of the so-called BPS states can be cal-
culated straightforwardly, giving

[+

Vg, x) =

1

2

d¢
dx

dx

E
B dx

2
2 2
> +W¢+Wxi|a

which lead us to

d d
+2<WX£+W¢d—¢>], 4)
and finally to
Ep=|W(;. xj) — W(di. xi)|- (5)

following equation
dx
X =—

;
W =3 ™

where the spatial differential element is a kind of in-
variant. So, one obtains that

Z—¢ = %. (8)
X Wx

This last equation is, in general, a nonlinear differ-
ential equation relating the scalar fields of the model.
Now, if one is able to solve it completely, the func-
tion ¢ (x) can be used to eliminate one of the fields, so
rendering Eq(6) uncoupled. Finally, this uncoupled
first-order nonlinear equation can be solved in general,
even if numerically.

From now on, we choose a particular model which
can be used for modeling a number of systd@#,
in order to exemplify the method in a concrete situa-
tion. In fact we will show that for this situation, E(B)
can be mapped into a linear differential equation, from
which it is possible to obtain the general solution. In
this case the superpotential is written as

A
W(g, x) = =4+ 5%+ ngx®, 9)
and Eq.(8) looks like
d¢ _ m¢*—D+ux? (10)

dx 2upx
At this point one can verify that, performing the
transformationp? = p + 1. The above equation can
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be written as
dp A

dx  nx

a typical inhomogeneous linear differential equation.
It is interesting to observe that its particular solution,

corresponds to the result usually presented in the lit-
erature[22]. The general solution is easily obtained,

giving

P=X, (11)

2 2
p(x) =9 —1=cox e 12)
for A #2u, and
¢% — 1= x?[InCx) + 1], (13)

for the A = 2u case, andg andc; are arbitrary inte-
gration constants. It is interesting to note the this last
particular situation was not taken into consideration in
the literature up to our knowledge. From now on, we
substitute these solutions in one of £§), and solve

it, so obtaining a generalized solution for the system.
In general it is not possible to solye in terms of¢
from the above solutions, but the contrary is always
granted. Here we will substitutg(x) in the equation
for the field x, obtaining

dy X %
— =42 1 — 2,
0 u«x\/ + cox (x—z;)x

(A #2u),
and
dx

dx

(14)

£2uxy/ 1+ x2[INGO +ea). Go=2u). (15)

In general we cannot have an explicit solution for
the above equations. However one can verify numeri-

cally that the solutions are always of the same classes.
Notwithstanding, some classes of solutions can be |, t5ct

written in closed explicit forms. First of all, we should
treat the system whaty = 0, because in this situation
we can solve analytically the system for any value of
A, apart from the cask = 2u. In this situation we get

2244 (x—x0)
x+(x) = 1 oot
2414 (x—x0)
x-(x)= m, (16)
"

with ¢ = —5+5—. For this choice of the parameters, the
. m :
solution always vanishes at the boundary$ +00).
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As a consequence, the corresponding kink solution for
the field¢, will be given by

B :tce4u(x—xo) +1
¢+ ()C) - ce4ﬂ«(x—x0) — 1’

¢+ £AH—x0)

¢ (x) ==
c

— hia—xo)’ (17)

which are essentially equivalent to those solutions ap-
pearing in[22], given in terms of tanfx). Let us now
discuss below two particular caseg # 0) where the
integration can be performed analytically up to the
end. Let us first consider the case were: 1, which

has as solutions

Q21 (x—x0)

X+ () = [coe2t(—x0) — 1]2 — Aehn(x—x0)’

Q21 (x—x0)

X_(.X) = [eZM(X*XO) — C0]2 _ 47 (18)

where we must impose thag < —2 in both solutions,

in order to avoid singularities of the field as can be
easily verified. Furthermore, both solutions vanishes
whenx — 4oo0, provided thatg # —2. On the other
hand the corresponding solutions for the figict) are
given by

(CS — 4o _ 1
[coe2h(—x0) — 1]2 — 4eAu(x—x0)’
4— C(Z) 4 A x—xo)
[e2h(x—x0) — ]2 — 4°

