L

View metadata, citation and similar papers at core.ac.uk brought to you byf/\i CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com

“=.“ ScienceDirect JOURNAL OF

Algebra

ELSEVIER Journal of Algebra 304 (2006) 712-754

www.elsevier.com/locate/jalgebra

On the 3-state Mealy automata over an m-symbol
alphabet of growth order [n!087/210gm]

Illya I. Reznykov **, Vitaliy I. Sushchansky ®

4 JKC5 Ltd. 5, Krasnogvardeyskaya str., Office 2, Kyiv 02094, Ukraine
b Institute of Mathematics, Silesian University of Technology, ul. Kaszubska, 23, 44-100 Gliwice, Poland

Received 14 July 2005
Available online 6 June 2006

Communicated by Efim Zelmanov

Abstract

We consider sequence {J,,;, m > 2} of 3-state Mealy automata over an m-symbol alphabet such that the
growth of J, is intermediate of order [nl0gn/210gm] For each automaton Jy, we describe the transformation
monoid S, , defined by it, provide generating series for the growth functions, and consider some properties
of Sy, and Jy.
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1. Introduction

Objects of intermediate growth attract attention of researchers, especially after the paper of
Milnor [1], where he raised the question on the existence of groups of intermediate growth.
The first groups of intermediate growth were constructed by Grigorchuk in 1984 [2] (see also
[3]), and the first semigroup of intermediate growth was constructed by Belyaev, Sesekin and
Trofimov in 1977 [4] (see also [5]). As the growth of Mealy automata is close related to the
growth of automaton transformation (semi)groups, defined by them, therefore the first example
of the Mealy automaton of intermediate growth, which is called the Grigorchuk’s automaton,
follows from results of [2]. Various Mealy automata of intermediate growth were found in later
years (see, for example, [6,7]). But the properties of the growth of groups, semigroups and Mealy
automata are different in kind (see, for example, [8,9]).

In [10] Grigorchuk proves that there exists a lacuna in intermediate growth orders of residually
p-groups. He shows the following result (for definitions see Section 3):

Theorem 1.1. [10] Let G be an arbitrary finitely generated group that is residually p-group for
some prime p, and yg be the growth function of G. If yg < exp(s/n), then it has polynomial
growth.

Moreover, there exist groups of the growth order [exp(+/7 )], that is the lower bound of inter-
mediate growth orders of residually p-groups. Indeed,

Theorem 1.2. [10] For any prime p there exists a finitely generated p-group G, that the following
equality holds

¥G ~ exp(v/n).

On the other hand, a set of semigroup growth orders does not have such lacuna. In [5] Lavrik-
Minnlin considers the growth of two semigroups Q and S that were introduced in [11] and [4],
respectively. She proves that the growth function of the semigroup S is equivalent to exp(/n),
and the growth function yp of Q satisfies the following equality
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whence the growth order of y is strictly less than [exp(y/n)].

The Mealy automata of intermediate growth are actively studied, too. As the group of au-
tomaton transformations defined by a Mealy automaton is residually finite, then it follows from
Theorem 1.1 that invertible Mealy automata have a similar growth property:

Theorem 1.3. [12] Let A be an invertible Mealy automaton over the alphabet {0, 1, ..., p — 1}
(p is a prime number), where, for any state q, the output function \(-, q) is a power of the cyclic
permutation (0,1, ..., p— 1). If the growth order of A is strictly less than [exp(y/n)] then Sa
contains a nilpotent subsemigroup of finite index, and A has polynomial growth.

Hence, the growth order of an arbitrary invertible automaton of intermediate growth is greater
or equal to [exp(s/7)]. But there are no examples of invertible Mealy automata of the interme-
diate growth order [exp(y/n)].

Simultaneously growth of initial Mealy automata is considered, and it produces interesting
growth orders. For example, in [12] the growth function of “the adding machine” as the initial
Mealy automaton is considered, and there is proved that it has the logarithmic growth order
[log,, n]. But the question on the existence (non-initial) Mealy automata with logarithmic growth
is still open [12].

There are many interesting examples of the growth among all (invertible and non-invertible)
non-initial Mealy automata. Let us denote the set of all n-state Mealy automata over the m-
symbol alphabet by the symbol A, «,,. We have created the programming system (see [13]) and
have already modeled many automata, among them all automata from the sets A>x2, A3x2, A2x3,
and As4. Analyzing these data, we have found automata with new intermediate growth orders.

The smallest Mealy automaton [, of intermediate growth was found in the set Ay x> (see [7]).
It is proved in [7] that the growth order of the growth function yy, satisfies the following inequal-
ities

[exp(v/m)] < [yn] < [exp(v/n)].

In collaboration with Bartholdi [14] we show the sharp asymptotic of y;,, and prove that the
following equality holds

[vi] = [exp(v/n)].

The question on the existence of Mealy automaton of intermediate growth such that its growth
function has the growth order that is less than [exp(4/n)], was raised. Basing on the results
of calculated experiments, we set up the hypothesis that intermediate growth orders of Mealy
automata fill a lacuna between polynomial and exponential growth orders. Moreover, there exist
Mealy automata with growth orders between polynomial growth orders of integral degrees.

In the paper we consider the sequence {J,,, m > 2} of the 3-state Mealy automata over an
m-symbol alphabet (see Fig. 1) such that the growth function of J,,, m > 2, has the interme-
diate growth order [1'°8"/212™] These automata substantiate the first part of our hypothesis.
Every automaton J, is an example of Mealy automaton such that the growth order of its growth
function is less than [exp(y/7)]. J» is introduced in [9] in conjecture with composite growth
functions.
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Fig. 1. The automaton J,.

The paper has the following structure. The main results are formulated in Section 2, which
includes three subsections. The automaton transformation monoid Sy, , defined by J;, and its
relations are considered in Subsection 2.1. The properties of the growth of S;, and J,, are de-
scribed in Subsection 2.2. There are constructed the generating series, shown sharp asymptotics,
and proved interesting arithmetic properties. Subsection 2.3 is devoted to the properties of se-
quences, that are defined by the sequence {J,,,, m > 2}. Preliminaries are listed in Section 3. The
results listed in the subsections of Section 2 are proved in Sections 4-0, respectively. Finally, in
Section 7 we consider the Mealy automaton with the “similar” numerical properties and discuss
the sequel investigations.

2. Main results

Let J,,, m > 2, be the 3-state Mealy automaton over the m-symbol alphabet such that its
Moore diagram is shown on Fig. 1. Let us denote the semigroup defined by J,,, by the symbol
S,,» and the growth functions of J,, and S, by the symbols y,,, and ys, , respectively.
2.1. Semigroup Sy,

Let m > 2 be a fixed integer. The following theorem holds:
Theorem 2.1. The semigroup S, is a monoid, and has the following presentation:

Sy, =le. fo. ful Ratk, p), Rp(k), k>0, p=1,2,....m—1),
where the relations R4 (k, p) and Rp(k) are defined by the following equalities
ol T o o B o o
= 1" oo S o o

and

foflmkf1 ‘ff"kﬂfoff"k*]fom 1'"271f0f{”7]f0
= 1" ot oo £ o £ o
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where k > 0, p > 1, respectively.
The monoid S, is infinitely presented, and the word problem may be solved in no more than
quadratic time.

Corollary 2.2. The relations

mFpeo—1 g mkpe—1 o mF = p -1 mp1—1
f0f1 * 'f1 +f0f1 f()f1 f() 1 ] f()

mkH[’k 1 mkpk—l mk’lpk_|—1 mpy;—1
:fl +fOf] fOfl Jo--- 1 : Jos

where k 20, 1 < pryo<m—1, pry1 20, p; = 1,1 =1,2,...,k, form the rewriting system
of 87,

2.2. Growth of Jy, and S},

Let us denote the growth series 3, - v, (n) X" of the automaton J, and the growth series
2,120 VS (n)X" of the monoid S, by the symbols I';, (X) and I's m (X ), respectively.

Theorem 2.3. The growth series I';, and I's, coincide and admit the description

2

Iy (X)= — X (12 X X
A=A Tx)2 1—X 1—xm 1 _ xm’

xm xm*
' <1+ - xm <1+ 1—Xm4(1+m)>>>>>'

Corollary 2.4. The word growth series Ag, (X) = 2”20 3s,,, M) X" of Sy, is defined by the
following equality

ps, )= —— (145 (14X (14 X2
ST T X 1-X 1—xm 1 — xm’

2

(15 (1 5 +9)))
' 1— xm T—xm T '

Let y be an arbitrary function, and let us denote the ith finite difference of y by the sym-
bols y @, i >1,ie.,

yOm)=ym)—yn—1),
y D)=y mn) —yi=Pm -1,

where i >2,n > i+ 1. Clearly the first difference of yg, equals §g, .The arithmetic properties
of y,,, and s, ~are formulated in the following corollary:
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Corollary 2.5.

(1) The word growth function 8, = satisfies the following equality

85, (n+1) =85, (n):(ssjm([%D, n>0. @1

(2) The functions vy, and 8s, =~ satisfy the following equality

vy, (n) = (Ssjm (m(n + 1)) — 1), n>=0.

1
m

(3) Let us assume yj(j)(l) = yj(i) (2) = 1. The value yj(i) (n), n > 1, is equal to the number of
partitions of n into “sequential” powers of m, i.e., to the cardinality of the following set

k
{po,pl,...,pk’kZO, S pimi=n, pi=1,i=0,1,... k{.
i=0

The following theorem and corollary describe the asymptotics and the growth orders of the

functions yy,, and ys, .

