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a b s t r a c t

In this paper we address the 1/sij/


wjTj problem, for which we improve the time
complexities of searching the interchange, insertion and twist neighborhoods from O(n3)
to O(n2 log n). Further, we improve the time complexity of searching the insertion and
twist neighborhoods in which a candidate job is selected from among k jobs nearest to
the selected job from O(n2k) to O(nk log k + n2).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The 1/sij/


wjTj problem can be described as follows. We have n jobs that are all available for processing at time zero
on a continuously available single machine. The machine can process only one job at a time. Associated with each job j are
the processing time pj, due date dj, and weight wj. In addition, there is a setup time sij incurred when job j follows job i
immediately in the processing sequence. Let π = [π(1), π(2), . . . , π(n)] be a sequence of jobs, where k is the job index
of job π(k) in π . The completion time of job π(k) is defined as Cπ(k) =

k
l=1 (sπ(l−1),π(l) + pπ(l)), where π(0) = 0 is a

dummy job. Let Cπ(k) − dπ(k) be the lateness of job π(k), and Tπ(k) = (Cπ(k) − dπ(k))
+ be the tardiness of job π(k), where

(x)+ = max(x, 0). LetWT (π, k) =
k

l=1 wπ(l)Tπ(l) denote the partial weighted sum of tardiness of the first k jobs in π . The
goal is to find a sequence π that minimizes the objective function f (π) = WT (π, n).

The study of this problem iswell justified in practice because the neighborhood search is crucial and in general is themost
time-consuming step in the design of improvement algorithms. Therefore, it is worthwhile to improve the time complexity
of searching the most commonly used neighborhoods—interchange, insertion, and twist neighborhoods.

2. Literature review

Lawler [10] showed that the 1//


wjTj problem is strongly NP-hard. Since the incorporation of setup times complicates
the problem, the 1/sij/


wjTj problem is also strongly NP-hard. In addition, the unweighted version 1/sij/


Tj is strongly

NP-hard since 1/sij/Cmax is stronglyNP-hard (Pinedo [13]). Therefore, the heuristic approach iswell justified for 1/sij/


wjTj
and 1/sij/


Tj to obtain near-optimal schedules within a reasonable computation time.

Scheduling heuristic algorithms can be broadly classified into two categories: the constructive and the improvement
approaches. In the literature the best constructive algorithm for the 1/sij/


wjTj problem is Apparent Tardiness Cost with
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Setups algorithm (ATCS), whichwas proposed by Lee et al. [11]. Like other constructive heuristics, ATCS can derive a feasible
solution quickly but the solution quality is usually unsatisfactory, especially for large-sized problems. On the other hand,
the improvement heuristic can produce better solutions but with longer computational times. Among the improvement
algorithms for the 1/sij/


wjTj problem, Cicirello [2] developed four different improvement algorithms, including LDS

(limited discrepancy search), HBSS (heuristic-biased stochastic sampling), VBSS (value-biased stochastic sampling), and
VBSS-HC (hill-climbing using VBSS), to obtain solutions for a set of 120 benchmark problem instances each with 60 jobs.
Recently, an ant colony optimization algorithm has been used by Liao and Juan [12] to update most of these instances.

For the unweighted problem 1/sij/


Tj, several metaheuristic algorithms were proposed in the literature (see e.g.
[1,5–7,11,12,14,15]). Some of their embedded local search algorithms were based on the insertion or interchange moves.
Among the authors who studied this problem, França et al. [5] used a new memetic algorithm with a hybrid population
approach and developed some reduction rules to improve the average computation time for searching the interchange
and insertion neighborhoods. Gagné et al. [6,7] developed an ant colony optimization algorithm and a tabu-vns (variable
neighborhood search) hybrid algorithm for the problem and yielded competitive computation results. Rubin and Ragatz [14]
applied the genetic algorithmwith their developed crossover operatorwhile Tan andNarasimhan [15] proposed a simulated
annealing approach for the problem and tested it against a multiple start technique.

