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Abstract

In this note we prove a version of the classical Dold–Thom theorem for the RO(G)-graded
equivariant homology functors HG

∗ (−;M), where G is a �nite group, M is a discrete Z[G]-module,
and M is the Mackey functor associated to M . In the case where M=Z with the trivial G-action,
our result says that, for a G-CW-complex X , and for a �nite dimensional G-representation V,
there is a natural isomorphism

[SV;Z0(X )]G ∼= HG
V (X ;Z);

where Z0(X ) denotes the free abelian group on X .
c© 2003 Elsevier B.V. All rights reserved.

MSC: Primary: 55P91

1. Introduction

It is a classical result of Dold and Thom that for a CW-complex X there is a natural
isomorphism

Hn(X ;Z) ∼= �n(Z0(X ));

where Z0(X ) denotes the free abelian group on X . More generally, for a discrete
abelian group M , one can consider the topological abelian group M ⊗ X—see
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De�nition 2.1 below. In [11] it is proved that

�n(M ⊗ X ) ∼= H̃ n(X ;M):
In [8, Thoerem 4.5] Lima-Filho proved an equivariant version of the Dold–Thom

theorem. It says that if X is a G-CW-complex and G is a �nite group then

HGn (X ;Z) ∼= �n(Z0(X )G); (1)

where HGn (X ;Z) denotes the Bredon homology of X with coe�cients in the Mackey
functor Z. For the de�nition of Mackey functor and Bredon homology see [10].
In this paper G will always denote a �nite group.
Our goal in this note is to generalize Lima-Filho’s result [8, Theorem 4.5] in the

following two directions:

(1) We replace Z by the Mackey functor M associated to a discrete Z[G]-module
M as follows: the value of M on G=H is MH and the value on the projection
G=K → G=H , for K6H6G, is the inclusion of MH in MK . The functor Z
corresponds to the case M = Z with the trivial action.

(2) We replace Bredon homology with the corresponding RO(G)-graded homology
theory [10]. For a �nite-dimensional G-representation V , the value of this homol-
ogy theory in dimension V is denoted by H̃GV (−;M). The space M ⊗ X has a
natural G-action. We replace the homotopy group in (1) by the set of equivariant
homotopy classes [SV ;M ⊗ X ]G, where SV = V ∪ {∞}. The set [SV ;M ⊗ X ]G is
also denoted by �GV (M ⊗ X ).

Our main result is the following.

Theorem 1.1. Let X be a based G-CW-complex and let V be a �nite-dimensional
G-representation, then M ⊗ X is an equivariant in�nite loop space and there is a
natural equivalence

�GV (M ⊗ X ) ∼= H̃GV (X ;M): (2)

As a corollary to this theorem we see that M ⊗ SV is a K(M;V ) space. Thus we
have identi�ed a simple model for the equivariant Eilenberg–Mac Lane spectrum HM .
Observe that, if Sn is equipped with the trivial G-action, the right-hand side of (1)

can also be described as the set of equivariant homotopy classes [Sn;Z0(X )]G. Thus (1)
is a particular case of (2) with M =Z and V a trivial G-representation of dimension n.
The paper is organized as follows. In Section 2 we de�ne the functor M ⊗ − and

prove that Theorem 1.1 holds in the case where V =Rn. In Section 3 we show that if
R is a discrete commutative G-ring then R⊗− is a functor with smash products (FSP)
and that if M is a discrete R[G]-module then M ⊗− is a module over R⊗−. Using
these facts we de�ne a G-spectrum M ⊗S and identify it as the Eilenberg–Mac Lane
spectrum HM . This model for HM is used in Section 4 to prove Theorem 1.1. In
Section 5 we describe brie�y an application of Theorem 1.1 to the study of algebraic
cycles on real projective varieties.
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2. Equivariant Dold–Thom for Bredon homology with M coe�cients

In this paper GT denotes the category of based compactly generated G-spaces and
based G-maps. Following Mandell and May [9] we consider the categoryTG which has
the same objects as GT and whose morphisms are non-equivariant based maps. Note
that TG is enriched over GT: its morphisms are G-spaces (G acts by conjugation)
and composition is given by G-maps. A functor F :C → D, between GT-enriched
categories, is GT-enriched if F :C(X; Y )→ D(F(X ); F(Y )) is a map of G-spaces for
all X; Y .
We start by de�ning functors M ⊗ − in the categories of G-sets, simplicial G-sets

and G-spaces.