¢+ (x) =

¢ (x)= (19)

Here the first bonus coming from the complete ex-
act solution of Eq(6) comes when we deal with the
special case witleg = —2. It is remarkable that for
this precise value of the arbitrary integration constant,
an absolutely unexpected kink solution do appears.
it could never be obtained from the usually
used solution, whereg = 0 necessarily. In this spe-
cial solution, the fieldy is a kink with the following
asymptotic limits:y (—oo) = 0 andy (o0) = 1, and
¢4 (—00) = —1 andg, (c0) = 0, and correspondingly
X—(—00) =1 andy_(o0) =0, andgp_(—o0) =0 and
¢_(oc0) = 1, as it can be seen from an example of a
typical profile of this kink inFig. 1. Below we present
a plot of this kink, which we are going to call type B
kink, in contrast with the other cases where the field
x does not have a kink profile, which we call type A
kink (seeFig. 2). An interesting observation is that
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Fig. 1. Typical type B kink profile (foh. = ). The dotted line corresponds to the figld (x) and the solid line to the fielgd (x). Both were
calculated forg = —2.

Fig. 2. Typical type A kink profile (fon. = 1). The dotted line corresponds to the figdd (x) and the solid line to the fielgd (x). Both were
calculated foreg = —3.

the choicero = —2, is precisely the one which makes , () _ _ 2¢21(x=0)

the right-hand side of Eq(14) simply proportional \/[le4lu(x_)(0) +1]2—4C068#(X—X0)’
to x|1— x| = ¢x(1 — x), where is the sign func- 2
tion defined ag = (1 — x)/|1 — x|. It takes values

2 (x—x
+1 with ¢ = +1 being selected by boundary condi- »_(x)=— Ao , (20)
tions 0< x < 1 for the solutions appearing if18) VI1+ 2640012 — 16cq
and, in this situation, the equation is much easier to
solve. Infact, by performing the translatign= g+ 3, which have the same asymptotic behavior as that pre-
we recover a BPS superpotential for they*” model, sented in the previous cases for the type A kinks. In
—(B?—1/4). A similar situation will happens with the  other words, provided that # 1/16, only the fieldp
next example. will be a kink. Afterwards, as in the previous case, if

As the third particular case, we consider the situa- one wish to avoid intermediary singularities, one must
tion wherei = 4u. Now, the exact solutions look like  impose thatg < 1_16‘ Now, theg solutions will be writ-
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ten as whereGy(o) = 29| __». Obviously, there are no

. - d¢ :
4+ (160p — 1)eBG—0) arbitrary solutions for the above equation, but for that
0—

oy (x) = o)1 rE——t ones with exact solution we can get the corresponding

[2+ et :’ (] _)16"06 H exact two-field solitons. For instance, let us treat the
W(x—xg) __ .

b () = 16¢o —:4e;7x i 1 . 1) special case where

[142eM(—x0]2 — 16¢q dG($)
Once more, the particular choice of the integra- Gylo) = dé | _,2

tion parametety = 1—16, generates a type B kink, with o= 9

the asymptotic behavior given by (—oc) = 0 and _ 2ao+a10 +az0 ) i (26)

X+ (00) = —2, andg (—oo) = 1 and¢ (c0) = 0, and 2

correspondinglyy— (—oo) = —2 andy—(cc) =0,and  The solution will be given by a combination of Bessel

$—(—00) =0 andg_(occ) = 1. functions which, once substituted in the equation for

Itis interesting to calculate the energy of these two the field x, lead us to a hardly exactly solvable equa-
species of solitonic configurations. For this we use the tion, beyond some singularities which appear in the
superpotentiaf9) and substitute it in Eq5), and ob-  solution. So, we still here continue to work with the
serve that the type A kinks have an energy given by simpler linear case of this equation, wherg= 0,
EBPS= 41 and in the two cases considered above which furthermore permits us to write arbitrary solu-
(A = p andi = 4u) we obtainEEPS= 21. One could tions given by
interpret these solutions as representing two kinds of 2 ”
torsion in a chain, represented through an orthogonal 5 () = _a0 _ Npx® +e o (27)

o(X X",
set of coordinates andy. So that, in the planey x), ap  2(p—ay)
the type A kink corresponds to a complete torsion go- with G(¢) given by
ing from (—1, 0) to (0, 0) and the type B corresponds v
to a half torsion, where the system goes frosi, 0) G(p) = & [@ + ai ¢2]’ (28)
to (0, 1), in the case where\(= ) for instance. 2 LN (N+2

