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As a novel class of lightweight and reticulated structures, tensegrities have found a diversity of techno-
logically significant applications. In this paper, we theoretically investigate the self-equilibrium and
super-stability of rhombic truncated regular polyhedral (TRP) tensegrities. First, the analytical solutions
are derived individually for rhombic truncated tetrahedral, cubic, octahedral, dodecahedral, and icosahe-
dral tensegrities. Based on these solutions, we establish a unified analytical expression for rhombic TRP
tensegrities. Then the necessary and sufficient condition that ensures the existence of a self-equilibrated
and super-stable state is provided. The obtained solutions are helpful not only for the design of self-
equilibrated and super-stable tensegrities but also for their applications in biomechanics, civil and aero-
space engineering.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Tensegrity, a structure based on the complementary equilib-
rium of axial tension and compression, is perceived as a potential
solution to many practical problems (Skelton and de Oliveira,
2009). In nature, tensegrity can be considered as a generic principle
in organisms ranging from molecules (Luo et al., 2008; Morrison
et al., 2011), cells (Holst et al., 2010; Stamenovic and Ingber,
2009) to tissues (Maina, 2007). In industry, tensegrity has a variety
of important applications in, for instance, the development of ad-
vanced materials (Fraternali et al., 2012), novel civil architectures
(Rhode-Barbarigos et al., 2010; Yuan et al., 2007), smart structures
and systems (Ali and Smith, 2010; Moored et al., 2011), and
deployable devices for aerospace technology (Sultan, 2009).

In the design of a tensegrity structure, two key steps, among
others, are self-equilibrium and stability analyses to determine
the conditions under which the structure will be self-equilibrated
and stable, respectively (Zhang et al., 2012). The existing self-
equilibrium analysis methods can be generally classified into two
categories, analytical and numerical. Analytical approaches can
be used only for simple tensegrities with high symmetry (e.g.
Murakami and Nishimura, 2001; Zhang and Ohsaki, 2012), while
numerical methods are often invoked for relatively complicated
tensegrities (e.g. Estrada et al., 2006; Li et al., 2010b; Pagitz and
Tur, 2009). The criterion of super-stability provides a sufficient
condition for the stability of a tensegrity structure consisting of
ll rights reserved.
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g).
conventional material elements with always positive axial stiffness
(Guest, 2011; Schenk et al., 2007; Zhang and Ohsaki, 2007). In the
present paper, only the static stability is considered, excluding the
instability problems caused by non-conservative disturbances. A
tensegrity structure is said to be super-stable if it is stable for
any level of force densities satisfying the self-equilibrium condi-
tions without causing element material failure (Connelly, 1999;
Juan and Tur, 2008). For the self-equilibrated and super-stable
tensegrities, increasing the level of force densities normally tend
to stiffen and stabilize them (Connelly and Back, 1998). This prop-
erty is important for the constructions and applications of
tensegrities.

In practice, a tensegrity structure is generally modelled as a set
of weightless axial compressive elements (called ‘bars’ or ‘struts’)
and tensile elements (‘strings’ or ‘cables’) connected by frictionless
spherical joints (Juan and Tur, 2008). One can construct tensegrit-
ies by assembling a certain number of elementary cells according
to certain design rules (Feng et al., 2010; Li et al., 2010a). Based
on the local configuration of each constituent elementary cell, Pugh
(1976) defined two major classes of tensegrities, called Z-based (or
zig-zag) structures and rhombic (or diamond) structures, respec-
tively (Feng et al., 2010). In the past decade, the self-equilibrium
and stability of some Z-based truncated regular polyhedral (TRP)
tensegrities have been investigated by using either analytical or
numerical methods (e.g. Koohestani, 2012; Li et al., 2010b;
Murakami and Nishimura, 2001, 2003; Pandia Raj and Guest,
2006; Zhang and Ohsaki, 2012). Recently Zhang et al. (2012) de-
rived a unified analytical solution for the self-equilibrium and
super-stability of all Z-based TRP tensegrities. In recognition to
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Fig. 1. Polyhedra and Z-based tensegrities: (a) regular polyhedra, (b) truncated
regular polyhedra, and (c) Z-based TRP tensegrities.
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their important applications in, for instance, cytoskeleton (Ingber,
2010; Pirentis and Lazopoulos, 2010), the self-equilibrium and sta-
bility of rhombic expandable octahedron tensegrities have been
studied by some researchers (e.g. Lazopoulos, 2005; Xu and Luo,
2011; Zhang and Ohsaki, 2006). However, the properties of self-
equilibrium and super-stability of rhombic TPR tensegrities, an
important class of tensegrity structures of extensive interest, are
still unclear.

Therefore, the present study aims at exploring the self-
equilibrium and stability properties of rhombic TRP tensegrities.
The paper is organized as follows. In Section 2, the concepts of
Z-based TRP tensegrities and rhombic TRP tensegrities are briefly
reviewed. Section 3 gives the theoretical basis for the self-
equilibrium and super-stability of tensegrities. Sections 4 and 5
analyze, respectively, the self-equilibrium and super-stability of
rhombic truncated tetrahedral, cubic/octahedral, and dodecahe-
dral/icosahedral tensegrities. Section 6 establishes a unified
solution for the necessary and sufficient condition that ensures
the existence of self-equilibrated and super-stable states for all
types of rhombic TRP tensegrities.

2. TRP tensegrities

2.1. Z-based TRP tensegrities

To facilitate subsequent analysis, we refer to the following def-
inition of polyhedra (Coxeter, 1973):

Definition 1. A regular polyhedron can be uniquely identified by
the Schläfli symbol fn;mg, where n is the number of edges in each
face and m is the number of faces around each vertex.

In total, there are five types of convex regular polyhedra
(Cromwell, 1997), including tetrahedron identified by f3;3g, cube
f4;3g, octahedron f3;4g, dodecahedron f5;3g, and icosahedron
f3;5g, as shown in Fig. 1(a). By cutting off each vertex of these
regular polyhedra, one can obtain the five types of truncated
regular polyhedra, as shown in Fig. 1(b).

In a Z-based TRP tensegrity structure, each string corresponds
to an edge of the truncated regular polyhedron and the bars con-
nect the vertexes by following the rule of Z-shaped elementary
cells (Li et al., 2010a). For illustration, we take the construction
of a Z-based truncated tetrahedral tensegrity as an example. In
the first step, one truncates a tetrahedron by cutting all its original
vertices and creating a new polygonal facet around each vertex.
Fig. 2(a) shows the vertices and edges of the truncated tetrahedron.
Then, the strings and bars are added following the procedure pro-
posed by Li et al. (2010a). Fig. 2(b) illustrates the nodes, strings,
and bars of the tensegrity, where a Z-shaped cell, consisting of
the nodes 1–4, is highlighted. Fig. 1(c) gives the five types of
Z-based TRP tensegrities corresponding to the polyhedra in
Fig. 1(a) and the truncated polyhedra in Fig. 1(b).