De�nition 2.1. Let M be a discrete Z[G]-module.

(a) Given a based G-set X (with base point ∗) we let M ⊗X denote the Z[G]-module⊕
x∈X−{∗}M (the action of g∈G is given by (g ·m)x=g ·mg−1·x, where mx denotes

the xth coordinate of m∈⊕x∈X−{∗}M). The correspondence X �→ M ⊗X de�nes
a covariant functor from based G-sets to Z[G]-modules.

(b) Given a simplicial set X•, the correspondence n �→ M ⊗ Xn de�nes a G-simplicial
abelian group which we denote by M ⊗ X•.

(c) Given X a based G-space, we endow the Z[G]-module M ⊗X with a topology as
follows. The group M ⊗X can be equivalently de�ned as the quotient

∐
n¿0M

n×
X n= ∼, where ∼ is the equivalence relation generated by:
(i) (r; �∗x) ∼ (�∗r; x), for each based map 2 � : {0; : : : ; n} → {0; : : : ; m}; n; m∈N,

where �∗x = x ◦ � and (�∗r)i =
∑

k∈�−1(i) rk .
(ii) ((r; r′); (x; ∗)) ∼ (r; x), for each r ∈Mn; r′ ∈M; x∈X n with ∗ denoting the

base point of X .
We give the discrete topology to M and endow M ⊗ X with the quotient topol-
ogy corresponding to the relation ∼. The correspondence X �→ M ⊗ X de�nes a
GT-enriched functor from TG to the category of topological Z[G]-modules.

Notation 2.2. (a) Given m∈Mn and x∈X n, the image of (m; x) in M ⊗ X will be
denoted

∑
i mixi.

(b) If f :X → Y is a map of based G-spaces, the induced homomorphism M⊗X →
M ⊗ Y will be denoted M ⊗ f.
(c) If m∈M and f :X → Y , the map X → M ⊗ Y de�ned by x �→ mf(x); x∈X ,

will be denoted m⊗ f.
(d) In [8], Z ⊗ X is denoted AG(X ), for a based space X , and for any space

X; Z⊗ X+, is denoted Z0(X ).
(e) In [11] M ⊗ X is denoted B(M;X ).

Remark 2.3. (a) The space M ∧ X—where M is considered as a based G-space with
the discrete topology having 0 as the base point—includes in M ⊗ X as the image

2 0 is the base point.
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of the natural map M × X → M ⊗ X . This inclusion is denoted –X and will be used
throughout.
(b) If X has the trivial action then (M⊗X )H=MH⊗X , for all H6G. In particular,

it follows from [11] that M⊗Sp is an equivariant Eilenberg–Mac Lane space K(M;p).
(c) For a pointed simplicial set X• the G-simplicial group M ⊗ X• can be alterna-

tively de�ned as the quotient
∐
n M

n × X n• = ∼, where ∼ is the equivalence relation
generated by (i) and (ii), in De�nition 2.1(c). Thus, since the realization functor | − |
commutes with colimits and �nite products, if X is the realization of X•, then M ⊗ X
is G-homeomorphic to |M ⊗ X•|.

Our goal in this section is to prove that, for a discrete Z[G]-module M ,

�Gn (M ⊗ (X=A)) ∼= HGn (X; A;M): (3)

In other words, we want to prove the Dold–Thom theorem for Bredon homology with
coe�cients in the Mackey functor M .
The following simple observation, due to Lima-Filho will be used throughout.

Lemma 2.4. Let S be a based �nite G-set.

(a) There is a G-homeomorphism F(S;M ⊗ X ) ’→M ⊗ (X ∧ S), where F(S;M ⊗ X )
denotes the space of based maps with the G-action given by conjugation.