In what follows, we will study a more general |eaying us with the following potential
model, contemplating a number of particular cases
wh|c'h have been studied in the literature, |n'clud|ng thg Vg, x) = :_L¢2(N—1)a%¢4 + 201N pud?x2
previous and some other new ones. For this, we begin 2

by defining the superpotential + acz, + ,u2x2(4¢2 + NZXZ)
2a 24 Nux?), 29
W60 =56V P+ G, (22) + 2a0(arg”+ Nuxc') (29)

) ) ] with ¢; being the integration arbitrary constant, ad
which lead us to the following set of equations: anday are constants which characterize the physical
d¢ dG(p) ~ dy system. From above, it is easy to conclude that
= NN TR R = gy
dx do 2 dx u Niiy? 20y

(23) ¢:i/__°_zi+c,x7, (30)
So, the corresponding equation for the dependence of “ (1 —a1)
the field¢ as a function of the fielgt, is given by and, consequently we are left to solve the following

equation
dG _
d_(,b B d((:b) + %N(P(N l)X2

= : (24) d Nux? 2y N/2
dx o™ x —X—iu[—@ X ex ul} x. (31)

dx a1 2u—ay)
Now, performing the transformatien= ¢2 we get

At this point it is important to remark that many
do 2G4(0) 1 L .
o= Nx + T (25) models appearing in the literature can be cast as par-
X pot ) X ticular cases from the above general one. For instance
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Fig. 3. The functiorv, for M = 4 as a function of the fielgt, as defined in E(35).

if we take N = 1, we recover the models |, Il and Il  where ¢; is the arbitrary integration constant, and
of [22], and model | 0f20]. The case wher&/ =2 is T(a,z) = ["1@ Ve " dz, is the incomplete gamma
equivalent to the model 11 if20] and the model con-  function.

sidered in24]. Obviously, the case studied earlier in this work is

As a final comment we should say that one can even obtained from the above when one chookes- 2. On
make a bit generalization of the above exactly solved the other hand, we can get simpler solutions for other
two fields models. This could be done by starting with particular values of the paramet&f as, for instance

the superpotential M = 4, whose solution can be written as
"
Wiu (¢, 0 =G(@) + 58" x", (32) a
1
: . , . o) =xte [61+— (—2)] (35)
with G(¢) being the same appearing previously in 4 4 nx
the text. After manipulations similar to that one done
above, we end with the equation where E{z) = —f e dt, is the exponential inte-
gral function. It can be seen frofig. 3 that, apart
do (0 = <@>U(X)X<1M) + (2_N)X (33) from a small region close to the origin, it is asymptot-
dx K M ically similar to that of the case wit = 2, which
whereo = ¢2 + (ao) So|v|ng the above equat|on for Wwas discussed in some detail above in the text. This
arbitrary M, one ollz)tams that expression does not have any kind of singularity and
o approaches to zero when the figlddoes the same.
om0 ze—[z“jfw] Notwithstanding, the last part of the analysis of the
kinks needs to be done through evaluation of the equa-
P — tion
<ot o=
M N/2
x | 272 N x? dx _ ao
[ * o= l>(i>”[—(—) + om(x)} . (36)
X ai
2 2a1)((2 M)
x T TM=-2 u@2-M) which is not easy to be done analytically, so that one
@ M) (525) needs to make use of numerical techniques. We intend
aix M-2 . .. .
<7> } (34) to perform this analysis in a future work, looking for
n@2—M) new interesting features.
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