Theorem 2.6. The growth functions have the following sharp estimates:
logn
SSJ (n) ~ p 2logm ;
m

log(m(n+1))

1
Yin (}'l) = VSJ,;, (n) ~ Z (m(n + 1)) 2Togm

Corollary 2.7. The growth orders of y,,, and ys, —coincide, and are equal to

logn

[VJm] == [ySJm] = [ntm]
2.3. The properties of {J,,, m =2}

The sequence {J,,, m > 2} arrive in natural way at three sequences: of the growth functions
{vs,,, m = 2}, of the growth orders {[y,,, ], m > 2}, and of the automaton transformation semi-
groups {S;,, m > 2}. The following theorem characterizes boundary behavior of two of these
sequences.

Theorem 2.8.

(1) The sequence of the growth orders {[y;,], m = 2} is a decreasing monotonic sequence.
(2) The sequence of the growth functions {y;,, m = 2} tends pointwisely to the function
n+1)(n+2)/2 at m — +oo.
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Zo, Tg T_1,%9
1, Xy

Fig. 2. The automaton J'.

(3) Let J' be the automaton shown on Fig. 2. J' is similar (in the sense of Definition 3.10) to a
pointwise limit of the sequence {J,,, m > 2}, and it defines the monoid

SJ/ :(ev fO» fl I fof]pf():f()’ p 20, fof]p:foflv P> 1)
with the growth function ys,, (n) =3n, n > 1.

Moreover, the growth function of a pointwise limit of automaton sequence does not coincide
with a pointwise limit of growth function sequence.

The item (3) of this theorem follows from referee’s notes.
3. Preliminaries

By N we mean the set of non-negative integers N= {0, 1, 2, ...}.

We denote the remainder of a non-negative integer p modulo m by the symbol [ p]l,,, and
denote the integral part of a real number r by the symbol [r]. Obviously for any positive integers
p,m the following equality holds p = m[£]+ [p]l.

3.1. Growth functions

Let us consider the set of positive functions of a natural argument y : N — N; in the sequel

such functions are called growth functions. Let y; :N — N and y, :N — N be arbitrary growth

functions.

Definition 3.1. The function y; has no greater growth order (notation y; < y»2) than the func-
tion y,, if there exist numbers Cy, C2, Ng € N such that

y1(n) < Cry2(Can)
for any n > Np.

Definition 3.2. The growth functions y; and y» are equivalent or have the same growth order
(notation y; ~ y»), if the following inequalities hold:

ix<y2 and y»<yr.
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Definition 3.3. The growth function y; has less growth order (notation y; < y») than the func-
tion yy, if y1 < y2 but yo = yy.

The relation ~ on the set of growth functions is an equivalence relation. The equivalence class
of the function y is called the growth order and is denoted by the symbol [y]. The relation < (<)
induces an order relation, denoted < (<), on equivalence classes. The growth order [y] is called

(1) exponential, if [y] =[€"];
(2) intermediate, if [n9] < [¥] < [e"] for any d > O;
(3) polynomial, if [y] = [n4] for some d > 0.

The following proposition allows to compare growth orders.

Proposition 3.4. [15] Let y1, y» be arbitrary monotone non-decreasing growth functions. If there
exist h,a > 0 and b, ¢ > 0 such that the following equality

yi(n) =hy2(an+b) +c
holds for alln > N > 0, then [y1] = [y2].
3.2. Mealy automata

Let X,, be the m-symbol alphabet {xq, x1, ..., x,—1}, m > 2. We denote the set of all finite
words over X,,, including the empty word ¢, by the symbol X, and denote the set of all infinite
(to right) words by X&.

Let A = (X, Qn, , 1) be a non-initial Mealy automaton [16] with the finite set of states
0. ={fo, f1,..., fn—1}; input and output alphabets are the same and are equal to X,,,; 7 : X;, X
On — Op and A: X, X O, — X, are its transition and output functions, respectively. The
function A can be extended in a natural way to a mapping A : X5, x O, — X}, and then correctly
extended to a mapping A : X x Q, — X (see, for example, [17]).

An arbitrary Mealy automaton A can be described by the Moore diagram. The set of vertices
coincides with the set of states. The edge from the state f to the state g labeled by the label x;, x ;
denotes that 7w (x;, f) = g and A(x;, f) = x;. If there are several edges from f to g then we write
a unique edge and join labels.

Definition 3.5. For any state f € Q, the transformation f4: X;, — X% defined by the equality
fa)=xr(u, ),
where u € X{,, is called the automaton transformation defined by A at the state f.

Definition 3.6. [18] Let f: X% — X% be an arbitrary automaton transformation, and u € X}.
The automaton transformation f|, : X;, — X7, defined by

faw)=v- fl,(w),

where w € X{ and v is the beginning of f(uw) of length |u/|, is called the restriction of f at the
word u.
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The restrictions of the automaton transformation are characterized by the following proposi-
tion.

Proposition 3.7. [18] Let f be an automaton transformation, defined by the automaton A at the
state f, u € X be an arbitrary finite word. Then the restriction f|, is equal to the transforma-
tion defined by A at the state w(u, f).

Let f be an arbitrary state. Interpreting an automaton transformation as an endomorphism of
the rooted m-regular tree (see, for example, [12]), the image of the word u = uoujuy ... € X3
under the action of f4 can be written in the following way:

faluouyuy ...) = Auo, f)-gatuiuz...)=0oro) - ga(miuz...),
where g = 7 (ug, f) and
Uf:()L X0 X1 Xm—1 )
(x0, f) Alx1, f) ... A(xm—1, f)
It means that f, acts on the first symbol of u by the transformation oy over X,,, and acts on the

remainder of u# without its first symbol by the automaton transformation  (ug, f) 4. Therefore
the transformations defined by A have the following decomposition:

fi= (o, fi), w1, fi)s ooy wom, f))or s
wherei =0, 1,...,n — 1. The Mealy automaton A = (X,,,, Q,, w, 1) defines the set
Fa={fo. f1..--, fu—1}
of automaton transformations over X, . The Mealy automaton A is called invertible if all transfor-
mations from the set F'4 are bijections. It is easy to show that A is invertible iff the transformation

o is a permutation of X, for each state f € Q,.

Definition 3.8. [17] The Mealy automata A; = (X,,, Qy,, 7;, A;) for i =1, 2 are called equiva-
lent if Fp, = Fa,.

Proposition 3.9. [17] Each class of equivalent Mealy automata over the alphabet X,, contains,
up to isomorphism, a unique automaton that is minimal with respect to the number of states (such
an automaton is called reduced).

The minimal automaton can be found using the standard algorithm of minimization.

Definition 3.10. The Mealy automata A; = (X,,, Qn, 7, A;) for i = 1,2 are called similar if
there exist permutations & € Sym(X,,) and 6 € Sym(Q,,) such that

Omi(x, f) =m2(Ex,01), EM(X, f) =2r2(8x,0/)

forallx e X;, and f € Q,.
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Definition 3.11. [19] For i = 1,2 let A; = (X, Qp,, i, A;) be arbitrary Mealy automata. The
automaton A = (X, Qn, X QOn,, 7, A) such that its transition and output functions are defined
by the following equalities

7(x, (f.8) = (m1(22(x, ), f), m2(%, &),
A(x, (f,8) =2 (R2(x, 8), £),
where x € X, and (f, g) € Qn, x Qp,, is called the product of A and A;.

We apply the automaton transformations in right to left order, that is for arbitrary automaton
transformations f, g and for all u € X, the equality f - g(u) = f(g(u)) holds.

Proposition 3.12. [19] For any states f € Qn, and g € Qy, and an arbitrary word u € X}, the
following equality holds:

(fv g)Alez(u) = fA] (gAg(u))

It follows from Proposition 3.12 that for the transformations f4, and g4, the decomposition
of the product (f, g)a, x4, is defined by:

(f,8)AixA, = fa; - 8a, =(ho, b1, ..., hiu_1)0£,4,04 Ays
where the transformation h; = 71 (0o, 4, (X;), f)A] m2(xi, 8)4, fori =0,1,...,m— 1.
The power A" is defined for any automaton A and any positive integer 7. Let us denote A
the minimal Mealy automaton equivalent to A”. It follows from Definition 3.11 that |Q 4o | <
|0 a|". In addition, let A? be the 1-state automaton over an m-symbol alphabet such that o 7, is the

identical permutation if the semigroup Sy4 is a monoid; and A° be the 0O-state Mealy automaton
otherwise.

Definition 3.13. [20] The function y4 of a natural argument, defined by
ya() =10 ml,
where n € N, is called the growth function of the Mealy automaton A.
It is often convenient to encode the growth function in a generating series:

Definition 3.14. Let A be an arbitrary Mealy automaton. The growth series of A is the formal
power series

I'y(X) = ZJ/A(n)X”.

n>0
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3.3. Semigroups
The necessary definitions concerning semigroups may be found in [21]. Let S be a semigroup
with the finite set of generators G = {sq, 51, ..., Sk—1}. The length of a semigroup element s is

defined as a distance at the semigroup graph from the identity in a natural metrics, that is

£(s) :mlin{s =S8, 8irSi5 - - - S}, |S,'j eqG, 1<j<l).

Obviously for any s € S the inequality £(s) > 0 holds; and let £(e) = 0 when S is a monoid. The
normal form of a semigroup word is the equivalent semigroup word of minimal length.

Rewriting system for a semigroup is a set of equations (rules) of the form v = w. A semigroup
word is reduced if it does not contain occurrence of the left-hand side of a rule. The rewriting
system is complete if the set of reduced words is in bijection with the semigroup.

We will use several different growth functions of a semigroup. These functions are close
related with each other but they demonstrate different properties in the case of semigroups.
Definition 3.15. The function ys of a natural argument n € N defined by

ys) = |{s € S|t(s) <n}|
is called the growth function of S relative to the system G of generators.
Definition 3.16. The function y¢ of a natural argument n € N defined by

yg(n) = |{s €S|s=si8i,...5,, 5i; €G, 1 <j <n}|

is called the spherical growth function of S relative to the system G of generators.
Definition 3.17. The function §s of a natural argument n € N defined by

ss(n)=|{seS|t(s)=n}|
is called the word growth function of S relative to the system G of generators.