For the common due date problem 1/dj = d/


wjTj, Kellerer and Strusevich [8] developed a fully polynomial-
time approximation scheme (FPTAS) for the problem. The FPTAS is obtained by converting an especially designed
pseudopolynomial dynamic programming algorithm.

For the 1//


wjTj problem, Kolliopoulos and Steiner [9] designed a pseudopolynomial algorithm and transformed to an
FPTAS for the case where the weights are polynomially bounded. Ergun [3] used a special balanced tree data structure
to improve the search of swap neighborhood from O(n3) bound to O(n2 log n). Further, Ergun and Orlin [4] presented
an efficient algorithm for searching the insertion, interchange, and twist neighborhoods, improving the time complexity
from the previous O(n3) bound to O(n2). Their main idea is to use a set of piecewise linear convex functions to evaluate
the weighted sum of tardiness. In this paper we extended these ideas to develop neighborhood search algorithms for the
1/sij/


wjTj problem.

3. Neighborhoods

In this section we discuss the interchange, insertion, and twist neighborhoods for 1/sij/


wjTj. We present algorithms
for searching the interchange, insertion and twist neighborhoods in O(n2 log n) time.

3.1. The interchange neighborhood

The interchange neighborhood can be obtained by interchanging two jobs in different positions. Given a sequence
π = [α, π(i), β, π(j), γ ] with n jobs, and a pair of indices i and j (1 ≤ i < j ≤ n), the interchange neighborhood of π
by interchanging jobs in i and j can be expressed as

IC(π, i, j) = [α, π(j), β, π(i), γ ],

where α and γ respectively represent the partial sequences consisting of the first i − 1 jobs and last n − j jobs in π , and
β is a partial sequence consisting of jobs between i and j. The size of the interchange neighborhood is n(n − 1)/2. For any
given sequence with n jobs, it takes O(n) time to calculate the weighted sum of the tardiness. Thus O(n3) time is required to
search the interchange neighborhood using a straightforward algorithm, i.e., interchange a pair of jobs and then calculate the
weighted tardiness directly until all of the neighborhoods have been searched. In the followingwe first develop an algorithm
for searching the interchange neighborhood in O(n2 log n) time.

The technique used in this paper was developed by Ergun and Orlin [4]. Let LateList be a list of all jobs sorted in non-
increasing order of lateness with respect to a given sequence π . Using a standard O(n log n) sorting algorithm such as
Mergesort, the LateList can be obtained in O(n log n) time. Let Bk(t) denote the weighted sum of tardiness if we schedule
only jobs π(k), π(k + 1), . . . , π(n) and in that order, and if job π(k) starts at time t . That is,

Bk(t) =


n

l=k

wπ(l)(t + Cπ(l) − Cπ(k−1) − sπ(k−1),π(k) − dπ(l))
+ 1 ≤ k ≤ n,

0 otherwise.

For any given k, Bk(t) is a piecewise linear convex function of t , and its slope changes only at t = dπ(l) −Cπ(l) +Cπ(k−1) +

sπ(k−1),π(k) for k + 1 ≤ l ≤ n, at which at least one more job becomes tardy. Ergun and Orlin [4] referred to these values as
breakpoints, denoted here by BP1, . . . , BPr . It is clear that the value of Cπ(k−1) + sπ(k−1),π(k) is constant and thus the order
of these breakpoints coincides with the order of the jobs on LateList. Therefore, these breakpoints can be determined, in
order, in O(n) time. Further, the function Bk(t) can be expressed as a set of linear functions in the intervals [BPk, BPk+1] for
k ∈ {1, . . . , r − 1}. Note that it takes O(n) time to determine all of the breakpoints and the sets of linear functions.