(b) The homeomorphism ’ of (a) is natural with respect to the variable S: let h : S →
T be a G-map between �nite G-sets and let h∗ :F(T;M ⊗ X )→ F(S;M ⊗ X ) be
the map induced by h. Then the map ĥ :M ⊗ (X ∧ T ) → M ⊗ (X ∧ S) that
corresponds to h∗ under ’ is given by

ĥ(m(x ∧ t)) =
∑
h(s)=t

m(x ∧ s);

and the map �h :F(S;M ⊗ X ) → F(T;M ⊗ X ) that corresponds to Z ⊗ (id ∧ h)
under ’ is given by

�h(f)(t) =
∑
h(s)=t

f(s):

Proof. (a) There is a map RS;X : (M ⊗ X ) ∧ S → M ⊗ (X ∧ S) de�ned by

RS;X

((∑
i

mixi

)
∧ s
)
=
∑
i

mi(xi ∧ s):

The map ’ is de�ned by

’(f) =
∑
s∈S
RS;X (f(s) ∧ s):

It is easy to check that ’ is a G-homeomorphism.
(b) Straightforward from the de�nition of ’.
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Our approach to proving (3) is to show that the functor (X; A) �→ �G∗ (M ⊗ (X=A))
satis�es the axioms for an equivariant homology theory with M coe�cients. Just as
in the case of Z coe�cients, the main step in this proof is to show that the functor
X �→ M ⊗ X transforms G-co�ber sequences into G-�ber sequences.

Proposition 2.5. For a G-CW-pair (X; A) the projection M ⊗ X → M ⊗ (X=A) is
naturally G-homotopy equivalent to an equivariant Serre �bration.

Proof. Let (X•; A•) be the singular complex of (X; A). Then (X; A) is naturally G-
equivalent to |(X•; A•)| and, by continuity of M ⊗ −; (M ⊗ X;M ⊗ A) is naturally
G-equivalent to (M ⊗ |X•|; M ⊗ |A•|). By Remark 2.3, the pair (M ⊗ |X•|; M ⊗ |A•|)
is naturally G-homeomorphic to |(M ⊗ X•; M ⊗ A•)|. It is easy to see that, for any
H6G, the natural map

{M ⊗ X•}H ={M ⊗ A•}H → {M ⊗ (X•=A•)}H

is an isomorphism (let [x] denote the class of x∈X• in X•=A• and use the fact that
every non-zero element of M ⊗ (X•=A•) is of the form

∑
i mi⊗ [xi] with xi ∈X•−A•).

Therefore, the projection {M ⊗ X•}H → {M ⊗ (X•=A•)}H is a �bration for it is a
surjection of simplicial abelian groups (see [4, III.2.10]). Since the functors | − | and
−H commute, it follows that the projection |M ⊗ X•|H → |M ⊗ (X•=A•)|H is a Serre
�bration, for any H6G.

Remark 2.6. It is possible to show that the projection M⊗X → M⊗(X=A) is a locally
trivial (G; �;M ⊗ A)-bundle, where � :G → Aut(M ⊗ A) is induced by the action of G
on M ⊗ A (cf. [8, Theorem 2.7]). We will not prove this result here as it will not be
needed.

Corollary 2.7. For a G-CW pair (X; A) there is a natural equivalence

�Gn (M ⊗ (X=A)) ∼= HGn (X; A;M):

Proof. Consider the functors hk(X; A)
def= �Gk (M⊗(X=A)); k¿ 0, de�ned on the category

of G-CW-pairs. 3 We will show that h∗ satis�es the axioms of an ordinary G-homology
theory with coe�cients M :
G-homotopy axiom: A pair of G-homotopic maps f0; f1 : (X; A) → (Y; B) induces

equivariant abelian group homomorphisms M ⊗ f0; M ⊗ f1 :M ⊗ (X=A)→ M ⊗ (Y=B)
which are G-homotopic: if f : (X; A)× I → (Y; B) is a homotopy, then t �→ M ⊗ ft is
a G-homotopy from M ⊗f0 to M ⊗f1, hence M ⊗f0; M ⊗f1 induce the same map
on h∗(X; A).
Excision axiom: If f : (X; A)→ (Y; B) is a relative homeomorphism of G-pairs then

M⊗f :M⊗(X=A)→ M⊗(Y=B) is a G-homeomorphism which induces an isomorphism
h∗(X; A)→ h∗(Y; B).

3 For A = ∅ we set X=A = X+.
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Exact sequences: By Proposition 2.5 there is a natural transformation � : hk(X; A)→
hk−1(A; ∅) which �ts in an exact sequence

· · · → hk(A)→ hk(X )→ hk(X; A)→ hk−1(A)→ · · · :
Dimension axiom: For X = G=H we have

hk(X )=�Gk (M⊗(G=H+)) ∼= [Sk ; F(G=H+; M)]G ∼= [Sk ∧ G=H+; M ]G ∼= [Sk ;M ]H ;
where we used Lemma 2.4. It follows that hk(G=H) = 0 for k ¿ 0 and h0(G=H) ∼=
MH .