2.2. Rhombic TRP tensegrities

A rhombic cell in self-equilibrated tensegrities has the similar
load-bearing feature as a Z-shaped cell (Feng et al., 2010), as shown
in Fig. 3. In both elements, the external forces should be applied in
a certain range of direction such that the bar is under compression
and the strings are under tension. In other words, the nodes 1 and 3
tend to approach each other while the nodes 2 and 4 tend to sep-
arate. Therefore, a rhombic tensegrity structure can be simply con-
structed from a Z-based tensegrity structure by simply replacing
all its Z-shaped cells with rhombic cells. For example, based on
the Z-based truncated tetrahedral tensegrity in Fig. 2(b), a rhombic
truncated tetrahedral tensegrity can be readily built, as shown in
Fig. 2(c). The Z-shaped cell highlighted in Fig. 2(b) has been re-
placed by the rhombic cell highlighted in Fig. 2(c).

However, it is emphasized that corresponding to the five types
of Z-based TRP tensegrities, there are only three different types of
rhombic TRP tensegrities for the following reasons. The rhombic
truncated cubic and octahedral tensegrities have the same num-
bers of bars, strings and nodes, and the connection relations be-
tween the elements and the nodes are also identical. This
indicates that both the topologies and connectivity matrices of a
rhombic truncated cubic tensegrity and a rhombic truncated octa-
hedral tensegrity can be expressed in the same form. Therefore, the
rhombic truncated cubic and octahedral tensegrities can be re-
garded as the same type. For the same reasons, the rhombic trun-
cated dodecahedral and icosahedral tensegrities can be
incorporated into one type. The structural topologies of the three
types of rhombic TRP tensegrities are shown in Fig. 4(a–c), which
will be referred to as rhombic tetrahedral, cubic/octahedral, and
dodecahedral/icosahedral tensegrities, respectively. According to
the topology, the strings in a rhombic TRP tensegrity structure
are classified into two types: type-1 and type-2. As can be seen
from Fig. 4, each three type-1 strings form a triangle in all rhombic
TRP tensegrities, while the type-2 strings form a triangle, a quad-
rangle, and a pentagon in rhombic truncated tetrahedral, cubic/
octahedral, or dodecahedral/icosahedral tensegrities, respectively.
A rhombic cell consists of one bar, two type-1 strings, and two
type-2 strings, as shown in Fig. 2(c).

Referring to the Schläfli symbol fn;mg for regular polyhedra, we
further find that for all rhombic TRP tensegrities, the number of
edges in a polygon consisting of type-1 strings, c, equals the smaller



(a) (c)

(b)

Fig. 4. Topologies of rhombic truncated (a) tetrahedral, (b) cubic/octahedral, and (c)
dodecahedral/icosahedral tensegrities.

(a)

(b)

(c)

Fig. 2. (a) The edges and vertices of a truncated tetrahedron, (b) the corresponding
Z-based truncated tetrahedral tensegrity, and (c) the corresponding rhombic
truncated tetrahedral tensegrity. In (b) and (c), a Z-shaped cell and a rhombic cell
are highlighted, respectively, by its nodes 1–4.

(a)

(b)

Fig. 3. Load-bearing feature of (a) a Z-shaped cell and (b) a rhombic cell. The
external forces should be applied in a certain range of direction such that the bar is
under compression and the strings are under tension.

236 L.-Y. Zhang et al. / International Journal of Solids and Structures 50 (2013) 234–245
number of n and m, that is, c ¼minðn;mÞ ¼ 3. In addition, the num-
ber of edges in a polygon consisting of type-2 strings, b, is equal to
the larger of n and m, i.e., b ¼maxðn;mÞ ¼ 3;4; and 5 for rhombic
truncated tetrahedral, cubic/octahedral, and dodecahedral/icosahe-
dral tensegrities, respectively. These relations can also be observed
from Fig. 4, where two polygons consisting of type-1 strings and two
polygons consisting of type-2 strings are highlighted.

3. Self-equilibrium and super-stability of tensegrities

3.1. Self-equilibrium of tensegrities

Let e(ij) designate the element connecting nodes i and j. The
force density of an element is defined as the ratio of its internal
force te(ij) to its current length le(ij) (Schek, 1974):

qeðijÞ ¼
teðijÞ

leðijÞ
: ð1Þ

The force density matrix D 2 Rnn�nn of a tensegrity structure,
with nn being the total number of nodes, is determined by the con-
nectivity and force densities of all elements (Vassart and Motro,
1999). Its components Dij are defined as (Zhang et al., 2012)

Dij ¼

�qeðijÞ if i–j and i is connected with j by an element;
0 if i–j and i does not connect with j;

�
X
k–j

Dik if i ¼ j:

8>><
>>:

ð2Þ

In terms of the force density matrix, the structural self-
equilibrium conditions can be expressed as (Zhang and Ohsaki,
2012)

D � x ¼ D � y ¼ D � z ¼ 0; ð3Þ

where x 2 Rnn�1; y 2 Rnn�1, and z 2 Rnn�1 denote the vectors of the
x, y, and z coordinates of the nodes from 1 to nn, respectively.

Only when the force density matrix has at least d + 1 zero-
eigenvalues, can a self-equilibrated state be solved from Eq. (3),
where d is the dimension of the structure (Connelly and Back,
1998; Schenk et al., 2007; Tran and Lee, 2010). The characteristic
polynomial of the force density matrix D 2 Rnn�nn is written as

detðkI� DÞ ¼ knn þ Pnn�1k
nn�1 þ � � � þ P3k

3 þ P2k
2 þ P1kþ P0 ¼ 0;

ð4Þ

where Pk (k = 0, 1, 2, . . ., nn � 1) are the polynomial functions of the
element force densities, I 2 Rnn�nn is the unit matrix, and k is an
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eigenvalue of D. In the case when there is no node fixed in a self-
equilibrated tensegrity structure, P0 always equals zero (Tibert
and Pellegrino, 2003; Zhang and Ohsaki, 2012; Zhang et al., 2012).
In addition, the self-equilibrium of a three-dimensional tensegrity
structure (i.e., d = 3) requires that (Zhang et al., 2012)

P3 ¼ P2 ¼ P1 ¼ 0: ð5Þ

The above analysis holds for all three-dimensional tensegrities.
As aforementioned, a rhombic TRP tensegrity structure has three
types of elements, namely, bars, type-1 strings, and type-2 strings.
In this study, the force densities in each type of elements are set as
an identical value. More specifically, qe(ij) in the force density ma-
trix D are taken as qb, qs1, and qs2 for the bars, type-1 strings, and
type-2 strings, respectively. It is clearly known from Eq. (3) that
in the absent of external forces, the self-equilibrium of a tensegrity
structure depends only on two independent normalized force den-
sities, which may be taken as Q1 = �qs1/qb > 0 and Q2 = �qs2/qb > 0,
where the negative sign is introduced because the strings should
be in tension and the bars should be in compression. Thus, for a
rhombic TRP tensegrity structure, the polynomials Pa (a = 1, 2, 3)
in the self-equilibrium conditions in Eq. (5) can be written as func-
tions of Q1 and Q2.