Now we show how to use this technique to calculate the weighted tardiness of IC(π, i, j) for 1 ≤ i < j ≤ n. To simplify,
let π ′

= IC(π, i, j), i.e., from π to π ′, π(i) (π(j)) equals to π ′(j) (π ′(i) ) whereas the others remain invariable. We further
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Fig. 1. A graphical representation for ∆π(i,j) , δπ(i−1,i,i,i+1) , and δπ(i−1,i,j,j+1) in π .

define a new variable ∆π(i,j) to represent the time span between the starting time of π(i) and the completion time of π(j),
which is shown as follows, see Fig. 1:

∆π(i,j) =


Cπ(j) − Cπ(i) + pπ(i) 1 ≤ i ≤ j ≤ n,
0 otherwise.

To extend ∆π(i,j), we define another symbol δπ(l,i,j,m) as the ‘‘prior’’ setup from any other job π(l) to π(i) plus the time
span ∆π(i,j) plus the ‘‘posterior’’ setup from π(j) to another job π(m), that is,

δπ(l,i,j,m) =


sπ(l),π(i) + ∆π(i,j) + sπ(j),π(m) i ≤ j,
sπ(l),π(m) otherwise.

In the case i = j, δπ(l,i,i,m) = sπ(l),π(i) + ∆π(i,i) + sπ(i),π(m) = sπ(l),π(i) + pπ(i) + sπ(i),π(m).
Using the above notation, the total weighted sum of tardiness of π ′ can be formulated as follows:

f (π ′) = [WT (π ′, i − 1)] + [wπ ′(i)(Cπ ′(i) − dπ ′(i))
+
] + [wπ ′(j)(Cπ ′(j) − dπ ′(j))

+
]

+ [Bi+1(t
tmpIC(π,i,j)
i+1 ) − Bj(t

tmpIC(π,i,j)
j )] + [Bj+1(t

IC(π,i,j)
j+1 )]

= [WT (π, i − 1)] + [wπ ′(i)(t
tmpIC(π,i,j)
i+1 − sπ ′(i),π ′(i+1) − dπ ′(i))

+
]

+ [wπ ′(j)(t
IC(π,i,j)
j+1 − sπ ′(j),π ′(j+1) − dπ ′(j))

+
]

+ [Bi+1(t
tmpIC(π,i,j)
i+1 ) − Bj(t

tmpIC(π,i,j)
j )] + [Bj+1(t

IC(π,i,j)
j+1 )]. (1)

where

t tmpIC(π,i,j)
i+1 = Cπ(i−1) + sπ ′(i−1),π ′(i) + pπ ′(i) + sπ ′(i),π ′(i+1),

t tmpIC(π,i,j)
j = t tmpIC(π,i,j)

i+1 + ∆π ′(i+1,j−1) + sπ ′(j−1),π(j),

t IC(π,i,j)
j+1 = Cπ(i−1) + sπ ′(i−1),π ′(i) + pπ ′(i) + δπ ′(i,i+1,j−1,j) + pπ ′(j) + sπ ′(j),′π (j+1).

Notation t tmpIC(π,i,j)
i+1 and t tmpIC(π,i,j)

j respectively represent the starting times of the i+1-th job and the j-th jobwith respect
to a temporary sequence tmpIC(π, i, j) = [α, π ′(i), β, π(j), γ ] = [π ′(1), . . . , π ′(i), π(i+1) . . . , π(j−1), π(j), . . . , π(n)],
which consists of the first part of π ′ and the last part of π . Comparing to π , π(i) in tmpIC(π, i, j) has been replaced by π ′(i)
whereas the others remain the same. Using tmpIC(π, i, j), one can calculate the weighted sum of tardiness of β easily with
the following way. Recall that Bk(t) represents the weighted sum of tardiness of the last n− k+ 1 jobs in a given sequence.
The fourth term in (1), the weighted tardiness of the last n − i jobs (i.e., the job set [β, π(j), γ ]) minus that of the last
n− j+1 jobs (i.e., the job set [π(j), γ ]) in tmpIC(π, i, j), hence represents the weighted tardiness of β in π ′. Besides, t IC(π,i,j)

j+1
represents the starting time of the j+ 1-th job in π ′, and thus the last term in (1) is the weighted tardiness of γ . Finally, the
first three terms respectively represent the weighted tardiness of α, π ′(i), and π ′(j). Fig. 2 illustrates the weighted tardiness
contributed from each term.