3. The G -spectrum M ⊗ S

In this section we use the functor M ⊗ − to produce a spectrum M ⊗ S which
we identify as the Eilenberg–Mac Lane spectrum HM in Proposition 3.7. In order to
de�ne M⊗S we will use the fact that, for a discrete commutative G-ring R, the functor
R⊗− is a functor with smash products (FSP).

De�nition 3.1 (Mandell and May [9]). A commutative TG-FSP is a GT-enriched
functor F :TG → TG with natural transformations �X;Y :F(X ) ∧ F(Y ) → F(X ∧ Y )
and �X :X → F(X ) such that the composite

F(X ) � S0 ∧ F(X ) �S0∧idF(X )−−−−−−→ F(S0) ∧ F(X ) �S0 ;X−−→F(S0 ∧ X ) � F(X )
is the identity and

(i) Unit property: �X∧Y ◦ (�X ∧ �Y ) = �X∧Y .
(ii) Associativity: �X;Y∧Z ◦ (idF(X ) ∧ �Y;Z) = �X∧Y;Z ◦ (�X;Y ∧ idF(Z)).
(iii) Commutativity: �Y;X ◦ �F(X );F(Y ) = F(�X;Y ) ◦ �X;Y , where � is the permutation

isomorphism.

A (left) module over F is a GT-enriched functor E :TG → TG with continuous
natural maps �X;Y :F(X ) ∧ E(Y )→ E(X ∧ Y ), such that the composite

E(X ) � S0 ∧ E(X ) �S0∧idE(X )−−−−−−→F(S0) ∧ E(X ) �S0 ;X−−→E(S0 ∧ X ) � E(X )
is the identity and �X;Y∧Z ◦ (idF(X ) ∧ �Y;Z) = �X∧Y;Z ◦ (�X;Y ∧ idE(Z)).

Proposition 3.2. Let R be a discrete commutative G-ring and let M be a discrete
R[G]-module. Then the functor R ⊗ − is a commutative TG-FSP and M ⊗ − is a
module over R⊗−.

Proof. Let 1 denote the identity element of R. We de�ne �X :X → R⊗X by �X (x)=1x.
Considering X ∧Y included in R⊗X ∧R⊗Y via �X ∧�Y we de�ne �X;Y : (R⊗X )∧(R⊗
Y )→ R⊗(X ∧Y ) as the R-bilinear extension of �X∧Y ; i.e. �X;Y ((

∑
r′i xi)∧(

∑
r′′j yj))=∑

i; j r
′
i r

′′
j (xi ∧ yj):
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By construction, the composite

R⊗ X � S0 ∧ (R⊗ X ) �S0∧idR⊗X−−−−−−→R⊗ S0 ∧ R⊗ X �S0 ;X−−→R⊗ (S0 ∧ X ) � R⊗ X
is the identity map. Moreover, the transformations � and � satisfy:

(i) Unit property: follows by construction of �X;Y .
(ii) Associativity: follows because both maps are R-trilinear extensions of �X∧Y∧Z .
(iii) Commutativity: follows easily from the de�nition of �Y;X as an R-bilinear exten-

sion of �Y∧X (where the commutativity of R was used implicitly).

Hence we conclude that R⊗− is a commutative TG-FSP.
Given a discrete R[G]-module M we de�ne �X;Y : (R⊗X )∧ (M ⊗Y )→ M ⊗ (X ∧Y )

by the formula �X;Y ((
∑
rixi) ∧ (

∑
mjyj)) =

∑
i; j rimj(xi ∧ yj). As in the case where

M = R it follows that the composite

M⊗X � S0∧(M ⊗ X ) �S0∧idM⊗X−−−−−−→R⊗ S0 ∧M ⊗ X �S0 ;X−−−→M ⊗ (S0 ∧ X ) � M ⊗ X
is the identity map. The equality �X;Y∧Z ◦ (idR⊗X ∧ �Y;Z) = �X∧Y;Z ◦ (�X;Y ∧ idM⊗Z)
follows as in (ii) above.