3.2. Super-stability of tensegrities

A tensegrity structure is said to be super-stable if it is stable for
any level of the self-equilibrium force densities without causing
material failure (Connelly and Back, 1998; Juan and Tur, 2008).
The super-stability conditions of tensegrities are (Connelly, 1999;
Zhang and Ohsaki, 2007; Zhang et al., 2012):

(i) the bars have negative force densities, and strings have posi-
tive force densities,

(ii) the nullity of the force density matrix is exactly d + 1,
(iii) the force density matrix is positive semi-definite, and
(iv) there are no affine (infinitesimal) flexes of the structure, or

equivalently, the rank of the structural geometry matrix is
d(d + 1)/2.

These four conditions ensuring the super-stability of tensegrit-
ies have been discussed in details by Zhang and Ohsaki (2007) and
Zhang et al. (2012). For rhombic TRP tensegrities, condition (i) can
be satisfied by setting qb < 0, qs1 > 0, and qs2 > 0. Conditions (ii) and
(iii) can be examined via the eigenvalues of the force density ma-
trix, and they will be satisfied when the total number of its zero-
eigenvalues is four and the minimum eigenvalue is zero. Condition
(iv) can be ensured provided that the rank of the structural geom-
etry matrix defined by Zhang and Ohsaki (2007) is six. In Section 5,
we will investigate the super-stability property of rhombic TRP
tensegrities by considering the above conditions.
4. Self-equilibrium analysis

In this section, we analyze the self-equilibrium property of
rhombic truncated tetrahedral, cubic/octahedral, and dodecahe-
dral/icosahedral tensegrities by invoking the self-equilibrium con-
ditions in Eq. (5).

4.1. Rhombic truncated tetrahedral tensegrities

A rhombic truncated tetrahedral tensegrity has 6 bars, 12 type-
1 strings, 12 type-2 strings, and 12 nodes. Thus, its force density
matrix is 12 � 12 in size, whose components can be calculated
from Eq. (2). Substituting the obtained force density matrix into
Eq. (4), the expressions of Pa (a = 1, 2, 3) are solved and given in
Eqs. (A.1), (A.2), (A.3) of Appendix A. Thus, the self-equilibrium
condition of rhombic truncated tetrahedral tensegrities reduces
to the following equation

Q2
1Q 2 þ Q 1Q 2

2 �
1
2

Q 2
1 �

1
2

Q2
2 �

4
3

Q 1Q 2 þ
1
3

Q 1 þ
1
3

Q2 ¼ 0: ð6Þ
4.2. Rhombic truncated cubic/octahedral tensegrities

A rhombic truncated cubic/octahedral tensegrity has 12 bars, 24
type-1 strings, 24 type-2 strings, and 24 nodes, with a 24 � 24
force density matrix from Eq. (2). In this case, Pa (a = 1, 2, 3) in
Eq. (4) are expressed in Eqs. (A.4), (A.5), (A.6) of Appendix A. Com-
bining them with Eq. (5), we obtain the following three equations

Q1 þ Q2 ¼ 0; ð7Þ

Q2
2 þ

3
2

Q 1Q 2 �
3
4

Q 1 �
3
4

Q2 ¼ 0; ð8Þ

Q2
1Q 2 þ

2
3

Q 1Q 2
2 �

1
2

Q2
1 �

1
3

Q 2
2 �

4
3

Q 1Q 2 þ
1
3

Q1 þ
1
3

Q 2 ¼ 0: ð9Þ

Eqs. (7)–(9) cover all self-equilibrated states of rhombic trun-
cated cubic/octahedral tensegrities.

4.3. Rhombic truncated dodecahedral/icosahedral tensegrities

A rhombic truncated dodecahedral/icosahedral tensegrity has
30 bars, 60 type-1 strings, 60 type-2 strings, and 60 nodes, corre-
sponding to a 60 � 60 force density matrix. In this case, the coeffi-
cients Pa (a = 1, 2, 3) in Eq. (4) are given in Eqs. (A.7), (A.8), (A.9) of
Appendix A. Substituting them into Eq. (5) leads to the following
six equations

Q1 þ Q2 ¼ 0; ð10Þ

Q2
2 þ 2Q 1Q2 � Q1 � Q2 ¼ 0; ð11Þ

Q2
2 þ

6
5

Q 1Q 2 �
3
5

Q 1 �
3
5

Q2 ¼ 0; ð12Þ

Q 3
1Q 2 þ 5

9 Q 1Q3
2 þ 5

3 Q2
1Q 2

2 � 1
2 Q 3

1 � 5
18 Q 3

2 � 33
18 Q 2

1Q 2 � 29
18 Q 1Q2

2

þ 1
3 Q 2

1 þ 1
3 Q 2

2 þ 2
3 Q 1Q 2 ¼ 0;

ð13Þ

Q2
1Q 2þ

5þ
ffiffiffi
5
p

6
Q 1Q 2

2�
1
2

Q 2
1�

5þ
ffiffiffi
5
p

12
Q 2

2�
4
3

Q1Q 2þ
1
3

Q 1þ
1
3

Q 2¼0;

ð14Þ

Q2
1Q 2þ

5�
ffiffiffi
5
p

6
Q 1Q 2

2�
1
2

Q 2
1�

5�
ffiffiffi
5
p

12
Q 2

2�
4
3

Q1Q 2þ
1
3

Q 1þ
1
3

Q 2¼0:

ð15Þ

All self-equilibrated states of rhombic truncated dodecahedral/ico-
sahedral tensegrities can be solved from Eqs. (10)–(15).

5. Super-stability analysis

In Section 4, all self-equilibrium solutions of the three types of
rhombic TRP tensegrities have been derived. However, it is worth
pointing out that some of them satisfy the super-stability condi-
tions while the others do not. In this section, therefore, we will
further examine the conditions (i)–(iv) of super-stability given in
Section 3.2, in conjunction with the self-equilibrium solutions in
Section 4. The results will provide a basis for establishing the nec-
essary and sufficient condition for the self-equilibrium and super-
stability of rhombic TRP tensegrities.
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Firstly, condition (i) for the super-stability of a rhombic TRP
tensegrity structure requires that qb < 0, qs1 > 0, and qs2 > 0. Thus
the normalized force densities in Eqs. (6)–(15) must be positive,
i.e., Q1 = � qs1/qb > 0 and Q2 = � qs2/qb > 0, indicating that Eqs. (7)
and (10) should be ruled out for super-stable tensegrities.