We now consider the special case i = j − 1. It is easy to see that the weighted tardiness of β should be 0, which
implies t tmpIC(π,i,j)

j = t tmpIC(π,i,j)
i+1 . To see this, t tmpIC(π,i,j)

j = t tmpIC(π,i,j)
i+1 + ∆π ′(i+1,j−1) + sπ ′(j−1),π(j) = t tmpIC(π,i,j)

i+1 since

∆π ′(i+1,j−1) = ∆π ′(j,j−1) = 0, and since sπ ′(j−1),π(j) = sπ ′(i),π(j) = sπ(j),π(j) = 0. Now let us consider t IC(π,i,j)
j+1 in (1). Since

δπ ′(i,i+1,j−1,j) = δπ ′(i,j,j−1,j) = sπ ′(i),π ′(j), we have t IC(π,i,j)
j+1 = Cπ(i−1) + sπ ′(i−1),π ′(i) + pπ ′(i) + sπ ′(i),π ′(j) + pπ ′(j) + sπ ′(j),π ′(j+1),

which is actually the starting time of π ′(j + 1). In other cases of i < j − 1, we note that ∆π ′(i+1,j−1) + sπ ′(j−1),π(j) =

∆π(i+1,j−1) + sπ(j−1),π(j) since π ′(j − 1) = π(j − 1).
To calculate WT (π, i − 1) for all i, a total of O(n) time is required. If the values of Bi+1(t

tmpIC(π,i,j)
i+1 ), Bj(t

tmpIC(π,i,j)
j ),

Bj+1(t
IC(π,i,j)
j+1 ), andWT (π, i − 1) are calculated in advance, then f (π ′) can be evaluated in constant time.

Theorem 1. For a given sequence π with n jobs, it takes O(n2 log n) time to compute f (IC(π, i, j)) for all 1 ≤ i < j ≤ n.

Proof. For a given i, let T tmpIC(π,i,∗)
i+1 := {t tmpIC(π,i,l)

i+1 : i < l ≤ n} be the set consisting of all possible starting times of
the i + 1-th job in tmpIC(π, i, l). T tmpIC(π,i,∗)

i+1 can be sorted by any standard sorting technique in O(n log n) time, and thus
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Fig. 2. A graphical representation for the weighted tardiness of π ′ and the relation between IC(π, i, j) and tmpIC(π, i, j). Note that the only difference is
the j-th job.

Fig. 3. Computing time with different number of jobs for interchange neighborhood search.

determining which interval [BPk, BPk+1] the value of t tmpIC(π,i,l)
i+1 falls in, in order, takes O(n) time. Hence, Bi+1(t

tmpIC(π,i,l)
i+1 ) for

all t tmpIC(π,i,l)
i+1 ∈ T tmpIC(π,i,∗)

i+1 can be evaluated with a total of O(n log n) time.
For a given j, let T tmpIC(π,∗,j)

j := {t tmpIC(π,l,j)
j : 1 ≤ l < j} be the set consisting of the starting time of the j-th job in

tmpIC(π, i, l), and T IC(π,∗,j)
j+1 := {t IC(π,l,j)

j+1 : 1 ≤ l < j} be the set consisting of the starting time of the j+ 1-th job in IC(π, l, j).