We can now de�ne the G-spectrum M ⊗ S and proceed to identify its equivariant
homotopy type. The problem of identifying the equivariant homotopy type of the M⊗S
in the case where M = Z was �rst addressed by Lima-Filho in [8]. Unfortunately, a
small computational error led him to incorrectly identify it as the Eilenberg–Mac Lane
spectrum of the Burnside ring Mackey functor.

De�nition 3.3. Let X be a G-CW-complex. The correspondence V �→ M⊗	VX , where
V runs over an indexing set A of a complete G-universe U, de�nes a G-prespectrum,
whose structural maps are the following composites:

SW ∧ (M ⊗ 	VX ) �SW ∧idM⊗	V X−−−−−−−→ (R⊗ SW ) ∧ (M ⊗ 	VX ) �SW ;	V X−−−→M ⊗ 	W+VX:
This G-prespectrum will be denoted by M ⊗ S∞X . The associated G-spectrum will be
denoted M ⊗ (	∞X ), except if X = S0 in which case it will be denoted M ⊗ S.

Remark 3.4. Note that, for a discrete commutative G-ring R, R⊗ S is an equivariant
E∞-ring spectrum as it is obtained from a commutative FSP (see [9]).

Before we can proceed we need to recall a few more facts from equivariant homotopy
theory.

De�nition 3.5 (Lewis [5]). Let X; Y be G-spaces, let f :X → Y be a G-map and let V
be a �nite-dimensional G-representation. For each subgroup H of G, let V (H) denote
an H -invariant complement of VH :

(i) f is a |V ∗|-equivalence if, for every subgroup H of G; fH :XH → YH is a
|VH |-equivalence.
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(ii) f is a V -equivalence if it is a |0∗|-equivalence, and for every subgroup H of
G; f∗ : �HV (H)+qX → �HV (H)+qY is an isomorphism for 06 q¡ |VH | and is an
epimorphism for q= |VH |.

(iii) X is |V ∗|-connected if XH is |VH |-connected, for every subgroup H of G.
(iv) X is V -connected if, �HV (H)+qX = 0 for 06 q6 |VH |, for every subgroup H

of G.

Lemma 3.6 (Lewis [5]). Let X; Y be G-spaces, V be a �nite-dimensional G-repre-
sentation, and f :X → Y be a G-map. Then

(i) X is V -connected if and only if it is |V ∗|-connected.
(ii) f is a V -equivalence if and only if it is a |V ∗|-equivalence.

Proposition 3.7. For a �nite group G, the G-spectrum M ⊗ S is an Eilenberg–Mac
Lane spectrum HM .

Proof. In Lemma 3.8 we prove that, for any representation V of G and for n¿ 0,

�GV+n(M ⊗ SV ) = 0:
The proof of Lemma 3.9(a) implies that M ⊗ SV is (|V ∗| − 1)-connected hence, for
n¡ 0, we have

�Gn (M ⊗ S) = colim
V

[SV+n;M ⊗ SV ]G = 0:

Hence �Gn (M ⊗S) = 0, for n = 0. Since this holds for every �nite group G, it follows
that �n(M ⊗ S) = 0 for n = 0. It remains to show that �0(M ⊗ S) =M .
We start by observing that the inclusion 
 : M ,→ (M ⊗S)(0) determines a map of

coe�cient systems 
∗ :M → �0(M⊗S): Thus, for each H6G, there is a commutative
diagram

M

MH
  

π0 (M    S)

π0
H

 (M    S).

�e
*

�H
*

Since 
e∗ is an isomorphism, the maps 

H
∗ are injective. In Lemma 3.9 we show that


H∗ is also surjective. It follows that 
∗ is an isomorphism of coe�cient systems.
Since M is completely determined by the groups M (G=H) and the restriction maps
(see the proof of [6, Proposition V.9.10] for M = Z), it follows that �0(M ⊗ S) =M
is Mackey functors.

Lemma 3.8. Let V be a �nite-dimensional G-representation. Then for all k ¿ 0,

�GV+k(M ⊗ SV ) = 0:
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Proof. In the case of M=Z this is proved in [8]. The proof for a general M is exactly
the same. We include the details for completeness.
Let (Xp)p6d denote the skeleta of a G-CW decomposition of SV . Consider the tower

F(SV ;M ⊗ X0)G

↓
F(SV ;M ⊗ X1)G → F(SV ;M ⊗ (X1=X0))G

↓
...