Secondly, condition (ii) requires that the force density matrix
solved from the self-equilibrium solutions has exactly four zero-
eigenvalues. We substitute the force densities determined by Eqs.
(11)–(13) into Eq. (4) and find that P4 = 0 for rhombic truncated
dodecahedral/icosahedral tensegrities. This indicates that each
force density matrix satisfying these equations has at least five
zero-eigenvalues and thus cannot produce super-stable tensegrit-
ies. Therefore, Eqs. (11)–(13) will not be considered in the super-
stability analysis in what follows.

Thirdly, condition (iii) demands that the force density matrix
solved from the self-equilibrium solutions should be positive
semi-definite. However, our calculation shows that the minimum
eigenvalue of all force density matrices solved from Eqs. (8) and
(14) are always negative provided that Q1 > 0 and Q2 > 0, as shown
in Fig. 5. In this figure, Eq. (8) corresponds to only one curve while
Eq. (14) has two branches. Hence, Eqs. (8) and (14) cannot meet
condition (iii) for super-stable tensegrities.

According to the above analysis, Eqs. (7), (8), (10), and (11)–(14)
should be excluded in the super-stability analysis of rhombic TRP
tensegrities. Therefore, it is only possible to seek the super-stable
states of rhombic truncated tetrahedral, cubic/octahedral, and
dodecahedral/icosahedral tensegrities from Eqs. (6), (9), and (15),
respectively. The Q1�Q2 curves of Eqs. (6), (9), and (15) are shown
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Fig. 5. Self-equilibrium solutions violating the positive semi-definite condition of
super-stability for rhombic truncated (a) cubic/octahedral and (b) dodecahedral/
icosahedral tensegrities.
in Fig. 6, each of which has three branch curves numbered by 1, 2,
and 3, respectively. For the self-equilibrated states on the curves
in Fig. 6, it is clear that Curve-1 and part of Curve-2 are not in the
region Q1 > 0 and Q2 > 0 and thus violate condition (i). All force den-
sity matrices corresponding to Curve-2 in Q1 > 0 and Q2 > 0 have
negative eigenvalues, as shown in Fig. 7, and thus cannot meet con-
dition (iii). This means that Curve-1 and Curve-2 cannot produce
super-stable states. However, the force densities in Curve-3 are al-
ways in the region Q1 > 0 and Q2 > 0, and the corresponding force
density matrices are all positive semi-definite and have exactly four
zero-eigenvalues. Therefore, Curve-3 satisfies conditions (i)–(iii).

Finally, we check the rank of the structural geometry matrix
defined by Zhang and Ohsaki (2007) in order to ensure the satisfac-
tion of super-stability condition (iv). As analyzed above, among all
self-equilibrium solutions in Section 4, only the branch Curve-3 of
Eqs. (6), (9), and (15) can satisfy conditions (i)–(iii) of super-
stability. Thus condition (iv) is checked only for Curve-3. Our
calculations demonstrate that all structural geometry matrices
corresponding to Curve-3 have a rank of six, meeting condition
(iv). Therefore, the solutions on Curve-3 satisfy all four conditions
of super-stability given in Section 3.2.

Thus, it becomes clear that for the self-equilibrium solutions
obtained in Section 4, only the solutions of Eqs. (6), (9), and (15)
in the region Q1 = � qs1/qb > 1/2 and Q2 = � qs2/qb > 1/2 with qb < 0
can satisfy both the self-equilibrium and super-stability condi-
tions. As we will show in Section 6, these self-equilibrated and
super-stable states of rhombic TRP tensegrities can be further for-
mulated in a unified expression.

6. Unified solution for self-equilibrium and super-stability

In this section, we will establish a unified and closed-form solu-
tion for the necessary and sufficient condition of all rhombic TRP
tensegrities. Inspired by the results in Section 4, the unified solu-
tion will be expressed in a polynomial form, with the coefficients
solved from several special equilibrated states. Then the necessary
and sufficient condition that ensures the existence of self-
equilibrated and super-stable states will be established.

6.1. Unified form

Based on the analyses in Sections 4 and 5, we will establish a
unified closed-form solution for the self-equilibrated and super-
stable states of all rhombic TRP tensegrities. By directly solving
the self-equilibrium conditions and examining the super-stability
conditions, we have individually derived the self-equilibrium and
super-stability solutions of rhombic truncated tetrahedral, cubic/
octahedral, and dodecahedral/icosahedral tensegrities, which are
given in Eqs. (6), (9), and (15), respectively. The three equations
can be rewritten as

Q 2 �
1
2

� �
Q2

1 þ Q 1 �
1
2

� �
Q2

2 �
4
3

Q 1Q 2 þ
1
3

Q 1 þ
1
3

Q2 ¼ 0; ð16Þ

Q 2 �
1
2

� �
Q2

1 þ
2
3

Q 1 �
1
2

� �
Q 2

2 �
4
3

Q 1Q 2 þ
1
3

Q1 þ
1
3

Q 2 ¼ 0; ð17Þ

Q 2 �
1
2

� �
Q2

1 þ
5�

ffiffiffi
5
p

6
Q 1 �

1
2

� �
Q 2

2 �
4
3

Q 1Q2 þ
1
3

Q 1 þ
1
3

Q 2

¼ 0; ð18Þ

respectively. It is seen that Eqs. (16)–(18) can be unified in the fol-
lowing form:

Q 2 �
1
2

� �
Q2

1 þ A Q1 �
1
2

� �
Q 2

2 �
4
3

Q1Q 2 þ
1
3

Q 1 þ
1
3

Q 2 ¼ 0; ð19Þ
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Fig. 7. Self-equilibrium solutions corresponding to Curve-2 in Fig. 6 in the region of
Q1 > 0 and Q2 > 0 for rhombic truncated (a) tetrahedral, (b) cubic/octahedral, and (c)
dodecahedral/icosahedral tensegrities.
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demonstrating that for all types of rhombic TRP tensegrities, the
self-equilibrated and super-stable states can be captured by a uni-
fied solution containing only one parameter A with a value depend-
ing on the structural type. To further verify this finding and
determine the expression of A, Eq. (19) is recast as
ðQ 2 � a1ÞQ2
1 þ AðQ 1 � a2ÞQ 2

2 � a3Q1Q 2 þ a4Q1 þ a5Q 2 ¼ 0; ð20Þ
where ab (b = 1, 2, 3, 4, 5) are all constant and their values will be
solved below.