Similarly, both Bj(t
tmpIC(π,l,j)
j ) for all t tmpIC(π,l,j)

j ∈ T tmpIC(π,∗,j)
j and Bj+1(t

IC(π,l,j)
j+1 ) for all t IC(π,l,j)

j+1 ∈ T IC(π,∗,j)
j+1 can be evaluated

with a total of O(n log n) time.
Summing up for all 1 ≤ i < j ≤ n, one can evaluate the values of Bi+1(t

tmpIC(π,i,l)
i+1 ) for all t tmpIC(π,i,l)

i+1 ∈ T tmpIC(π,i,∗)
i+1 ,

Bj(t
tmpIC(π,l,j)
j ) for all t tmpIC(π,l,j)

j ∈ T tmpIC(π,∗,j)
j , and Bj+1(t

IC(π,l,j)
j+1 ) for all t IC(π,l,j)

j+1 ∈ T IC(π,∗,j)
j+1 in O(n2 log n) time. �

Here, we present an implementation of the interchange neighborhood search for single machine tardiness scheduling
with sequence-dependent setups. We use the three problem coefficients (τ , R, η) to constitute the dimensions of the
problem instances (see Lee et al. [11]). In our study we set τ = 0.3, R = 0.25, η = 0.25. Instances with n =

50, 100, 200, . . . , 4900, 5000 were randomly generated, and for each job j (j = 1, . . . , n), an integer processing time pj
is generated from the uniform distribution on [50, 150] and the weight wj is generated from the uniform distribution on
[0, 10]. Themean processing time p̄ is therefore 100. Themean setup time s̄ is then determined by η and the setup times are
uniformly distributed over the interval [0, 2s̄]. The due dates are generated from a composite uniform distribution based on
R and τ .With probability τ the due date is uniformly distributed over the interval [d̄−Rd̄, d̄] andwith probability (1−τ) over
the interval [d̄, d̄+ (Cmax − d̄)R]. We coded in C++ and run on an Intel Core 2 CPU (2.5 GHz) computer with 1.96 GB RAM. The
time to compute the total weighted tardiness of interchange neighborhood is shown in Fig. 3, and the experimental result
is consistent with the Theorem 1.

3.2. The insertion neighborhood

For a given sequence π , the insertion neighborhood can be obtained by extracting a job from its position and reinserting
it into another position. That is, given a pair of indices i and j (1 ≤ i, j ≤ n), we let π = [α, π(i), β, π(j), γ ] if i < j and
π = [α, π(j), β, π(i), γ ] if i > j. The insertion neighborhood of π by extracting π(i) and reinserting it into position j can
be expressed as

IS(π, i, j) =


[α, β, π(j), π(i), γ ] if i < j,
[α, π(i), π(j), β, γ ] if i > j.
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Fig. 4. A graphical representation for the weighted tardiness of IS(π, i, j). Note that ∆ = sπ(i−1),π(i+1) − δπ(i−1,i,i,i+1) .

Fig. 5. A graphical representation for the weighted tardiness of IS(π, i, j − 1).

Here we only consider the case i < j. The case i > j can be derived in a similar manner. Let us observe that

f (IS(π, i, j)) = [WT (IS(π, i, j), j − 2)] + [wπ(j−1)(Cπ(j−1) + ∆ − dπ(j−1))
+
] + [wπ(j)(Cπ(j) + ∆ − dπ(j))

+
]

+ [wπ(i)(Cπ(j) + ∆ + sπ(j),π(i) + pπ(i) − dπ(i))
+
] + [Bj+1(t

IS(π,i,j)
j+1 )], (2)

f (IS(π, i, j − 1)) =


[WT (IS(π, i, j − 1), j − 2)] + [wπ(j−1)(Cπ(j−1) + ∆ − dπ(j−1))

+
]

+[wπ(i)(Cπ(j−1) + ∆ + sπ(j−1),π(i) + pπ(i) − dπ(i))
+
]

+[Bj(t
IS(π,i,j−1)
j )] if i < j − 1,

f (π) if i = j − 1,

(3)

where

∆ = sπ(i−1),π(i+1) − δπ(i−1,i,i,i+1),

t IS(π,i,j−1)
j = Cπ(j−1) + ∆ + sπ(j−1),π(i) + pπ(i) + sπ(i),π(j),

t IS(π,i,j)
j+1 = Cπ(j) + ∆ + sπ(j),π(i) + pπ(i) + sπ(i),π(j+1).