↓
F(SV ;M ⊗ Xd)G → F(SV ;M ⊗ (Xd=Xd−1))G:

The E1 term of the spectral sequence associated to the homotopy groups of this tower
is given by

E1p;q = �
G
V+p+q(M ⊗ (Xp=Xp−1));

and the sequence converges to �GV+p+q(M ⊗ SV ) in the range (p; q) where p+ q¿ 0.
Denoting the set of p-cells of X by �p, we have

E1p;q = �
G
V+p+q


M ⊗


 ∨
�∈�p

Sp ∧ G=H�+






∼= �GV+p+q


⊕
�∈�p

M ⊗ (Sp ∧ G=H�+)



∼=
⊕
�∈�p

�GV+p+qM ⊗ (Sp ∧ G=H�+):

Now let k ¿ 0 and let �∈�p be a cell of type H�. We have,
�GV+k(M ⊗ (Sp ∧ G=H�+)) ∼= �GV+k(F(G=H�+ ; M ⊗ Sp) ∼= �H�V+k(M ⊗ Sp):

Write V as VH�⊕V (H�). Then, since M⊗Sp is an Eilenberg–Mac Lane space K(M;p),
[SV+k ; M ⊗ Sp]H� ∼= H̃

p−|VH� |−k
H� (SV (H�);M): (4)

Note that k ¿ 0 and p6 |VH� | because the cell � is contained in ⋃g∈G{gSVH� g−1}.
Hence the right-hand group in (4) is zero. We conclude that E1p;q = 0, if p + q = k,
which implies that �GV+k(M ⊗ SV ) = 0.

Lemma 3.9. The inclusion

M 
→ colim
V

�V (M ⊗ SV )

induces a surjective map MG → colimV �GV (M ⊗ SV ).
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Proof. For each m∈M; 
(m) is represented in the colimit above by maps of the
form m⊗ id (see Notation 2.2(c)), where id : SV → SV is the identity. The lemma will
follow if we show that

(a) The inclusion iV :M ∧ SV → M ⊗ SV is surjective on �GV .
(b) Any G-equivariant map SV → M ∧ SV is G-homotopic in colimV �V (M ⊗ SV ) to


(m), for some m∈M .

Proof of (a). It su�ces to prove that iV is a |V ∗|-equivalence—see Lemma 3.6.
Fix H6G, set n(H)= |VH | and write V as VH⊕V (H). The inclusion (M ∧SV )H ⊂

(M ⊗ SV )H factors as follows:
(M ∧ SV )H =MH ∧ SVH ⊂ (M ⊗ SVH )H ⊂ (M ⊗ SV )H :

Since the �rst inclusion is clearly an n(H)-equivalence, we need only show that the
same is true of the second inclusion. By Corollary 2.7, this translates into a statement
about the map induced in Bredon homology with M coe�cients by the inclusion SV

H ⊂
SV. For k ¡n(H), we have

�Hk (M ⊗ SV ) ∼= H̃Hk (SV ;M) ∼= H̃ k−n(H)(SV (H);M) = 0:
For k = n(H), we have to show that the map

HHk (S
VH ;M)→ HHk (S

V ;M)

is onto. Now observe that SV ∼= SVH ∗ S(V (H))—where ∗ denotes the unreduced join
and S(V (H)) is the unit sphere. Thus,

SV =SV
H ∼= SVH+1 ∧ S(V (H))+;

and this gives H̃Hn(H)(S
V =SV

H
;M) = 0. The Bredon homology exact sequence of the

pair (V; VH ) shows that H̃Hn(H)(S
VH ;M)→ H̃Hn(H)(S

V ;M) is onto, as required.

Proof of (b). We start by considering the case where M = Z. It su�ces to show that
given an element [f]∈{S0; S0}G, there is a G-representation V and an integer k such
that the map 1⊗f is G-homotopic in Z⊗SV to the map k⊗ id (the proof of (a) shows
that SV ⊂ Z⊗SV is surjective on �GV ). Recall that {S0; S0}G is isomorphic to the Burn-
side ring A(G). We will use the ring isomorphism I :A(G) → {S0; S0}G constructed
in [12, Section II.8]. In particular, we will use the additive basis {I(G=H):H6G}
for {S0; S0}G. We will show that 1 ⊗ I(G=H) is G-homotopic to |G=H | ⊗ id. Since
I(G=G) = id we can assume H ¡G and |G|¿ 1. The proof proceeds by induction on
|G|. Now, the element I(G=H) can be represented by a composite