The following proposition is well-known (see, for example, [22]):

Proposition 3.18. Let S be an arbitrary finitely generated semigroup, and let G| and G, be
systems of generators of S. Let us denote the growth function of S relative to the set G; of

generators by the symbol ys,, fori =1,2. Then [ys,] =[ys,].

From Definitions 3.15-3.17 follows that the inequalities hold

5s(n)<J7s(n)<)/s(n)=25s(i), neN. 3.1
i=0
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Proposition 3.19. Let S be an arbitrary finitely generated monoid. Then
[6s]1 < [ysl=1Iysl.
If the system G of generators includes the identity, then for all n € N the equality
ys(n) = ys(n)
holds, where the growth functions are considered relatively to the set G.
The growth function of a semigroup can be encode in a generating series, too:

Definition 3.20. Let S be a semigroup generated by a finite set G. The growth series of S is the
formal power series

rs(x)=Y ysmX".

n>0

The power series Ag(X) = Zn>0 8s(n)X"™ can also be introduced; we then have Ag(X) =
(1 — X)I's(X). The series Ag is called the word growth series of the semigroup S.

Definition 3.21. Let A = (X,,;, On, 7, A) be a Mealy automaton. A semigroup
Sa=sg(fo, f1,--- fa=1)
is called the automaton transformation semigroup defined by A.
Let A be a Mealy automaton, let S4 be the semigroup defined by A, and let us denote the
growth function and the spherical growth function of S4 by the symbols ys, and yg ,» Tespec-

tively. From Definition 3.21 we have

Proposition 3.22. [20] For any n € N the value y4(n) is equal to the number of those elements
of S4 that can be presented as a product of length n in the generators { fo, fi,..., fa—1}, i.e.,

ya(n) =ys, (n), neN.

Proposition 3.23. Let A;, i =1, 2, be arbitrary similar automata. Then S, and Sa, are isomor-
phic semigroups, and ya,(n) = ya,(n) forall n = 0.

From this proposition and (3.1) follows that y4(n) < ys, (n) for any n € N. Moreover, Mealy
automata of polynomial growth such that the equality [ya] < [ys,] holds are considered in [23].

4. Semigroup Sy,

Let us fix m > 2 in this section.
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4.1. Semigroup relations

Let o;: X,, = X, i =0,1,...,m — 1, be the transformation such that «;(x) = x; for all
x e X,,.Leto : X;, — X, be the permutation such that o (x;) = X(j+1) mod m foralli =0, 1, ...,
m — 1. Then «; and o are defined by the following equalities

o = X0 X1 ... Xm—1 o= X0 X1 .- Xm—2 Xm—1
i = , = .
Xi Xi Xi X1 X2 ... Xm—=1 X0

Using these equalities, the power of o is defined by the following equality

i — ( X0 X1 Xm—2 Xm—1 )
xﬂinm x“i+1“m R x[[i+m*2]]m x“i‘i’m*lﬂm

for all i > 0. In addition, o/ = o/ if and only if i = j mod m.

The automaton J,, obviously defines the identical automaton transformation at the state e,
and therefore S, is a monoid. In the sequel, we assume f 0 = ¢ for an arbitrary automaton
transformation f. Using these agreements, the decompositions of the transformations fy and fi
are defined by the following equalities

fo=(e,e,... e, fo)xo, fi=(e,e,....e, f1)o. “.1)

LetZ, =1{0,1,...,m—1}andletn:Z, — X, be anatural bijection such that (i) = x;. The
function 7 can be extended to a mapping of Z into the set of infinite words, where each integer is
considered as an m-adic number written from left-to-right order and supplemented with infinite
sequence of 0 or 1 depending on a sign.

It follows from (4.1) that the action of f] can be interpreted as the adding one to the input
number. Namely, for any pg > 0 and p; we have

P (n(p1)) =n(po+ p1).

The action of the automaton transformation fj can be described in the following way. It follows
from the Moore diagram of J,,, that fj replaces each symbol x,,_ till the first symbol y # x,,, 1
by xo, and then replaces y by x¢. Let p and g be arbitrary m-adic numbers:

P=2ann, q:ZQnmny

n>0 n=0

where p,,qn, €{0,1,...,m — 1}. Let &, be a binary operation such that

P&nq = Z (Pn 'apnqn)mn,
n=0

where 6,4, is a Kronecker symbol, §,,4, =1 if p, =gy, and §,,4, = 0 otherwise. Note that the
operation & coincides with the bitwise “and” operation. Then for any p the following equality
holds

So(n(») =n(p &m (p+1)).
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The simple properties of f and fj are described in the following lemmas.
Lemma 4.1. The relation fo2 = fo holds in S,
Lemma 4.2. The transformation f is a bijection.

Lemma 4.3. For any p > 0 the following equality holds

p+1 p+m=2
(5 [——1

f]p:(][m] i ""’fl

Proof. Let us prove Lemma 4.3 by induction on p. For p = 0 we have

[p+mfl]
" )eh.

[ml

F=e=(n"" 17 el

and for p > 1 the equality follows from (4.1)

P (21 2] [ N
fi :(f] R SR & )ap (e,e,...,e, f1)o
])+l ] m—2 p=1
Hl m ] [ +1
(fl f1 ; f1 T )el U
Using Lemma 4.3 and (4.1), forany i > 1 and p > 1 we have
pmi—1 pmi~l—1  pmi~! pmi=! pmi=IN
fi (f S S e S )0 ,
whence
i7] i7171 i7171 i7171 i7171
lpm fO == ( 1pm ’ lpm LRI ) lpm ) flpm fO)amfl ’
and
i—1 i—1 i—1 i—1
pm pm'~'—1 pm pm pm
fofl z(fofl 9 1 9 1 90 1 )ao‘

Let us denote

= ol o o o,

where k >
following decomposition

fofi" _lfoflmk_l_ Jof" _lfoflm_lfo

k7171

= (fofT" fofl"f L ff foee,
mk=1_-1 mk—2_1 m—1
f0f1 f0f1 --~f0f1 - foe - e,
ST R T L oM foe - fo)ao,

0 and vp = fp. It follows from (4.2a) that the transformation vy for k >

725

(4.2a)

1 has the
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whence
Uk = (Vk—1, Vk—1, -+ Vk—1)0, k= 1.
Now we construct the irreducible system of semigroup relations.
Proposition 4.4. In the semigroup S, the following relations hold:
Ratk. py: fof ™ ™ foft" Vo 7 o o
=l o AT R o,
and
Ry fo "= 1 o o ST o F T o
=1 o oo 1T 1 o

wherek >0, p=1,2,...,m—1.

(4.2b)

(4.3)

“4.4)

Remark 4.5. Let us call the relations R4 (k, p) and Rp (k) as the relation of type A of length k
and the relation of type B of length k, respectively. In addition, relations (4.3) and (4.4) can be

written in the following way

k+l_1

k_ k
Ratk, p): fof ™ " ve=ws  Rp(k): fofm ™

k+
= f"

Proof. Let us prove the lemma by induction on k. For k = O the relations (4.3) and (4.4) are

written in the following way

-1
Ra(0, p): foff™ fo=fo:  R(O): fof{"fo= 1" fo.
Let 1 < p<m — 1, and it follows from Lemma 4.3 that the equalities hold

[p]

foflp_lfo=(e,-~,e, fodeo - (f; ™ ... f f1 fo)anp .

=(e,e,...,e, fo)aog = fo,

because [p — 1], =p—1<m—1 and [ ] = 0. Hence, the relation R4 (0, p) is true. The

following equality holds

" fo=(fi, fiseos )00 (ese, .6, fodao = (fis-- - f1, fi fo)eo,

whence

fOflmeZ(e,u-’e,fO)OlO'(flv-u,fl,flfO)OlO:ffnfO,

and Rp(0) holds.
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Now let k > 1. Using (4.2a) and (4.2b), decomposition of the left-hand part of the relation of
type A of length k is defined by the following equality

1 1

k_l k—]_l k— —1 k— -1
o™ o= (for" vk—1. fof{" Vk—1, - fofi" Vk—1) o

= (Vk—1, Vk—1, - - -, Vk—1)00 = Vg,
and the last equality is true due to the induction hypothesis

k7171
Ratk — 1, p): fof™ Vk—1 = Vk—1.

Hence, the relations R4 (k, p) hold in S;,. Similarly, let us write the decomposition of the left-
hand part of the relation Rp(k):

f fmk+mk+l -1

0J1 Uk
(m+1Dm*—1-1 (m+mk—1—1 (m+Dmk—1—1
=(fof; vk—1, oS Vk—1,---» fOf) Vk—1)0
k k k k+1
= (/1" ve=ts [T Vk=ts oo ST vkm)0 = [T w,s

where the equality of decompositions is substantiated by the induction hypothesis for the relation
Rpk—1). O

Proposition 4.6. In the semigroup Sj, the relation

mk pria—1 mk+l p, mk pr—1 mF= pr_1—1 mp;—1
fOfl " 'f] +1f0f1 ¢ f0f1 ] f0-~~f1 ] fO
mk+1p mk pr—1 mk L pr_1—1 mp—1
— fl k+1 f()fl Pk f()fl k—1 fO Sy P1 f()’ (45)

where k 20, 1 < prgo <m—1, pr41 20, pi =21, i =1,2,...,k, follows from the set of rela-
tions

RA(k’p)9 k>07 p=1723"'5m_15 RB(k)v k>0' (4'6)
Remark 4.7. Let us denote relation (4.5) for fixed values of k, p1, p2, ..., pk+2 by the symbol
r(k, px+2, Pk+1> Pk» - - -» P1), and we call k as “the length of this relation.” In addition, the rela-
tions of types A and B can be written in the form (4.5), because R4 (k, p) =r(k, p,0,1,1,...,1)
and Rg(k)=r(k,1,1,1,...,1).