We introduce a new notation ∆, which is used for adjusting the time span between α and β from π to IS(π, i, j), and
further define t IS(π,i,j−1)

j and t IS(π,i,j)
j+1 as the starting times ofπ(j) andπ(j+1) in IS(π, i, j−1) and IS(π, i, j), respectively. The

first and the last terms in (2) (and in (3)) respectively define the weighted tardiness of the first j − 2 and the last n − j (and
last n − j + 1) jobs in IS(π, i, j) (in IS(π, i, j − 1)). The second, third, and fourth terms in (2) define the weighted tardiness
of π(j − 1), π(j), and π(i) in IS(π, i, j). Similarly, the second and the third terms in (3) define the weighted tardiness of
π(j− 1) and π(i) in IS(π, i, j− 1). To clarify, the tardiness values contributed from each term in (2) and (3) are respectively
illustrated in Fig. 4 and Fig. 5.

Let us observe that the values ofWT (IS(π, i, j), j− 2) andWT (IS(π, i, j− 1), j− 2) are equal because the first j− 2 jobs
in IS(π, i, j) and IS(π, i, j − 1) are the same. Further, the second terms in (2) and (3) are identical. Therefore, from (2) and
(3) a recursion equation can be obtained as follows:
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Fig. 6. An example of the time span between πr (n − k + 2) and πr (n − k) in πr .

f (IS(π, i, j)) = f (IS(π, i, j − 1)) − [wπ(i)(Cπ(j−1) + ∆ + sπ(j−1)π(i) + pπ(i) − dπ(i))
+
]

+ [wπ(j)(Cπ(j) + ∆ − dπ(j))
+
] + [wπ(i)(Cπ(j) + ∆ + sπ(j),π(i) + pπ(i) − dπ(i))

+
]

− [Bj(t
IS(π,i,j−1)
j ) − Bj+1(t

IS(π,i,j)
j+1 )]. (4)

If Bj(t
IS(π,i,j−1)
j ) and Bj+1(t

IS(π,i,j)
j+1 ) are calculated in advance and the value of f (IS(π, i, j− 1)) is given, f (IS(π, i, j)) can be

calculated by performing (4) in constant time since the second, third, and fourth terms in (4) can be calculated in constant
time.
Theorem 2. For a given sequence π with n jobs, it takes O(n2 log n) time to compute f (IS(π, i, j)) for all i and j (1 ≤ i, j ≤ n).

Proof. Let T IS(π,∗,j)
j+1 := {t IS(π,l,j)

j+1 : 1 ≤ l < j} for a given j (1 < j ≤ n). T IS(π,∗,j)
j+1 can be sorted in non-decreasing order in

O(n log n). Hence, as in Theorem 1, Bj+1(t
IS(π,l,j)
j+1 ) for all t IS(π,l,j)

j+1 ∈ T IS(π,∗,j)
j+1 can be evaluated, in order, in O(n) time. Thus, for

all 1 < j ≤ n it takes O(n2 log n) time to evaluate the values of Bj+1(t
IS(π,l,j)
j+1 ) for all t IS(π,l,j)

j+1 ∈ T IS(π,∗,j)
j+1 . With these values,

Eq. (4) can be performed in constant time and thus f (IS(π, i, j) : i < j) for a given i can be evaluatedwith a total of O(n) time.
Summing up for all i, O(n2 log n) time is required to evaluate f (IS(π, i, j : i < j)), and so is to evaluate f (IS(π, i, j : i > j)). �

3.3. The twist neighborhood

The twist neighborhood can be obtained by taking a subset of the jobs and processing them in reverse order. That is,
given a sequence π = [α, π(i), π(i + 1), . . . , π(j − 1), π(j), γ ] and a pair of indices i and j (1 ≤ i < j ≤ n), the twist
neighborhood is

TW (π, i, j) = [α, π(j), π(j − 1), . . . , π(i + 1), π(i), γ ].