In what follows, we will determine A and ab (b = 1, 2, 3, 4, 5)
from six special self-equilibrated states of rhombic TRP tensegrit-
ies, which correspond to three asymptotic lines (i.e., AL1, AL2,
and AL3) and three special points (i.e., SP1, SP2, and SP3) on the
Q1 � Q2 curves of Eqs. (6), (9), and (15), as shown in Fig. 6. Once
A and ab are determined, a unified solution for the self-equilibrium
and super-stability of all rhombic TRP tensegrities will be obtained.
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6.1.1. Coefficients a1 and a2

First, we solve the coefficients a1 and a2 in Eq. (20) from the self-
equilibrated states corresponding to the asymptotic lines AL1 and
AL2. The force density of an element, defined as the ratio of its
internal force to its current length, approaches infinite when the
element length approaches zero. For each type of rhombic TRP
tensegrities, two special self-equilibrated states, AL1 and AL2, can
be defined, as shown in Fig. 6. In the former, all type-1 strings
are of infinitesimal length, and thus their force density is infinite,
that is, Q1 = �qs1/qb ?1. In the latter, all type-2 strings are of
infinitesimal length and then their force density is infinite, that is
Q2 = �qs2/qb ?1. Take rhombic truncated cubic/octahedral
tensegrities as an example. Fig. 8(a) and (b) show the AL1 and
AL2 configurations, which have the shapes of a regular cube and
a regular octahedron, respectively.

At the self-equilibrated state AL1, all type-1 strings have an
infinitesimal length (i.e., Q1 ?1), and thus the bar and the two
type-2 strings in each rhombic cell will be aligned and have the
same length, as shown in the dashed box in Fig. 8(a). Each cell will
be in self-equilibrium itself as the force densities of the bars and
type-2 strings satisfy Q2 = �qs2/qb = 1/2. Correspondingly, the
configuration assembled by these rhombic cells must be self-
equilibrated. For all types of rhombic TRP tensegrities approaching
the AL1 state, therefore, the values of Q1 ?1 and Q2 = 1/2 must
satisfy the self-equilibrium solution in Eq. (20).

Analogously, at the self-equilibrated state AL2, the bar and the
two type-1 strings in each rhombic cell are aligned and have the
same length since the two type-2 strings have the zero length
and Q2 ?1, as shown in Fig. 8(b). In this case, each cell will be
self-equilibrated itself as Q1 = �qs1/qb = 1/2. Thus, for all rhombic
TRP tensegrities approaching the AL2 state, the self-equilibrium
solution in Eq. (20) always has the solution of Q1 = 1/2 and Q2 ?1.

Rewrite Eq. (20) as

ðQ2 � a1Þ þ AðQ 1 � a2Þ
Q2

2

Q2
1

� a3
Q2

Q1
þ a4

1
Q 1
þ a5

Q 2

Q 2
1

¼ 0; ð21Þ

ðQ2 � a1Þ
Q 2

1

Q 2
2

þ AðQ1 � a2Þ � a3
Q1

Q2
þ a4

Q 1

Q 2
2

þ a5
1

Q 2
¼ 0: ð22Þ

Substituting ðQ1 !1;Q 2 ¼ 1=2Þ into Eq. (21) and
ðQ 1 ¼ 1=2;Q2 !1Þ into Eq. (22), we get

a1 ¼
1
2
; ð23Þ

a2 ¼
1
2
: ð24Þ
(e)

Fig. 8. Several special self-equilibrated configurations of rhombic truncated cubic/
octahedral tensegrities with (a) the type-1 strings of infinitesimal length, (b) the
type-2 strings of infinitesimal length, (c) the type-2 strings of zero force density, (d)
the type-1 strings of zero force density, and (e) the bars of zero force density.
6.1.2. Coefficient a4

To determine the coefficient a4, we consider the special self-
equilibrated state, SP1, in which all type-2 strings have the zero
force density (i.e., Q2 = �qs2/qb = 0) and thus can be eliminated
without affecting the equilibrium and shape of the structures (Li
et al., 2010b). In this state, we denote the force densities of the bars
and the type-1 strings as �qb and �qs1, respectively. For illustration,
Fig. 8(c) shows a rhombic cubic/octahedral tensegrity at the self-
equilibrated state SP1.

If all type-2 strings have been removed, there will be only one
bar and two type-1 strings left at each node, and the three ele-
ments must lie in the same plane as a requirement of force equilib-
rium (Motro, 2003). Furthermore, the structural symmetry
requires that the solid centers of the structure, the midpoints of
all bars, and the centers of all polygons consisting of type-1 strings
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should be overlapped. Thus, any node and its three connecting
nodes must lie on a circle with center located at the midpoint of
the bar jointed to it. Then for a specified node R, we establish a lo-
cal Cartesian coordinate system (O � xy), as shown in Fig. 9(a),
where the origin O is located at the center of the circle, and the
x- and y-axes are parallel and perpendicular to the bar, respec-
tively. The nodes connected to the node R via two type-1 strings
are numbered as 1 and 2, and the node connected to R via the
bar is numbered as 3. The force equilibrium condition at the node
R in the x-direction reads

�qs1ðx1 � xRÞ þ �qs1ðx2 � xRÞ þ �qbðx3 � xRÞ ¼ 0: ð25Þ

Set the radius of the circle (or the length of the bar) as
unit length. Then the nodal x-coordinates are xR = 1, x1 = x2 =
�cos (2p/c) and x3 = �1, where c = min (n, m) is the total number
of edges in each polygon consisting of type-1 strings. Substituting
the nodal coordinates into Eq. (25), one obtains

�Q 1 ¼ �
�qs1

�qb
¼ 1� cos

2p
c

� ��1

¼ 2
3
: ð26Þ

Therefore, for all types of rhombic TRP tensegrities, the location of
SP1 in the Q1 � Q2 curves is identical and located at
ðQ1 ¼ 2=3;Q2 ¼ 0Þ.

Combining Eq. (26) and Q2 = 0 with (20) results in

a4 ¼
1
2

1� cos
2p
c

� ��1

¼ 1
3
; ð27Þ

where c ¼minðn;mÞ ¼ 3 for all rhombic TRP tensegrities.
(a)

(b)(b)

Fig. 9. A generic node R in the self-equilibrated rhombic TRP tensegrities with (a)
the type-2 strings of zero force density, and (b) the type-1 strings of zero force
density. In each figure, the two strings and 1 bar connected to the node R are co-
planar.
6.1.3. Coefficients A and a5

To solve the expressions of A and a5 , two special self-
equilibrated states are considered, that is, SP2 with qs1 ¼ 0 and
AL3 with qb = 0. In SP2, all type-1 strings can be removed, while
in AL3, all bars can be removed (Li et al., 2010b). It is emphasized
that AL3 is a self-equilibrated but unstable state, in which either
the type-1 or type-2 strings will be in compression. For illustration,
the SP2 and AL3 configurations of rhombic truncated cubic/octahe-
dral tensegrities are shown in Fig. 8(d) and (e), respectively.