Proof. Let us prove the lemma by induction on k. For £ = 0 the relation (4.5) is defined by the
following equality

JofPTh P fo = £ S,

where p; >0, 1 < p» <m — 1. Using the relation Rg(0): fof" fo = f{" fo, for any p > 1 the
following equalities hold
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1 fo=fo "7V fof fo=--= fof" fo( £ fo) '™
=ff"'f0ff"fo(ff"fo)p72= fmfo(fffo)%z:'“:flmpfo.

Using the equality fo f;""' fo= f,'"" fo and the relation R4 (0, p») we have

FofP N fo = fof P27 fo £ fo = fo T fo = £ fo

whence the relation r (0, p2, p1) holds, and is output from the set (4.6).

Let k > 1, and p1, p2, ..., pr+2 be integers that fulfill the requirements of the lemma. Any
relation (4.5) of length (k — 1) is output from the set (4.6) by induction hypothesis, and now we
show that relation (4.5) of length k is output from the relation (4.6) and the relations (4.5) of
length (k — 1).

Let pyy1 20, p; 21,1 =1,2,...,k, be arbitrary integers, and let us denote w, =

k+1 ko, _ k—1 _ —
R (Y S 1foflm Pl 1 ! fo. Below we prove that the following equality
holds

wp = v - ). @7

Then the relation r(k, px+2, Pk+1, - - -, p1) immediately follows from the equality (4.7) and
Ra(k, prs2):

mk —1 mk prio—1
f()f[ Pik+2 'wp=f0f1 Pk+2 Uk'prUk'wp=wp-

In order to prove (4.7) we show that for any pr >0, p; > 1,i =1,2,...,k — 1, the following
equality holds

mkpk mk’lpk,l—l mk’zpk,z—l mpy;—1
1 fofy fof fo- i fo

k k=1, 1 k=2, 1 1
=v—1-f; P fof T Rl T fo 1T fos (4.8)

and then prove (4.7) by induction on py1. We have

k =1, =2, _1
R A T e AT
k—1_1 k—1 k=2 =1 k=3 =1 -1 —1
— foflm . flm (mpk)foflm (mpg—1) f()flm (mpk—2) fO'uflm(mPZ) foflmpl f()
k7171 k7271
=fofi" ~ fofl"

k=2 (,,2 k=3m2p, =1 2 -1 25,1 —1
.flm (m pk)foflm (m” pr—1) fo-uflm(m p3) foflm P2 foflmpl fo

= o™ T R T L

mk pr m =l p -1 m=2pp_p—1 mpi—1
" J1 fOf] fOf] fO---f] I fO»

k71—1
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where each expansion of a semigroup word is substantiated by application of the relation

r(k—i — 1,1, m px,m pr_1, ...,mip,-+1)
fori =0,1,...,k—1.
Now we prove (4.7), and let pyy; = 0. Applying (4.8), “reversed” relation Rx(k,1): vy =
fo f1 Yy and again equality (4.8), the following equalities hold
fofm e lfoflmHm_]_lfo--.flmp'_lfo
= A" e T o T o
= o /O o o
= fo " e 1D o P o o
= fofm ! 'foflmkil(mpk)*lfoffnkiz(mpk*l)f]fo~--ff(mpz)ilfof{"mf]fo
= H " v o o T o A fo
= fof!" T A o T o

Let pxy1 = 1. The 1nduct10n hypothesis is used for the adding v, and the relation Rp (k)

allows to add the word fj f/" ‘=1 Then the word vy is canceled, and equality (4.8) is applied.
Thus, the following equalities hold

-1

A A o S A
- 1’”“1 - flmk+](l7k+l—l)f fmkpk—lf fmk’lpk_l—lfo.“ lmpl—lfo
= fos ey e g gttt g
= Aol A o o o T
= fof? e P R o o T
— e 7T R TP A
The proposition is completely proved. O
4.2. Reducing of semigroup words

The main result of this subsection is the following proposition.

Proposition 4.8. Each element s € S, can be reduced to the following form

PP o e gt g el g o=t g o, 4.9)
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where k 20, po 20, pr 20, pi > 1,i=1,2,...,k — 1. There exists the reducing algorithm
with complexity O(|s|log,, |s).

Remark 4.9. In further we call the form (4.9) as the (normal) form of length k.

It follows from Proposition 4.6 that any relation (4.5) cancels the beginning fj flp of a semi-
group word for some p. Hence the reducing algorithm may run through a semigroup word from
the right-hand to the left-hand side, and it finishes when reaches the beginning of s (or the most
right symbol fp). In this subsection we consider the reducing of a semigroup word written in
special form, and then describe the reducing algorithm. The proof of Proposition 4.8 bases on
these results.

Let s be an arbitrary semigroup word such that

k—1 =1 k=2 a1 -1
3=f0f1m Pk—1 f()flm Pk-2 --~f0f1mpl fOpr,

where k> 1, p; 2 1,i=1,2,...,k— 1, po >0, and let us consider the following semigroup
word

k—1 =1 k=2 e | —1
S/ — foflpks — f()f]pk f()f]m Pk—1 f()f]m Pk—2 f() o lmﬂl f()f]pov

where pi > 1. It follows from Proposition 4.6 that relations (4.5) can be applied to &', if there
exist the integers 0 <i <k —1,and gp >0, g1 € {1, 2, ..., m — 1} such that p; can be presented
by the equality

pe=m'q+m gy —1. (4.10)

Then the relation

-1 k—1 k—1—i

. i .
r(i,q1.qo.m" " T, m T kg, m Pk—i)

can be used in order to cancel the beginning fy flm oy, Clearly go and g; are unambigu-
ously defined by py.
Let p > 1 be an arbitrary integer, and let us denote

tn(p)=max{j >0, m’ | p},

that is the maximal power of m such that p is divisible by m''(?). Similarly, let 1>(p) is defined
by the equality

1(p)=p modm"®+!
Obviously for any p > 1 the number #,(p)/m'(P) is the positive integer such that

n(p) -m
= mtl(p) ’
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Using these definitions, the integer p can be written as

P apt| P n(p) 12(P)
p=m iy [mn<p>+1]+m i

If we assume

| Pt and _hpk+D
0= | (D D= A

then go > 0 and 1 < g1 <m — 1, and these numbers satisfy equality (4.10) fori = #1(pr + 1). If
t1(px + 1) <k, then the relation

t 1 1
2(pe+ 1) [ i+ i|’mk—1—t1(pk+1)pk_l’

mh P+ 7| i (petD+1

f”(ﬂ(ﬂk + D),

k=11 (D) k=111 (D)

DPk—2s Pk—n (pk+l)>

allows to cancel the semigroup word

+1)—1
fofllZ(Pk )

at the beginning of s’. Hence, the element s is equivalent to the following element

1 (p+D+1 pitl
m [ Nt D

] k=1 k-2
Pk—1—1 m pr_o—1 mp;—1 J4
s=f; m fofi fofi - Jofi ! f0f10~

Proof of Proposition 4.8. Let us consider Algorithm 1. We prove that it reduces an arbitrary
semigroup word s to the form (4.9).

The local variables are initialized at lines 1-3, and it is executed once. There i is the index of
exponent in the input word s, j is the index of exponent in reduced part of the semigroup word,
and r is a temporary variable, that is used for calculating the values of exponents in the reduced
word.

The main loop at lines 4-18 moves along s from the right-hand side, and sequentially reduces
exponents at the symbol fj to the form m/g 7 — 1, where ¢g; > 0 and j varies over the values
0,1,2,....If k=0and s = IPO, then s is already of the form (4.9). In this case the main loop
is not executed. Otherwise, let us consider the ith iteration of the main loop, where the algorithm
checks the value of p;.

If i is odd, then the lines 6-8 are executed. In this case p; is the exponent at the symbol fj,

and the subword fOp i~! can be canceled by the applying the relation f02 = fo. Therefore p; is
assigned to 1, the algorithm starts “to collect” the next exponent at f; in the reduced word, and
the loop moves to the next value of i.

If i is even, then p; is exponent at fi. At the line 10 the semigroup word s is defined by the
following equality
j=1,7

Pj1—

) ) 1 1
P2k £ P2%—1 £P2%A—2 Pitl oD m mp Po
f1 f() f] ()I+ 'f]lf{'f0f1 ---fOf] I fOf] ,
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Algorithm 1: The reducing algorithm

Data: A semigroup word

__ £P2k £P2k—1 pP2k—2 P1 £Po
s=f1" /o 1 -e-JoJ1s

where k > 0, po,por >0, p; > 1,i=1,2,...,2k — 1.
Result: A semigroup word s written in the form (4.9).

1i+—0;

2 j—0;

3r«—0;

4 fori+—1to2k—-1 do

5 if i is odd then

6 pi—1;

7 J—i+1;

8 r+«—20;

9 else

10 if (p; +7) mod m? =m’ —1 then
1 | pi— (pi+7);

12 else

13 The subword f5** f7* is canceled in s ;
14 re—mpi+r—to(p;+r+1)+1;
15 i—i+1;

16 end

17 end

18 end

where p; >1,qg=1,2,...,j—1,and p;j > 1, r > 0; and let us separate it into two parts

_ pD2% £P2%—1 £D2%-2 pit1—1
S| = 1 0 1 fO s

s2 = fofj iJrr'foflm

J=ly
Pj_1

1 mp,—1 P
'HfOfl ' f0f10~

If the equality p; +r = m/ p’. — 1 holds for some p’, > 0, then s, has already written in the
form (4.9). Then the line 13 is executed, and the algorithm continues on the next exponent of s.