We now show how to search the twist neighborhood in O(n2 log n) time. We first sort jobs of TW (π, i, j) in non-
increasing order of lateness and store them in an ordered list RevLatenessList. Then, we reverse π (i.e., TW (π, 1, n))
to obtain πr = [γreverse, π(j), . . . , π(i), αreverse] and compute the completion times of jobs in πr as follows: Cπr (k) =k

l=1 (sπr (l−1),πr (l) + pπr (l)) for all k ∈ {1, . . . , n}, where πr(0) = 0 is a dummy job. Note that π(k) = πr(n − k + 1).
In addition, let Fk(t) be the weighted tardiness if we schedule only jobs πr(n − k + 1), πr(n − k + 2), . . . , πr(n) and if job
πr(n − k + 1) starts at time t . Thus,

Fk(t) =

n
l=n−k+1

wπr (l)(t + Cπr (l) − Cπr (n−k) − sπr (n−k),πr (n−k+1) − dπr (l))
+.

Fig. 6 illustrates an example of the time span between πr(n − k + 2) and πr(n − k) in πr .
The method for evaluating Fj(t) is similar to that for evaluating Bj(t). For a given j, Fj(t) is a piecewise linear convex

function of t and its slope changes only at t = dπr (l) − Cπr (l) + Cπr (n−j) + sπr (n−j),πr (n−j+1) for some l ∈ {n − j + 1, . . . , n}.
The order of the breakpoints agrees with the order of the jobs on RevLatenessList, so one can determine the breakpoints and
the linear functions on the intervals between these breakpoints, in order, in O(n) time.

Using this notation, the total weighted tardiness of sequence TW (π, i, j) for all i < j can be formulated as follows:

f (TW (π, i, j)) = [WT (π, i − 1)] + [Fj(t
tmpTW (π,i,j)
i ) − Fi−1(t

tmpTW (π,i,j)
j+1 )] + [Bj+1(t

TW (π,i,j)
j+1 )], (5)

where
t tmpTW (π,i,j)
i = Cπ(i−1) + sπ(i−1),π(j),

t tmpTW (π,i,j)
j+1 = t tmpTW (π,i,j)

i + δπr (n−j+1,n−i+1) + sπr (n−i+1),πr (n−i+2),

tTW (π,i,j)
j+1 = t tmpTW (π,i,j)

i + δπr (n−j+1,n−i+1) + sπ(i),π(j+1).

Notation t tmpTW (π,i,j)
i and t tmpTW (π,i,j)

j+1 respectively represent the starting times of the i-th job and the j + 1-th job with
respect to a temporary sequence tmpTW (π, i, j) = [α, π(j), π(j−1), . . . , π(i+1), π(i), αreverse], which consists of parts of
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Fig. 7. A graphical representation for the weighted tardiness of TW (π, i, j) and the relation between TW (π, i, j) and tmpTW (π, i, j).

π and TW (π, i, j). The second term in (5), the weighted tardiness of the last j jobs (i.e., the job set [π(j), . . . , π(i), αreverse])
minus that of the last i − 1 jobs (i.e., the job set [αreverse]) in tmpTW (π, i, j), represents the weighted tardiness of
[π(j), . . . , π(i)] in TW (π, i, j). The first and the last terms in (5) are the weighted tardiness contributed from α and γ .
Fig. 7 illustrates the weighted tardiness contributed from each term.
Theorem 3. For a given sequence π with n jobs, it takes O(n2 log n) time to compute f (TW (π, i, j)) for all 1 ≤ i < j ≤ n.