SV
�(G=H)−−−−→ SV ∧ G=H+ pr−−→ SV ; (5)

where V is a large enough G-representation and pr is the projection—see [12, Section
II.8]. It follows that 1⊗ I(G=H) factors as

SV
1⊗�(G=H)−−−−−→ Z⊗ (SV ∧ G=H+) Z⊗pr−−−−→ Z⊗ SV :
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By Lemma 2.4(a), there is an isomorphism ’∗ : [SV ;Z ⊗ SV ]H ∼= [SV ;Z ⊗
(SV ∧ G=H+)]G and so, assuming V is large enough, it follows by the induction hy-
pothesis that 1 ⊗ �(G=H) = ’∗(k ⊗ id), for some integer k. From Lemma 2.4(b), it
follows that (Z ⊗ pr) ◦ (1 ⊗ �(G=H)) = k|G=H | ⊗ id. This completes the proof of the
case M = Z. Since non-equivariantly I(G=H) = |G=H |id, we have k = 1.
We now consider the case of a general M . Decomposing M into G-orbits the problem

can be reduced to proving the following assertion: given an inclusion  :G=H+ → M
and [f]∈{S0; G=H+}G there is a large enough representation V such that the composite

SV
f→G=H+ ∧ SV ∧id−−−−−→M ∧ SV –SV−−−→M ⊗ SV (6)

is G-homotopic to m ⊗ id, for some m∈MG. We note that composite (6) factors as
follows:

SV
f→G=H+ ∧ SV

�G=H+∧SV−−−−−→Z⊗ (G=H+ ∧ SV ) ]−−−→M ⊗ SV ;
where ] is the group homomorphism induced by –G=H+∧SV ◦ ( ∧ id). From the equiv-
alence ’∗ : [SV ;Z⊗ SV ]H → [SV ;Z⊗ (SV ∧G=H+)]G of Lemma 2.4 and from the case
M=Z, we see that �G=H+∧SV ◦f is homotopic to ’∗(k⊗ id), for some integer k. A sim-
ple computation shows that setting m=

∑
r∈(G=H) r, we have ]◦(’∗(k⊗ id))=km⊗ id.

This completes the proof.

4. The RO(G )-graded version of the Dold–Thom theorem

Recall that, since M is a Mackey functor, the homology theory HG∗ (−;M) extends to
an RO(G)-graded theory which is represented by HM—see [10]. Having identi�ed M⊗
S as an Eilenberg–Mac Lane G-spectrum HM it follows that for a �nite-dimensional
G-representation V and a based G-CW-complex X , we have

H̃GV (X ;M) ∼= �V ((M ⊗ S) ∧ X ):
We will show that actually,

H̃GV (X ;M) ∼= �GV (M ⊗ X ):

De�nition 4.1. For a G-CW-complex X and V ∈U there is a map

RX;SV : (M ⊗ SV ) ∧ X →M ⊗ (SV ∧ X );(∑
i

mixi

)
∧ y �→

∑
i

mi(xi ∧ y):

It is clear that the maps RX;SV assemble into a map of G-spectra

(M ⊗ S) ∧ X → M ⊗ 	∞X

(see De�nition 3.3) which we denote by R	∞X . The zero component of this map of
spectra will be denoted by R0	∞X .
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Proposition 4.2. Let X be a based G-CW-complex. The inclusion


X :M ⊗ X → colim
V

�V{M ⊗ (SV ∧ X )}= (M ⊗ 	∞X )(0)

and the map

R0	∞X : ((M ⊗ S) ∧ X )(0)→ (M ⊗ 	∞X )(0)

are G-homotopy equivalences.

Proof. From what was proved so far we know that

�Gn (M ⊗ X ) ∼= H̃Gn (X ;M) ∼= �Gn
(
colim
V

�V{(M ⊗ SV ) ∧ X }
)
:

Consider the functors HG
∗ from pointed G-CW-complexes to abelian groups, de�ned

by

HG
n (X )

def= colim
V

[SV+n;M ⊗ (SV ∧ X )]G = �Gn ((M ⊗ 	∞X )(0)):

Using Proposition 2.5 and the fact that colimits preserve exact sequences, one can
easily show that HG

∗ (−) de�nes an equivariant homology theory. Also 
− induces a
transformation of equivariant cohomology theories which, for each X , is de�ned by