Otherwise, it follows from the speculations above that s, is reducible. The subword
fo fltZ(P D=1 s canceled, and the subword i #1715 canceled due to the relation 2= fo.
Therefore the algorithm cancels the subword fop H flp " at the line 13, but increases r at the next
line. Then the loop continues on the exponent pj;» at the next symbol f;.

The number of iterations of the main loop is equal to 2k — 1, where k is defined by the input
word. Clearly 2k < |s|. Each iteration includes fixed number of arithmetic and logical operations,
and calculating of #. As (p;+r +1) < |s|, thus the complexity of #(p; +r + 1) calculating is not
greater than log,, |s|. Therefore there exists the positive integer ¢; such that the complexity of one
main loop iteration does not exceed c; + log,, |s|, whence the total complexity of Algorithm 1
equals O(|s|log,, |s|). Obviously the real complexity depends on algorithm realization. O
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4.3. Normal form

It follows from the previous subsection that each element can be reduced to form (4.9). The
main result of this subsection is that two semigroup elements written in different form (4.9)
define different automaton transformations. Namely,

Proposition 4.10. Let sy, sy be arbitrary elements of the semigroup S, written in the form (4.9):

mkilp _1—1 m? 1 m 1
D hofi " fo o NPT T o
=g _1—1 1 -1
Sy = 1qlf0f1m qi-1 f() m q2— f f’"‘]l fofqo’

where k > 0,120, po,pr 20, g0, 20, p; 21,i=1,2,....k—1,¢q; 21, j=1,2,...,
I —1. Then s\ and s, define the same automaton transformation over X% if and only if they
coincide graphically, that is

k=1, po=qo, pi=q, ..., Pk=4qI

Before the proof we consider the restrictions of arbitrary semigroup element written in the
form (4.9). Let us introduce two functions ry,ry: N — {0, 1, ..., m — 1} such that for any p € N
they are defined by the equalities

0, if0<[pllnm<m-—2,

rl(I’)Z‘Sm—l,[[P]]mZ{l lf[Ip]] =m—1:
) m — >

ra(p)=m—1—[pln.

Clearly for any p € N the inequality 1 (p) # r2(p) holds.
Lets € S, be a semigroup element written in the form (4.9) of length k = 1:

p p
11f0f 0,

where pg, p1 = 0. It follows from Lemma 4.3 and (4.2a) that s has the following decomposition

1’1]

p p .l p+l p+1
:(fl""’fl’fl ffl oo fY )a[[Pl]]’

where p = [£L] 4 [£2], whence

PLyp( 20
fl[ R el Rl (Po)’ (4.11a)

ey iy

S|xr2<po) " fo f1 ", (4.11b)

S|xV1 (rg) —

and for all 0 <r <m — 1, r # r2(po), the equality hold

[2Ly 20t
Slx, = /1" . 4.11c)
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All elements S|x,1(p0), S|x,2(,,0), and s|,, are written in the form (4.9).
Now let s € S, be a semigroup element written in the form (4.9):

k—1 =1 i 1 1
Pl T o T S fmp2 fofl™ 7 fofle,

where k > 1, po =0, pr >0, p; 2 1,i =1,2,...,k — 1. It follows from Lemma 4.3 and (4.2a)
that s has the following decomposition

k=2 [@]

N S RN U

[k mk—2p 1 mpa—1 pi—1 [M]

Y O (VA T (¥ " ,
[k m*2p -1 mpy—1 -1 Lo+ —lrolm)

f]m f()f] : fOf P2 ff]pl 'fOf] " s
[ po+(m— [[1)0]])71) 1

f] AR

po+m—1
[O

T T T e

1—1

[2ky k=2p 11 1
5 foflm Pie ST o]

[pk] mk—2pk7171

hi" fof

Hence, the restrictions of s are defined by the following equalities

[2ky k=2p, 1 20 14 (po)
Sloyg = 1" o T o fo T ), (4.122)
mk= Zpk—l—l mpy—1 Pi— [ 0]
Slxrypp = f1 Yo ' O (Y £ Y AR Y P (4.12b)
and
- 1 _1+[p?1j—r]
sl, = f1 Y S O : (4.12¢)

forany 0 <r <m —1, r # ra(po). The elements S|xr1( po) and s|,, are already written in the
form (4.9) and are irreducible. On the other hand, the semigroup word s| Xy () MAY be reduced.
If all integers p1, p2, ..., pk—1 are divisible by m, then s| Xy (g AN be written in the form (4.9):

(2ky kL

S|xr2(],0) fl f()fl " f0f1 fOfl 1f0f1[70]

Otherwise, let ip, 1 <ip < k — 1, be the minimal index such that p;, is not divisible by m. Then
the element s| Xy (p) is reduced to the following element

M0 (pig 41+ 22 7)—1

[p ] mk_zp _ —l Pl 42—1
S|xr2(,,0) f] ffl - fOf] 0 ff

mio=1 (o=t mA2)—1 w1 B0y

fOf] " fOf] fOf] fOf]
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Proof of Proposition 4.10. Not restricting generality, let 0 < k < [. Let us assume that the ele-
ments s; and s; define the same automaton transformation over X{,. Then for any u € Xj, the
equality holds

s1(u) =s2(u), (4.13)

whence for any v € X the restrictions of s; and s, coincide, i.e., for arbitrary u € X, the
equality holds

Stlv(u) = s2[v(u).

We prove the proposition by induction on k.
Let k=0,and s; = flp O If I > 0 then the transformation s, includes fy and is not bijective.
In the case / =0 for input word ug = 1(0) = x; we have

s1(uo) = f1° (wo) = n(po),
s2(u0) = [ (o) = n(qo).
It follows from the assumption (4.13) that n(pg) = n(qo), and, consequently, po = go. Thus for
k = 0 it follows from (4.13) that the requirements / = 0 and py = go should be fulfilled.
Now let k > 1, and there are two possible cases: [ pollm # [[gollm and [pollm = [gollm-

(1) Let [pollm # [gollm- It follows from (4.11c), (4.12c), (4.11b), and (4.12b) that for the
input word X, 44, 4 € Xj,, the following equalities hold

81(Xry(g0) %) = X[ pyllm * S1 |Xr2<qo) (@),

$2(Xry(g0) 1) = X[ g1l * S2lxy, (g (1)

where
Jan Po+12(q0)
| AT k=1
S1 *ryag) = +r2(40)
(5] 21 - — 1 PO :
A fo P o ol m 1 otherwise;
and
] L5
A" fofy™ . ifl=1
82|Xr2(q0) = [4Ly mi=2g;_—1 mga—1 gi—1 (40, .
fi" ok - fofy fofi" fofi™ . otherwise.

The element s; |x,2(qo) is irreducible, and has the normal form of length (k — 1). By induction
hypothesis the element s, | (o) should have the normal form of length (k — 1), but s3] (o) has
the form (4.9) of length [ or (I — 1). It follows from the condition / > k that/ = k and s;| (o) is
reducible.

In the case [ = 1 the element s, | Xy (g) is irreducible and has the normal form of length 1 (> 0),
so [ > 1 and there exists the minimal index jjo, 1 < jo < k — 1, such that g, is not divisible by m.
The element s, | Xry (o) is written in the following form
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. . qi
[y ok =2g_—1 mitlg =1 mio(gj,1+[-2])—1
52|xr2(qo) =" fof e - Jofy " Jofy o "

m_jo—l("fo*l =1

T m? (=1 om(GH=1 . [50]
'f()fl ~~-f0f1 f0f1 f0f1 .
It follows from the assumption (4.13) that the following set of requirements should be fulfilled
Pk qk
k=1>1, pillm =gclm, [—} = [—} Dk—1=Gqk—1, s Pjo+2 =qjo+2
m m
4 4jo—1 qi
Pjo+1 =qjo+1 + [?], Pjo = ;;z N pol
+r
pi—14 [Po 2(%)} _ [61_0}
m m
As the equality

[Po + Vz(CIo)} _ [m[%] + Mpollm +m —1— H‘IO]]m:|

m m

@ + {07 [polln < [gollm,
m L, [pollm > Mgollm

holds, then the set of requirements can be written in the following way

k=1, pr=qk, Dk-1=qk-1, --.» DPjo+2 =4 o+2>
qji qjo—1 q1
Pj0+1:(]j0+1+|:;0:|, Pjo = ;;1 N p2=z,
q0 Do L, [Lpollm < Lgollm;
(|20 4.14
b |:mi| [m :| {07 [pollm > [golim- ¢ )

Similar reasoning can be carried out for the input word x,,(p,), where the elements s; and s>
are rearranged. Hence, there exists the minimal index ip, 1 <ip < k — 1, such that p;, is not
divisible by m, and the following set of requirements should be fulfilled

k=1, pk=qr, Pk-1=qk—1 -5 Pig+2 = Gip+2>
Pi Pip—1 P1
p10+1+[i}=q10+17 0 =qi07 ey —=q2,
m m
Po q0 0, [pollm < Mgollm,
S P ) 4.15
7 [m :| |:m:| { L, pollm > Lgollm- ( )

Summarizing two last requirements of (4.14) and (4.15) we have the following equality:

pitaq =1

This equality contradicts the requirements k =/ > 1 and pi1, g1 > 1. Hence, the contradiction
with assumption (4.13) is obtained.
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(2) Let [ pollm = lgollm- It follows from (4.11a) and (4.12a) that for an arbitrary word u € X,
the equalities hold

$1 (¥ (p) ) = Xl pidl ~ S1 iy, () ()

$2(Xry (po)U) = XlgiTm * S2lxy, () ()

where
AL1+[ 201+ .
f][,,,] [5:] rl(po)’ ifk=1:
Sthn i = L) o omt 2= mpar—1 211+ 22 1 4r1 (po) .
A" fofy . fofi fofy " , otherwise;
and
q1 ‘10
fl[ I+ m +”1(P0)’ if] = 1,

32|x -
1o @1 =141 27471 (po)

a -2
flm f0f1m a-t ST ' fo fi ,  otherwise.