At the self-equilibrated state SP2, the type-1 strings are of zero
force density and thus Q1 = �qs1/qb = 0 . In this state, the force den-
sities of the bars and type-2 strings are denoted as ~qb and ~qs2,
respectively. Analogous to the analysis in Section 6.1.2, the SP2
configuration with all type-1 strings having been removed is ana-
lyzed as follows. As shown in Fig. 9(b), nodes 1 and 2 are connected
with a specified node R by two type-2 strings, and node 3 is jointed
to R by one bar. Refer to a local Cartesian coordinate system
(O0 � x0y0), where the origin O

0
is at the midpoint of the bar, and

the x
0
and y

0
axes are parallel and perpendicular to the bar, respec-

tively. Set the radius of the circle as unit length. Then the nodal
x
0
-coordinates are x0R ¼ 1; x01 ¼ x02 ¼ � cosð2p=bÞ, and x03 ¼ �1,

where b = max (n, m) is the total number of edges in each polygon
consisting of type-2 strings. The force equilibrium condition at the
node R in the x

0
-direction gives

~qs2ðx01 � x0RÞ þ ~qs2ðx02 � x0RÞ þ ~qbðx03 � x0RÞ ¼ 0: ð28Þ

Substituting the coordinates of nodes R, 1, 2, and 3 into Eq. (28),
we obtain

~Q2 ¼ �
~qs2

~qb
¼ 1� cos

2p
b

� ��1

: ð29Þ

Thus the location of SP2 in the Q1 � Q2 curve is determined as
ðQ1 ¼ 0;Q s2 ¼ ½1� cosð2p=bÞ��1Þ.

Combining Q1 = 0 and Eq. (29) with Eq. (20) leads to

A ¼ 2 1� cos
2p
b

� �
a5: ð30Þ

At the self-equilibrated state AL3, the structural self-
equilibrium condition requires that either the type-1 or type-2
strings are under compression. This fictitious self-equilibrated sta-
ted is allowed only for the sake of calculations. For simplicity and
without loss of generality, the type-2 strings are specified to have a
negative force density in the following analysis. We denote the
slope of the Q1 � Q2 curve at the limit state of AL3 in Fig. 6 as

s ¼ lim
Q1 ! þ1
Q2 ! �1

Q 2

Q 1
:

ð31Þ

Rewrite Eq. (20) as

1� a1

Q 2

� �
þ A 1� a2

Q 1

� �
Q 2

Q 1
� a3

1
Q 1
þ a4

1
Q 1Q 2

þ a5
1

Q 2
1

¼ 0: ð32Þ

Then from the limit state of ðQ1 ! þ1;Q2 ! �1Þ, we get

A ¼ �1
s
: ð33Þ

As all bars have been removed at the AL3 state, there are only
two type-1 strings and two type-2 strings at each node. Let q̂s1

and q̂s2 respectively denote the force densities of the type-1 and
type-2 strings in this special case. According to the analysis of force
equilibrium at a specified node in the self-equilibrated states SP1
(qs2 = 0) and SP2 (qs1 = 0), we will solve the nodal force equilibrium
at the AL3 state (qb = 0) as follows.

From the analysis in Section 6.1.2, we have known that at the
SP1 state, Eq. (25) can ensure the equilibrium at all nodes if
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�qs1 ¼ ½1� cosð2p=cÞ��1 and �qb ¼ �1. In addition, it is seen from Eq.
(28) that at the SP2 state, all nodes will be in equilibrium when
~qs2 ¼ ½1� cosð2p=bÞ��1 and ~qb ¼ �1. Thus, the AL3 state should
be self-equilibrated when the force densities of the type-1 strings
and type-2 strings are specified as q̂s1 ¼ �qs1 and q̂s2 ¼ �~qs2 while
the force density of the bars is �qb � ~qb ¼ 0. This solution can be
further verified by checking the self-equilibrium conditions in
Eq. (5).

Thus s can be solved from Eq. (31) as

s ¼ lim
Q1!þ1
Q2!�1

Q 2

Q 1
¼ q̂s2

q̂s1
¼ � 1� cos

2p
c

� �
1� cos

2p
b

� ��1

: ð34Þ

Substituting Eq. (34) into Eq. (33) leads to

A ¼ 1� cos
2p
c

� ��1

1� cos
2p
b

� �
¼ 2

3
1� cos

2p
b

� �
: ð35Þ

Comparing Eq. (35) with Eq. (30), the parameter a5 is deter-
mined as

a5 ¼
1
2

1� cos
2p
c

� ��1

¼ 1
3
: ð36Þ
Fig. 10. (a) A self-equilibrated X-frame tensegrity, and (b) a self-equilibrated
configuration of rhombic truncated tetrahedral tensegrities, in which the force
densities of the bars, type-1 strings, and type-2 strings are assumed to have the
relation qb:qs1:qs2 = �2:1:1.
6.1.4. Coefficient a3

Finally, the coefficient a3 is determined by invoking another
special self-equilibrated state, SP3. As we will show below, it is
always located at the point ðQ1 ¼ 1=2;Q2 ¼ 1=2Þ in the Q1 � Q2

curve for all rhombic TRP tensegrity structures, as shown in
Fig. 6. At this special state, all type-1 and type-2 strings have the
same force density, denoted as q

¼
s1 ¼ q

¼
s2 ¼ q

¼
s. In addition, we

denote the force density of the bars as q
¼

b.
Fig. 10(a) shows a planar X-frame tensegrity consisting of two

bars and four strings. We find that a rhombic TRP tensegrity structure
at the SP3 state can be regarded as an assembly of a certain number of
such X-frame tensegrities. Therefore, the rhombic TRP tensegrities
will be self-equilibrated provided that all its X-frame sub-structures
are in self-equilibrium. For illustration, the SP3 configuration of
rhombic truncated tetrahedral tensegrities is shown in Fig. 10(b).

In the assembly, the bars in each two X-frame sub-structures
overlaps each other. In the X-frame sub-structures, therefore, the
force density of the bars should be q

¼
b=2. Then the self-equilibrium

analysis of a X-frame tensegrity gives (Tibert and Pellegrino, 2003)

q
¼

b=2þ q
¼

s ¼ 0 ð37Þ

which can ensure the self-equilibrium of the assembled rhombic
TRP structure.

It is known from Eq. (37) that

Q
¼

1 ¼ Q
¼

2 ¼ �
q
¼

s

q
¼

b

¼ 1
2
; ð38Þ

dictating the location of SP3 at ðQ1 ¼ 1=2;Q2 ¼ 1=2Þ in the
Q1 � Q2 curves for all types of rhombic TRP tensegrities. This
self-equilibrated state can be further confirmed by using the
self-equilibrium conditions in Eq. (5).