X ∗ : �
G
∗ (M ⊗ X )→ �G∗ (M ⊗ 	∞X )(0) =HG

n (X ):

Hence it su�ces to show that 
X∗ is an isomorphism for X = G=H+; H6G. By
Propositions 3.7 and 2.4, we have

HG
n (G=H+) ∼= colimV [SV+n;M ⊗ SV ]H ∼=

{
MH ; n= 0;

0; n = 0;
and it is easy to check that this isomorphism is 
G=H+∗ . This completes the proof of
the �rst assertion.
The proof of the statement concerning R0	∞X is similar. We observe that R0	∞−

induces a map on Bredon homotopy groups which is a self-transformation of the
equivariant homology theory H̃G∗ (−;M). Hence it su�ces to show that R0	∞G=H+

is
an equivariant homotopy equivalence, for each H6G. Consider the composite

{M ⊗ S} ∧ G=H+
R	∞G=H+−−−−−→M ⊗ {S ∧ G=H+} ’−1

−−−→F(G=H+; M ⊗ S);
where ’ is the equivalence induced by the space level equivalence of Lemma 2.4. We
claim that ’−1 ◦ R	∞G=H+ is the G-map f̃ determined by the H -map f : {M ⊗ S} ∧
G=H+ → M ⊗S which collapses the complement of {M ⊗S} ∧ eH to the base point.
Indeed, on the space level, we have

’−1(RG=H+ ;SV ((mx) ∧ g1H))(g2H) =
{
mx if g1H = g2H;

0 otherwise;

= f̃((mx) ∧ g1H)(g2H):
Thus, ’−1 ◦ R	∞G=H+ is the inverse of the Wirthm�uller isomorphism (see [6, Lemma
II.6.10 and Theorem II.6.2] or [12, Proposition II.6.12]). We conclude that, for any
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based G-CW-complex X; R0	∞X induces an isomorphism on Bredon homotopy groups,
and hence it is an equivariant homotopy equivalence.

Theorem 1.1. Let X be a based G-CW-complex and let V be a �nite-dimensional
G-representation, then M ⊗ X is an equivariant in�nite loop space and there is a
natural equivalence

�GV (M ⊗ X ) ∼= H̃GV (X ;M):

Proof. This is an immediate consequence of the Proposition above.

De�nition 4.3. Let V ∈RO(G). A K(M;V ) space is a classifying space for the functor
H̃ VG(−;M).

Corollary 4.4. Let V be a �nite-dimensional representation of G. The space M ⊗ SV
is a K(M;V )-space.

5. Application: Lawson homology for real varieties

An algebraic p-cycle on a complex projective variety X is a �nite formal sum
� =

∑
i niVi where the ni’s are integers and the Vi’s are (irreducible) subvarieties of

dimension p in X . The group of p-cycles Zp(X ) can be equipped with a Hausdor�
topology making it a topological group. The homotopy groups of Zp(X ) form a set
of invariants called the Lawson homology of X [2,7]. In [3] it is shown that there is a
natural map sp :Zp(X ) → �2pZ0(X ). Passing to homotopy groups and applying the
classical Dold–Thom theorem we get a map

�kZp(X )→ �k+2pZ0(X ) ∼= Hk+2p(X ;Z):
Thus Lawson homology maps to singular homology. This map is very useful in com-
putations.
If X is a real projective variety (i.e. de�ned by real equations) then the Galois group

Z=2 = Gal(C=R) acts on Zp(X ). In [1] we de�ne a version of Lawson homology for
real projective varieties as Z=2-equivariant homotopy groups of Zp(X ). One can show
that the map sp is actually an equivariant map sp :Zp(X ) → �C

p
Z0(X ), where Cp

is considered as a Z=2-representation under the action of complex conjugation. Passing
to homotopy groups and applying Theorem 1.1 we get a map

�Z=2V Zp(X )→ �Z=2V+CpZ0(X ) ∼= HZ=2V+Cp(X ;Z);

so that real Lawson homology maps to equivariant homology with Z coe�cients. This
map is very useful in the computation of real Lawson homology for real varieties such
as products of projective spaces, grassmanianns and certain quadrics.
In the case of projective space Pn one can use Theorem 1.1 to show [1] that there

is a Z=2-homotopy equivalence

Zp(Pn) ∼= K(Z; 0)× K(Z;C)× · · · × K(Z;Cn−p):
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