As s |xr1 o) and sp |xr1 (ny) A€ written in the form (4.9) and their normal form has length of (k — 1)
and (I — 1), respectively, then these elements coincide graphically by induction hypothesis. Using
assumptions (4.13), the values of parameters fulfill the following equalities

k=1, [pcllm=1Lgilln, [%} + [%} +r1(po) = [%} + [31—0] +ri(po),
if k=1, and

k I
k=1, [pcllm=Lgilln, [p;]:[q_] Pk—1=qi-1, ..., DP2=q2,

m
P1—1+|: :|+r1(1?0)—t]1—1+|: :|+r1(Po)

otherwise. Adding the assumption [ poll;x = [gollm, the sets of requirements are written in the
following way

k=1, pi1+po=q+qo, (4.16)

k=1, pi=q, Pk-1=4qi-1, ..., P2=¢q2, mp1+ po=mq+qo, 4.17)

otherwise. If pg = qq, then it follows from (4.16) and (4.17) that the values of p; and ¢; coincide
foralli =0,1,...,k, and elements s; and s, have the same normal form.

Now let us assume that py # go. As [pollm = lgollm, then r2(po) = ra(go) and it follows
from (4.13) that for any u € X}, the equality holds

x[[l’k]]m - 81 |xr2(p0) (M) = x[[qk]]m : 32|xr2(p0) (M),
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where the elements Sllxrz(p(p and Szlx"z(Po) are defined by the equalities (4.11b) or (4.12b) de-
pendingonk=1ork > 1.
Let k = 1. By the equality at the line above the elements

(9]
Sl|x,2(],0) f] f()f] and 52|xr2(,,0) f] fofl m

coincide graphically if and only if the elements

=7 fof? and sy= f' fo £

coincide graphically.
Let k > 1, and let all integers g1, p1, p2,--., pk—1 are divisible by m. Then Sl'sz(p()) and
S2lx,, (pp) AN be written in the form (4.9):

k I[Pk 1] 1 [Fl 1’()
Stlxry ) = f1 " ff1 fof1 fof1 f0f1 "
[1’1{] k l[pk ]]7 [q()]
52|x,2(p0) fl ffl fOfl fOfl f0f1

Similarly in this case the elements s | Xy ) and S| () coincide graphically if and only if the
elements s| and s, coincide graphically.

Let  be the maximal positive integer such that [[[":T‘}]]]m = [[[%]]]m foralli=0,1,...,t—1,
and in the case k > 1 all integers q1, p1, p2, ..., pxk—1 are divisible by m’. As pg # qo then ¢
is a positive integer. Using the speculations above, it follows from assumption (4.13) that the
following elements define the same automaton transformations:

[’l ] I’O

fl m’ f fl m’ and sS4 = f] f fl
if k=1, and

[ 2k k=1 Pk=1 21 P2 Po

m [ m ]_1 m [m_] l‘l‘l ]_ [m_]
fl ] fOfl ' ~~-f0f1 ' fOf] " fOfl ' >

[ 2k k=1 Pk=1 21 P2 90

m [ m ]_1 m [m_] m ]_ [m_]
36—f1 ! f0f1 ' hfp ™ f0f1 " fofi™,

if k > 1. In addition, the elements s; and s, coincide graphically if and only if s3 and s4 (S5
and sg, respectively) coincide graphically.
As t is maximal, then there are two possible cases:

(D) M2 10 # 01210,
2) k>1, [[[ O = [[[Zﬁ]]]m, and one of g1, p1, p2, ..., pk—1 is not divisible by m!*!

It follows from item (1) that in the case [[[ 2 ]]]m #* [[[ 1;» the contradiction with the as-
sumption (4.13) follows from the equality s3 = S4 (or S5 = 36)

In the second case k > 1 and II[p"]]]m = [[[ 910;. Let us consider the input word v =
X, ([mt - At least one of the elements ss|, and S6|v is reducible, and have normal form of length



LI Reznykov, V.I. Sushchansky / Journal of Algebra 304 (2006) 712-754 739

E() —>o0—>
EH-I E; U E; U -0 B i Eo—
o fo B

Fig. 3. The graphs E;, i > 0.

(k—1). If another element is irreducible, the contradiction with (4.13) follows from the induction

hypothesis. Hence both elements ss|, and s¢|, are reducible. It follows from the note on (4.12b)
PQ 40

[ 1
that normal forms of these elements end with fy f; » 1 and Sfofi mt respectively. Then it
follows from the induction hypothesis that the equality

po [_| 40
mt+ | | gt tl

holds. Moreover, by assumptions, the equalities [[[%]]]m = [[[%]]]m hold foralli =0,1,...,¢,
whence pg = go. Combined with the requirements (4.17), we have the set of requirements

k=1, pr=q, Pi-1=4q-1, ..., P2=¢q2, DP1=4q1, DPo=4qo,

i.e., the normal forms of s; and s, coincide graphically.
The proposition is completely proved. O

4.4. Cayley graph

In this subsection we construct the Cayley graph G, ~of the semigroup Sy, . S;,, is a monoid,
and the root of graph is the identity, that belongs to the semigroup. As we apply automaton
transformation from right to left, then we will read the labels of path in the same order. For
example, the edges labeled by fi—f1—fo denote the path fj f12. It follows from Propositions 4.8
and 4.10 that an arbitrary element s € S;, can be unambiguously reduced to the form (4.9).
Hence any path without loops should define the semigroup element in normal form.

The graph Gg, consists of subgraphs Ej;, i > 0. An arbitrary path in Gg, walks through
groups of E;, i =0, 1,..., connected by edges labeled fj, and each group consists of several
copies of E;, connected by edges labeled f1. The path, defined by p; copies of E;, corresponds

to the subword f;" "Pi=1in the semigroup word written in the form (4.9).

The structure of the graphs E;, i > 0, is shown on Fig. 3. The rightmost and the leftmost ar-
rows on the figure do not belong to E; and denote edges, that enter and output from the graph E;.
The shaded circles before and after the graph E; denote the rightmost and the leftmost vertices
of E;. The graph Ej includes a unique vertex, and does not have edges. The graph E;;; is
constructed as m copies of Ej;, that are sequentially connected by edges labeled by f}, and the
rightmost vertex of each of the first (m — 1) graphs E; is connected to the leftmost vertex of the
first graph E; by the edge labeled by fp.

Lemma 4.11. For all i > 0 the graph E; includes m' — 1 edges labeled by the symbol f;.
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Proof. We prove the lemma by induction on i. Clearly Eq includes 0 = m® — 1 edges labeled by
the symbol fi. For i > 0 the graph E; includes

m(mi_l—l)—i— m—l =m' —1

m copies of Ej_ edges between E;_1s

edges labeled by fi. The lemma is proved. O

Thus each graph E; can be presented as a direct path with (m’ — 1) edges labeled by f; and
the edge labeled by fo outputs from each vertex, excepting the rightmost, and enters one of the
previous vertices.

Lemma 4.12. Let i, p be arbitrary integers such that i > 0 and 0 < p <m' — 1. Then
the path P = fy flp in the graph E; that starts from the leftmost vertex includes the loop

n(p+1)—1
L=f0f12(p ) .

Proof. As p < m' — 1 then the path fy flp belongs to E; and does not include the rightmost
vertex of E;. It follows from the note after Lemma 4.11 that an arbitrary edge labeled by fj
forms a loop in the graph E;.

We prove the second statement by induction on i. For i = 1 the path is fy flp ,where 0 < p <
m — 1. Using definitions of #; and #;, the following equalities hold

np+1)=0, hip+1)=p+1,

whence t2(p + 1) — 1 = p. It follows from Fig. 3 that P is a loop, and, consequently, L = P =
f 0 f 1p'

Leti > 1. The graph E; consists of m copies of E;_1, and there are two possible cases for the
edge labeled by fj: it is contained within one of E;_1 or connects the rightmost vertex of one of
E;_1 with the leftmost vertex of E;.

Each E;_; includes (m'~! — 1) edges labeled by fi, and in the first case the equality

p=q-m~"+r

holds for 0 < g <m,0<r <m!~' —1.Let P’ = fof{ be the path that starts from the leftmost

vertex of (¢ + 1)th copy of E;_;. By induction hypothesis L = fo /2071 As (r + 1) < mi~!

and (r + 1) is not divisible by m’~!, then
np+D=n(g-m "+ +D)=n0+1)<i-2

Therefore the equalities hold

hp+D=(qg-m "+ +1) modmctH!
=@ +1) modmhr+hl

=nr+1).



LI Reznykov, V.I. Sushchansky / Journal of Algebra 304 (2006) 712-754 741

h o oo f

SR hoo
oEkWEAIF oEAmoEkmo

Fig. 4. The graph stm .

Hence, the path P includes the loop L = fofltZ(r"Ll)_1 = fof]IZ(”H)_l.
In the second case the path P is a loop. Similarly, the equality

p=gq 'mi_l + (mi—l _ 1)
holds for 0 < g <m — 1. As p+ 1= (g + D)m'~!, we have
np+1)=i—1 and n(p+D)=@+m T=p+1.
Therefore L = foflm(pﬂ)_1 =foff =pP. O

The Cayley graph Gg, is shown on Fig. 4. The generator e gives loops labeled by e on
each vertex, and we do not show these edges. The graph Gy, can be conditionally separated
into lines, where ith line, i > 0, consists of copies of E;. These graphs are connected by edges
labeled by f1, and the edges labeled by fy allow to pass to the next line. The leftmost vertex of
zero line is the root of G g, ~and corresponds to the semigroup identity.

Proposition 4.13. Let P be an arbitrary path in Gs, —such that it starts from the root vertex,
and let it denotes the semigroup word s. Then P includes the path P’ without loops such that it
denotes the semigroup element s’ written in the normal form (4.9) and is equivalent to s.