Substituting Eqs. (23), (24), (27), (35), (36), and (38) into (20),
one obtains

a3 ¼
1
2
� a1

� �
þ A

1
2
� a2

� �
þ 2a4 þ 2a5 ¼

4
3
: ð39Þ
6.2. Unified solution

With the determination of all coefficients in the unified solution
in Eq. (20), it is seen from Eqs. (23), (24), (27), (36), and (39) that ab
(b = 1, 2, 3, 4, 5) are constant for all types of rhombic TRP tensegrit-
ies, while the parameter A solved in Eq. (35) depends only upon the
polyhedral type. The super-stability analysis in Section 5 enables
us to establish the following necessary condition for the self-
equilibrated and super-stable states of rhombic TRP tensegrities.

Theorem 1. For all self-equilibrated and super-stable states of
rhombic TRP tensegrities, the force densities of elements must
satisfy the relation

Q2�
1
2

� �
Q2

1þ
2
3

1�cos
2p
b

� �
Q1�

1
2

� �
Q 2

2�
4
3

Q1Q 2þ
1
3

Q1þ
1
3

Q2¼0; ð40Þ

where Q1 = �qs1/qb, Q2 = �qs2/qb, and b ¼maxðn;mÞ follows the def-
inition of Schläfli symbol fn;mg for the corresponding regular poly-
hedron, with qb, qs1, and qs2 being the force densities of the bars,
type-1 strings, and type-2 strings, respectively.

It can be readily verified that the proposed unified solution in
Eq. (40) covers all super-stability solutions derived in Section 4.

Furthermore, the analysis in Section 5 has shown that only the
branch Curve-3 of the above solution in the Q1 � Q2 diagram in
Fig. 6 can satisfy both the self-equilibrium and super-stability
conditions. By using the solution in Eq. (40), the force densities on
Curve-3 can also be expressed in a unified form. Rewrite Eq. (40) in
the quadratic form

2
3

1�cos
2p
b

� �
Q 1�

1
2

� �
Q2

2þ Q2
1�

4
3

Q1þ
1
3

� �
Q2�

1
2

Q2
1�

1
3

Q1

� �
¼0: ð41Þ

Eq. (41) has two roots, and Curve-3 in Fig. 6 corresponds to the fol-
lowing root:

Q2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3Q 2

1�4Q1þ1Þ2þ2Q1ð6Q 2
1�7Q1þ2Þ 1�cos2p

b

� �q
�ð3Q 2

1�4Q1þ1Þ
2ð2Q 1�1Þ 1�cos2p

b

� � ;

ð42Þ
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Fig. 11. Some representative self-equilibrated and super-stable configurations of rhombic TRP tensegrities. Here, the force density of the bars is set as qb = �1, and the force
densities of the type-1 and type-2 strings are taken as (a) 2qs1 = qs2, (b) qs1 = qs2, and (c) qs1 = 2qs2.
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where Q1 = �qs1/qb > 1/2 and qb < 0. Therefore, the necessary and
sufficient condition for the self-equilibrated and super-stable states
of rhombic TRP tensegrities can be stated as
Theorem 2. A rhombic TRP tensegrity structure is self-
equilibrated and super-stable if and only if the force densities of
its elements satisfy the relation

Q 2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3Q 2

1�4Q1þ1Þ2þ2Q 1ð6Q 2
1�7Q1þ2Þ 1�cos2p

b

� �q
�ð3Q 2

1�4Q1þ1Þ
2ð2Q1�1Þ 1�cos2p

b

� � ;

ð43Þ

where Q2 = �qs2/qb, Q1 = �qs1/qb > 1/2, qb < 0, and b ¼ 3;4;5 for
rhombic truncated tetrahedral, cubic/octahedral, dodecahedral/ico-
sahedral tensegrities.
6.3. Self-equilibrated and super-stable configurations

All self-equilibrated and super-stable configurations of rhombic
truncated tetrahedral, cubic/octahedral, and dodecahedral/icosa-
hedral tensegrities can be solved from the unified solution in Eq.
(43). Some representative examples are shown in Fig. 11(a–c), in
which the force density of the bars is set as qb = �1 and the force
densities of the strings are 2qs1 = qs2, qs1 = qs2, and qs1 = 2qs2,
respectively.

It can be seen from Fig. 11 that the self-equilibrated configura-
tions of rhombic TRP tensegrities vary with the ratio of the force
densities of the strings, qs1/qs2. The three tensegrities in
Fig. 11(a), where 2qs1 = qs2, have the shapes like a truncated tetra-
hedron, octahedron, and icosahedron, respectively (see Fig. 1b).
However, the three tensegrities in Fig. 11(c), where qs1 = 2qs2, look
more like the corresponding dual-pairs, i.e., the truncated tetrahe-
dron, cube, and dodecahedron, respectively (see Fig. 1b). When all
type-1 and type-2 strings have the same force density, i.e., qs1 = qs2,
the tensegrities are in an intermediate state, as shown in Fig. 11(b).
The configuration of a rhombic truncated tetrahedral tensegrity
with qs1 = qs2 is also known as an expandable octahedron tenseg-
rity, and the corresponding element force densities solved from
Eq. (43) are Qs1 = �qs1/qb = Qs2 = �qs2/qb = 2/3, in consistency with
the results in the literature (e.g. Koohestani, 2012; Li et al.,
2010b; Tibert and Pellegrino, 2003). In addition, it is worth men-
tioning that the expandable octahedron tensegrity and other
rhombic TRP tensegrities has a variety of applications in, for in-
stance, theoretical modeling of cytoskeleton (Ingber, 2010). The
unified solution obtained in the present paper is helpful not only
for the design of self-equilibrated and super-stable rhombic TRP
tensegrities but also for their practical applications.

7. Conclusions

In this paper, we have proposed a unified analytical solution for
the self-equilibrium and super-stability of all types of rhombic TRP
tensegrities. The simple unified solution allows us to determine
their self-equilibrated and super-stable configurations very easily.
The necessary and sufficient condition for the self-equilibrated and
super-stable rhombic TRP tensegrities is also given. We hope the
present work will stimulate further effort directed towards under-
standing the properties of tensegrities and their applications in
biomechanical, civil, and aerospace engineering.
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Appendix A. Polynomials P1, P2, and P3

For rhombic truncated tetrahedral tensegrities, the polynomials
Pa (a = 1, 2, 3) defined in Eq. (4) are

P1¼�576P1;4 6ðQ 2
1Q 2þQ 1Q 2

2Þ�3ðQ 2
1þQ 2

2Þ�8Q 1Q 2þ2ðQ 1þQ 2Þ
h i3

; ðA:1Þ
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P2¼48P2;4 6ðQ2
1Q 2þQ1Q2

2Þ�3ðQ2
1þQ2

2Þ�8Q1Q2þ2ðQ1þQ2Þ
h i2

; ðA:2Þ

P3¼�4P3;4 6ðQ2
1Q2þQ1Q2

2Þ�3ðQ2
1þQ2

2Þ�8Q 1Q2þ2ðQ 1þQ2Þ
h i

; ðA:3Þ

where P1,4, P2,4, and P3,4 are lengthy polynomials, with the second
index 4 indicating a truncated tetrahedral tensegrity. The specific
expressions of P1,4, P2,4, and P3,4 do not affect structural self-equilib-
rium conditions and thus are omitted in the present paper.