Proof. Let T tmpTW (π,i,∗)
i := {t tmpTW (π,i,l)

i : i < l ≤ n}. T tmpTW (π,i,∗)
i for a given i can be sorted in O(n log n) time; hence,

as in Theorem 1, Fj(t
tmpTW (π,i,l)
i ) for all t tmpTW (π,i,l)

i ∈ T tmpTW (π,i,∗)
i can be evaluated, in order, in O(n) time. Similarly, let

T tmpTW (π,∗,j)
j+1 := {t tmpTW (π,l,j)

j+1 : 1 ≤ l < j} and T TW (π,∗,j)
j+1 := {tTW (π,l,j)

j+1 : 1 ≤ l < j}. For a given j, a total of

O(n log n) time is required to evaluate Fi−1(t
tmpTW (π,l,j)
j+1 ) for all t tmpTW (π,l,j)

j+1 ∈ T tmpTW (π,∗,j)
j+1 and to evaluate Bj+1(t

TW (π,l,j)
j+1 )

for all tTW (π,l,j)
j+1 ∈ T TW (π,∗,j)

j+1 . Summing up for all i and j, the values of Fj(t
tmpTW (π,i,l)
i ) for all t tmpTW (π,i,l)

i ∈ T tmpTW (π,i,∗)
i ,

Fi−1(t
tmpTW (π,l,j)
j+1 ) for all t tmpTW (π,l,j)

j+1 ∈ T tmpTW (π,∗,j)
j+1 , and Bj+1(t

TW (π,l,j)
j+1 ) for all tTW (π,l,j)

j+1 ∈ T TW (π,∗,j)
j+1 can be evaluated with a

total of O(n2 log n) time. �

4. Extensions to restricted neighborhood

To reduce the computation time in a neighborhood search, one may restrict the set of candidate jobs because,
experimentally, it seldom occurs that the best candidate job is far from the select job. This neighborhood search version
is called the restricted neighborhood search, which has been implemented in [11]. In this section, we extend the developed
neighborhood search algorithms to the restricted versions of the insertion and twist neighborhoods.
Corollary 1. Given a sequence π with n jobs, it takes O(nk log k + n2) time to search the insertion neighborhood in which a
candidate job is selected from among k jobs nearest to the selected job.

Proof. Recall that in Theorem 2 the most time-consuming step is to sort the set T IS(π,∗,j)
j+1 := {t IS(π,l,j)

j+1 : 1 ≤ l < j} for a given

j (1 ≤ j ≤ n). However, the size of T IS(π,∗,j)
j+1 in this case has been restricted to at most k elements, implying that T IS(π,∗,j)

j+1

can be sorted in O(k log k) time. In addition, it takes O(n) to evaluate the value of B(
j t

IS(π,l,j)
j+1 ) for all t IS(π,l,j)

j+1 ∈ T IS(π,∗,j)
j+1 , in

order, and compute the recursion equation (4). Hence, for all j the restricted version of insertion neighborhood is searched
in O(nk log k + n2) time. �

Corollary 2. Given a sequence π with n jobs, it takesO(nk log k+n2) time to search the twist neighborhood inwhich a candidate
job is selected from among k jobs nearest to the selected job.

Proof. Similar to the proof of Corollary 1, for any fixed i and j, to sort T tmpTW (π,i,∗)
i , T tmpTW (π,∗,j)

j+1 , and T TW (π,∗,j)
j+1 with at

most k elements takes O(k log k) time, and to evaluate the values of Fj(t
tmpTW (π,i,l)
i ) for all t tmpTW (π,i,l)

i ∈ T tmpTW (π,i,∗)
i ,

Fi−1(t
tmpTW (π,l,j)
j+1 ) for all t tmpTW (π,l,j)

j+1 ∈ T tmpTW (π,∗,j)
j+1 , and Bj+1(t

TW (π,l,j)
j+1 ) for all tTW (π,l,j)

j+1 ∈ T TW (π,∗,j)
j+1 , respectively, takes O(n)

time. Hence, for all i and j the restricted version of twist neighborhood search is searched in O(nk log k + n2) time. �

5. Conclusion

In this paperwe have addressed the 1/sij/


wjTj problem, forwhichwe have improved the time complexity of searching
the interchange, insertion and the twist neighborhoods from O(n3) to O(n2 log n). We also have improved the restricted
version of insertion and twist neighborhoods from O(n2k) to O(nk log k + n2).
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