Proof. At first, we show that the path P without loops denotes the semigroup element written
in the normal form (4.9). It follows from Lemma 4.12 and structure of E; that loops are created
only by edges labeled by fp that are located within E;. If P does not include the edges labeled
by fo, then it is located at zero line of G, ,and P denotes the semigroup word s = flp for some
p = 0. Clearly s is written in the normal form.

Otherwise, let P ends at the kth line of Gg, , k > 1. Then all edges labeled by fo, that
belong to P, connect the lines of G, . Let the path P goes through p; copies of E; at ith line,
0 <i < k. It follows from Lemma 4.11 that the subpath of P at ith line denotes the semigroup

word f im' =1, Therefore, the path denotes the semigroup word

mk = pp_—1 m2py—1 mp1—1
S:f]pkfof] Pk—1 fO | p2 fOf] P1 fof]I’O’
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where po > 0, p; > 1, 1 <i <k, and pr > 0 is the count of edges of P at kth line. Similarly, s
is written in the form (4.9).
Let s be an arbitrary word over the alphabet { fo, f1}:

P2k pP2U—1 pP2U—2 PL oP
s= "1y 1 e To

where k > 0, po, pox =0, pi =2 1,i =1,2,...,2k — 1, and let us consider the path P that
denotes s. We show that sequential canceling of loops in P coincide with the executing of Algo-
rithm 1. The variable j denotes the current line of G, , and r denotes the length of subpath at
jth line. As the leftmost vertex of ith line, i > 0, is located within E; and has the loop labeled
by fo, then this loop is removed by operations at the lines 6—8 of the algorithm. The check at
the line 11 means that subpath at jth line reaches the rightmost vertex of E;. It follows from
Lemma 4.12 that actions of the lines 13—14 are realized by reduction of loops fj flp " inside of
the graph E;. Hence, P includes the path P’ without loops, that denotes the semigroup word s’
in the form (4.9) that is equivalenttos. O

4.5. Proof of Theorem 2.1
Proof of Theorem 2.1. From Lemma 4.6 follows that in the semigroup S, the relations

(K, Pk+2s Pk+1s Pks + -+ 5 P1)s

where k >0, 1 < pryo<m—1, pxy1 20, p; 2 1,i =1,2,...,k — 1, hold. In Proposition 4.8
it is shown that, using these relations, each element can be reduced to the form (4.9). On the
other hand, it is proved in Proposition 4.10 that two semigroup elements written in the form
(4.9) define the same automaton transformation over the set X, if and only if they coincide
graphically. Hence, the form (4.9) is the normal form of elements of S, , and each semigroup
element can be unambiguously reduced to the form (4.9).

The set of relations (4.5) is not minimal. It is proved in Propositions 4.4 and 4.6 that in the
semigroup S, the relations (4.5) may be derived from the set (4.6) of relations:

m?

RA(kvp)a k>07 pzl’zaam_la RB(k)a k>0

The structure of the Cayley graph of the semigroup S, is considered in Subsection 4.4. It follows
from Figs. 3 and 4 that the edges, that realize the reducing of semigroup words, belong to the
graphs Ey, k > 0. Each relation of type A of length k substantiates the edge labeled by fy that
forms a loop in the graph Ej.1. The relations of type B of length k allow to connect the graphs
Ej+ at the (k + 1)th line of the graph Gg, , one relation per line. Therefore, the set (4.6) is
minimal, that is no one relation follows from the others. Thus, the infinite set of relations (4.6) is
the system of defining relations, and the semigroup S, is infinitely presented.

The automaton transformation e is the identity, whence S, is an infinitely presented monoid.

To solve the word problem in S, it is necessary to reduce semigroup words s; and s to
normal form (4.9), and then to check them for graphical equality. From Proposition 4.8 follows
that count of steps, required by both reductions, is equivalent
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O((Is11 + Is11) log,, (Is1] + Is11)),

and the word problem is solved in no more than quadratic time. O

Proof of Corollary 2.2. It follows from Proposition 4.8 and Algorithm 1 that an arbitrary semi-
group element s can be reduced to the normal form (4.9) by applying the relations (4.5). On the
other hand, the element s is written in the normal form if and only if it does not include left part
of any relation (4.5). Therefore, the set of relations

r(k, px42, Dk+1, Pks - -» P1)

for all possible values k > 0, 1 < pgyo <m—1, pxr41 20, pi > 1,i=1,2,...,k— 1, is the
rewriting system of the monoid Sy, . It follows from Theorem 2.1 that elements of the form (4.9)
is in bijection with elements of S;,,, whence this rewriting system is complete. O

5. Growth of J,, and S,

We derive, in this section, the growth series of the semigroup S, and the automaton J,,, as
well as the asymptotics of the growth functions yg, and y;,,.

5.1. Growth series

Natural system of generators of the monoid S, includes the identity, and it follows from
Proposition 3.19 that the equality holds

Yin(m)=vys, (n), neN.

Obviously, it implies that I, (X) = I's, (X).

At first, we derive the growth series Ag, (X) for the word growth function of S, . It fol-
lows from Theorem 2.1 that each semigroup element s can be unambiguously reduced to the
form (4.9). We arrange all semigroup elements by length of their normal form, and the growth
series that count elements of length /, [ > 0, are listed in the following table:

1
1=0: f]° T
1 X
l=1: f[’l fOpr ..
g 1-X 1-X
po+1
1 X xm

t=2 PR sl
R e

mpi po+1

- X 1-X 1—xm

k—1 i
k=1 _ 2 _ 1 xm

[ =k Pk fo m<"" pr—1 1“. o fm P 1 o fP 1 o FPo . .
7 hf; U A Y vl | S

mi’
i=0

m=1pr_y m? p) mpi po+1



744 LI Reznykov, V.I. Sushchansky / Journal of Algebra 304 (2006) 712754

First column includes the length [ of normal form, second—the set of the semigroup elements in
the form (4.9) of length /, and the corresponding growth series are listed in third column. Let s
be an arbitrary semigroup word in the form (4.9):

Y O ¥/ SN VA VL Y

where k >0, po >0, pr 20, p; > 1,i =1,2,...,k — 1. Every subword fo f," il ,1<i<
k —1, p; > 1, has length m’ p, and is counted by the growth series

i

Xm
1—xm'’

The end fy f , po = 0, has the length ( po + 1) and is counted by the growth series 1= X, and
the beginning f7*, px >0, is counted by 1=x- Hence, the word growth series of S, is

ASJm (X) = Z l_[ Xm’

k>0

1 X X xm* xm
1 1 1 I+ —— (1 +-- ,
T1-x (”L1_x(+1—Xm<+1—sz(+1—xm3“r )>))>

that proves Corollary 2.4.
It follows from the note at the beginning of this subsection, that

1
I, (X) =Ty, (X) = 7 As,, (X)

1 X X’n sz Xn7.3
o\ T x Ut e U e U e 0 ’

that completes the proof of Theorem 2.3.
Let us denote the series

X xm xm* xm
1 1 1 1 14
+1_X( +1_Xm( +1_sz( b2 >)))

by the symbol S(X), and the growth series are defined by the following equalities

! 1
ASJ’”(X):HS(X), FJm(X):FS/W(X):mS(X)
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5.2. Proof of Corollary 2.5

Let g:N — N be an arbitrary function of a natural argument, and G(X) = Zn>0 g(n)X" be
its generating function. Then the following equalities hold

1
Y g+ DX =) gmx" ' = £ (G0 —200), (5.1a)

n=0 n>1

and

1 n__ mn mn+1 . mn+m—1
Zg([mDX = g (X" 4 X" 44 X )

n=0

_ym
n>0

Let p be a positive integer, r = exp(2£L) be a primary pth root of the identity. Applying the
method of power series multisection [24], for any 0 < k < p the kth section of the series G (X)
is defined by the equality

p

Zg(k +np)Xk+"” = l Zr”_ij(rjX).
P

n>0 j=1

Hence the generating series of g’(n) = g(mn), n € N, is described by the following equality

m

1 1 «
E gmn)X" = — E JXm = — E JXm (5.1¢)
n=0 mj:l mn j=1

where r = exp(%).

Proof of Corollary 2.5. (1) Let us write equality (2.1) in terms of generating functions, and it is
enough to prove, that the equality

Zés,,,, ([%DX” + Z 85, (MX" — 2551,,, n+DHX"=0 (5.2)

n=0 n>0 n=0

holds. It is proved in Theorem 2.3 that Ag, (X) = Zn>0 Ssjm n)X" = ﬁS(X), whence the
following equality holds

As,, (Xm) =

xS )
2 3

1 XI’I‘L XH‘L Xln‘
_ 1 1 1 1a...
1—Xm(+1—xm<+1—xmz<Jrl—xm-*(Jr ))))

b I=X e
RS TR )
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Using equalities (5.1a), (5.1b) and the equality at the line above, we have

1—-Xx"
1—

A8, (X7) + A5, 0 = (ASJ,,,(X)—I)
=—(S(X)—1 L soo(1-4 L
—}(( )= )"‘m ( )( —§>+}— .

Hence, equality (5.2) holds, and the statement of the item is true.
(2) Similarly to the previous item, we prove that the following equality holds for the power
series

> (mys, ) +1)X" =Y "85, (m@n+ 1)X" (5.3)

n=0 n=>0

The left-side series of (5.3) can be easily calculated:

n 1 m
r;)(mwm(n)+ —ml;)yjm(}’l)x = (l—X)ZS(X)_Fﬁ'

Let r be a primary mth root of 1. Then the following equality holds

C o 1omk sk 1k k—1
(rij) =p/" Xmn = xm

forany 1 < j <m, k > 1, whence we have

1

Asfm(rjX%)=mS((’jX%))
_ 1 <1+ (i X ) <1+ X (l—l— xm (l—i—---))))
1= (riXm) 1= (i X 1-X 1— xm
I (ri Xm)

L= (riXm) (11— (riXm))?