For rhombic truncated cubic/octahedral tensegrities, Pa
(a = 1, 2, 3) are

P1 ¼ �9216P1;6ðQ 1 þ Q2Þ3ð4Q2
2 þ 6Q 1Q 2 � 3Q 1 � 3Q 2Þ3

� ð6Q 2
1Q 2 þ 4Q 1Q 2

2 � 3Q2
1 � 2Q 2

2 � 8Q 1Q 2 þ 2Q 1 þ 2Q 2Þ3;
ðA:4Þ
P2 ¼ 768P2;6ðQ1 þ Q2Þ2ð4Q 2
2 þ 6Q 1Q 2 � 3Q 1 � 3Q 2Þ2

� ð6Q 2
1Q 2 þ 4Q 1Q 2

2 � 3Q2
1 � 2Q 2

2 � 8Q 1Q 2 þ 2Q 1 þ 2Q 2Þ2;
ðA:5Þ
P3 ¼ �64P3;6ðQ 1 þ Q 2Þð4Q2
2 þ 6Q 1Q 2 � 3Q 1 � 3Q 2Þ

� ð6Q 2
1Q 2 þ 4Q 1Q 2

2 � 3Q2
1 � 2Q 2

2 � 8Q 1Q 2 þ 2Q 1 þ 2Q 2Þ;
ðA:6Þ

where the specific expressions of P1,6, P2,6, and P3,6 are omitted, and
the second index 6 indicates a rhombic truncated cubic/octahedral
tensegrity.

For rhombic truncated dodecahedral/icosahedral tensegrities,
Pa (a = 1, 2, 3) are

P1 ¼ �38880ðQ1 þ Q2Þ5ðQ2
2 þ 2Q 1Q2 � Q1 � Q2Þ4ð5Q 2

2

þ 6Q 1Q2 � 3Q 1 � 3Q 2Þ4 � ð18Q 3
1Q 2 þ 10Q 1Q3

2

þ 30Q2
1Q 2

2 � 9Q3
1 � 5Q 3

2 � 33Q2
1Q 2 � 29Q 1Q2

2 þ 6Q 2
1

þ 6Q 2
2 þ 12Q 1Q 2Þ5 � ½6ð5�

ffiffiffi
5
p
ÞQ 2

1Q 2 þ 20Q 1Q2
2 � 3ð5

�
ffiffiffi
5
p
ÞQ 2

1 � 10Q 2
2 � 8ð5�

ffiffiffi
5
p
ÞQ 1Q 2 þ 2ð5�

ffiffiffi
5
p
ÞQ 1

þ 2ð5�
ffiffiffi
5
p
ÞQ 2�3 � ½6ð5þ

ffiffiffi
5
p
ÞQ 2

1Q 2 þ 20Q 1Q 2
2 � 3ð5

þ
ffiffiffi
5
p
ÞQ 2

1 � 10Q 2
2 � 8ð5þ

ffiffiffi
5
p
ÞQ 1Q 2 þ 2ð5þ

ffiffiffi
5
p
ÞQ 1

þ 2ð5þ
ffiffiffi
5
p
ÞQ 2�3; ðA:7Þ

P2 ¼ 25920P2;12ðQ 1 þ Q 2Þ4ðQ 2
2 þ 2Q 1Q 2 � Q 1 � Q 2Þ3ð5Q 2

2

þ 6Q 1Q2 � 3Q 1 � 3Q 2Þ3 � ð18Q 3
1Q 2 þ 10Q 1Q3

2

þ 30Q2
1Q 2

2 � 9Q3
1 � 5Q 3

2 � 33Q2
1Q 2 � 29Q 1Q2

2 þ 6Q 2
1

þ 6Q 2
2 þ 12Q 1Q 2Þ4 � ½6ð5�

ffiffiffi
5
p
ÞQ 2

1Q 2 þ 20Q 1Q2
2 � 3ð5

�
ffiffiffi
5
p
ÞQ 2

1 � 10Q 2
2 � 8ð5�

ffiffiffi
5
p
ÞQ 1Q 2 þ 2ð5�

ffiffiffi
5
p
ÞQ 1

þ 2ð5�
ffiffiffi
5
p
ÞQ 2�2 � ½6ð5þ

ffiffiffi
5
p
ÞQ 2

1Q 2 þ 20Q 1Q 2
2 � 3ð5

þ
ffiffiffi
5
p
ÞQ 2

1 � 10Q 2
2 � 8ð5þ

ffiffiffi
5
p
ÞQ 1Q 2 þ 2ð5þ

ffiffiffi
5
p
ÞQ 1

þ 2ð5þ
ffiffiffi
5
p
ÞQ 2�2; ðA:8Þ

P3 ¼ �17280P3;12ðQ1 þ Q2Þ3ðQ2
2 þ 2Q 1Q2 � Q1 � Q2Þ2ð5Q 2

2

þ 6Q 1Q2 � 3Q 1 � 3Q 2Þ2 � ð18Q 3
1Q 2 þ 10Q 1Q3

2

þ 30Q2
1Q 2

2 � 9Q3
1 � 5Q 3

2 � 33Q2
1Q 2 � 29Q 1Q2

2 þ 6Q 2
1

þ 6Q 2
2 þ 12Q 1Q 2Þ3 � ½6ð5�

ffiffiffi
5
p
ÞQ 2

1Q 2 þ 20Q 1Q2
2 � 3ð5

�
ffiffiffi
5
p
ÞQ 2

1 � 10Q 2
2 � 8ð5�

ffiffiffi
5
p
ÞQ 1Q 2 þ 2ð5�

ffiffiffi
5
p
ÞQ 1

þ 2ð5�
ffiffiffi
5
p
ÞQ 2� � ½6ð5þ

ffiffiffi
5
p
ÞQ 2

1Q2 þ 20Q1Q 2
2 � 3ð5

þ
ffiffiffi
5
p
ÞQ 2

1 � 10Q 2
2 � 8ð5þ

ffiffiffi
5
p
ÞQ 1Q 2 þ 2ð5þ

ffiffiffi
5
p
ÞQ 1

þ 2ð5þ
ffiffiffi
5
p
ÞQ 2�; ðA:9Þ
where the specific expressions of P2,12 and P3,12 are omitted. Here
the second index 12 stands for a rhombic truncated dodecahedral/
icosahedral tensegrity.
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