Let us consider two power series

X

1
A(X)=ZX"=m; B(X):ZnX”:m.

n>0 n>0

It follows from (5.1c¢) that the following equalities hold

—Z( =l§:A(er%)=Za(nm)X”=—

1— rjxm)) mj:l n>0

and
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m

IXm) ] . .
—Z ! _ZZ r]X Zb(nm)X —anX (1—X)2

=1 - (ri Xm))? j=1 n>0 n>0

Applying the equality (5.1c) and the equalities proved above, we may write out the growth series
of the function ds, (mn):

ZSSJ,H(mn)X"— ZAS] ’X

n=>0

_—Z(

_ 1 n mX
T1=-X  (1-=X)?

m Pl
)4_12(&)5()()
1= (rixmy/ M\ = ixm))>

S(X).

Using the equality at the line above and (5.1a), we have

. 11 mX
> 85y, (mn+ D)X :}<1_X+(1_X)2S(X)—l)

n>0
. 1 n m
T1-X  (1-X)?

S(X).

Thus the left-hand and right-hand series of (5.3) coincide, and the equality (5.3) is true, whence
the statement of item (2) is true.

(3) It follows from (3.1), that the second finite difference of yg, is the first finite difference
of 851’" ,ie.,

v, () =38s,, (m) = 8s,, (1= 1),

foralln > 1, and let us assume ysz) (0) = 1. Let us denote the generating function of the function

y Jm) by the symbol I'AX). As yj(i) (0) = 4s,,, (0) = 1, then the following equality holds

rox)=1-x)4s,, (X,

whence I"® can be presented as infinite sum of finite products:

2 3

rom=14+—_(1+2X_(1+X _(1+ X a4
T 1-Xx 1—Xxm 1 — xm? 1—xm

—1+Zl—[1_xmz- (5.4)

k>0i=0
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Let us denote

ko ymi )
[T =2_ Pmx”,

i=0 n=0

where k > 0. Clearly for any k > 0 the function P, : N — N is the polynomial of (k + 1) degree,
Pr(0) =0, and the value Py (n), n > 0, is equal to the number of partitions of » into (k 4 1) first
powers of m, i.e.,

Pr(n) = (5.5

k
{po,pl,...,pk‘Zpim’:n, pi =1, i:O,l,...,k} .
i=0

It follows from (5.4) and the definition of P} that the following equalities hold

k i
an
rox) =1+ =1+ ( Py n)X">
3] P R P 3L
>0 i=0 k=0 “n>0
=1+§:<§:Pum>xn=1+§:yﬁkmxﬂ
n>1 k>0 n>1

whence for all n > 1 we have

v =3 P

k=0

It follows from (5.5), that the value yj(i) (n) is equal to the number of partitions of »n into “se-
quential” powers of m, that was required to be proved.
Corollary 2.5 is completely proved. O

5.3. Asymptotics
We quote the following result by Mahler [25]:

Theorem 5.1. Let f(z) be a real function of the real variable z > 0 which in every finite interval
is bounded, but not necessarily continuous, and which satisfies the equation

fz+w)— f(2)

w

= f(q2).

If, as 7 — oo, n is the integer for which

q_(”_l)n <z<qg"(n+1),

then

q%n(n—l)zn
ro=o(£ 1)
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This inequality can be improved to

1
Qn(n—l)zn

f@) =TT,
n!

if f(z) is greater than a positive constant C for all sufficiently large z > 0.

Proof of Theorem 2.6. Let us consider the function f: Rt — R, defined in the following way
f@)=38s,, ([z]).

It follows from item (1) of Corollary 2.5 that f satisfies the conditions of Theorem 5.1 for g = %,

o = 1. It implies, that for all sufficiently large / the equality holds

1
m*jn(nfl)ln
85, (1) = —e" 0,
n!

where 7 is defined by the inequalities m ™~ Vn <1 <m™(n + 1).
It follows from (2.1) (see [25], and also [26]) that logarithm of the word growth function
admits the following asymptotics

(logn)*
2logm’

logds, (n)~

whence

(logn)2> logn

8s,,, (n) ~ exp( 2logm ~nzloem,

It is proved in Corollary 2.5 that the equality y;, (n) = (l/m)SSJm (m(n + 1)) — 1/m holds for
all n > 0. Thus we have the sharp estimate

log(m(n+1))

1 (m(n + 1)) 2logm

-~ —
m m

1
Vi () = =85, (m(n+1)
m

with the ratios of left- to right-hand side tending to 1 as n — 00. As the functions y;,, and ys,
coincide then Theorem 2.6 is completely proved. O

Proof of Corollary 2.7. It follows from Theorem 2.6 that the equality holds

1 log(m(n+1))
Yin (f’l) = )/S]m (n) ~ ;(m (n + 1)) 2logm

whence

1 log(m(n-+1)
[y.]m] = [ySJm] = I:n—/l(m(n + 1)) 2Togm i|

Two functions of a natural argument
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logn log(m(n+1))

Jogn 1
yi(n) =n2len, yy(n) = ;(m(n + 1)) 2oem

have the same growth orders, because they fulfilled the requirements of Proposition 3.4 for
h= %, a=m, b=m, c =0. Therefore the equalities hold

1 log(m(n+1)) logn
[vs,]= [ysjm]=[ (m(n+1)) oz }= [n 70 |,

m
and the statement of the corollary is true. 0O
6. The properties of {.J,,,, m > 2}

Proof of Theorem 2.8. (1) It follows from Corollary 2.7 that for all m > 2 the equality holds

logn

[ys,]1=[n7oem ],
and therefore it is enough to prove that the following inequality holds

logn logn

[nrg'"] > [nZ‘Og("’“)], m>=2. 6.1)

Let us assume by contrary, that there exist positive numbers C1, C2, Ng € N such that

logn log(Cpn)
nZoen < C(Con) Toemn+D 6.2)

for any n > Ny. The functions at the left- and right-hand side are positively defined non-
decreasing functions, and the assumption (6.2) is true if and only if the inequality

logn log(Con)

log(n ") < log(C1(Can) ToetisD )

holds. The left-hand side can be transformed in the following way:

log(Cyn) log?(Can)
log(C1(Con)Zloem+D ) = loe C 5\
0g(C1(Can) )=logC1 + Slogm + 1)
=logC + ;(logzn 4 2log Cylogn + log2 Cz)
2log(m + 1) '

Hence the assumption (6.2) is true if and only if the following inequality holds

1 1 log C» )
log” B -1 ———— ) —(logCi +1log"C2) <0 (6.3
o n<210gm 210g(m+1)> Og”<10g(m+1)> (log C1 + log? C3) 6.3)

for all n > Ny. As m > 2 then the coefficient at log n satisfies the inequality

1 1
- 2
2logm  2log(m + 1)

s



LI Reznykov, V.I. Sushchansky / Journal of Algebra 304 (2006) 712-754 751

and therefore there exists N1 € N, N1 > Ny, such that the inequality (6.3) is false for all n > Nj.
Thus, we obtain the contradiction with the assumption (6.2), whence the inequality (6.1) is true.
Item (1) of Theorem 2.8 is proved.

(2) Furthermore, we separate the defining relations of different semigroups S, by the upper
index (m). Let us consider the set of relations

{foff fo=fo. p=0}. (6.4)

For fixed p > 0 the relation fj flp fo = fo is the relation R4 (0, p + 1), and it holds in each semi-
group Sy, , where m > p + 2. On the other hand, the defining relations of S, that do not belong
to the set (6.4) can be applied to semigroup words of length greater than (m + 2). Therefore the
set (6.4) can be considered as “a pointwise limit” of the sets of defining relations

[RYV k. p). RY” (b))},

wherem >2,k>0,p=1,2,...,m — 1, as m tends to +00.
Let us consider the infinitely presented monoid

S=le, fo. fil fof{ fo= fo. p=0),

and we calculate its growth function yg. It follows from the speculations above that ys is the
pointwise limit for the growth function sequence {ys, , m > 2}. It is easy to check that an
arbitrary element s € S can be unambiguously reduced to one of the following forms

f]poa pO 207
P foflt. po,p1=0.

The word growth function §s is defined by the following equality

ssm)y= 1 + n =n+1,
—— ——
Y

whence

n

ysm) =Y (n+1)=

i=0

m+1Dn+2)
—

As S, is amonoid for all m > 2 then the sequence {y,,,, m > 2} tends pointwisely to the growth
function yg as m — +o0, that is equal to w

(3) Let & be a cyclic permutation of X, and 6 be an identical permutation. Applying these
permutation to J,,, we obtain the similar automaton J;, such that its automaton transformations
have the following decompositions

Jfo=(fo,e,e,...,e)1, fi=(f1,e,e,...,e)0.



752 LI Reznykov, V.I. Sushchansky / Journal of Algebra 304 (2006) 712754

A pointwise limit of the automaton sequence {J,;, m > 2} is the automaton J(;o with the follow-
ing automaton transformations

X1 X1 X1

fl:(fl,e,e,...)(x0 X1 X2 )

f0=(f0,e,e,...)<x° Xrox )

X1 X2 X3

Moreover, it is convenient to consider the infinite alphabet X' = {x_1, xq, x1, ...}, and we set
up a bijection between X’ and X = {xg, X1, X2, ...} in a natural way. Let J’ be an automaton
shown on Fig. 2. It acts over the alphabet X', and J’ is a similar automaton to a pointwise limit
of {J,,, m > 2}.

Let S,/ be the automaton transformation monoid defined by J'. It is easily to check that the
following relations hold in §:

foff fo=fo. p=0, and foff =fofi. p=1.

Elements flp , flp fo and flp fofi, p = 0, define pairwise different automaton transformations
over the set of infinite words over the alphabet X’. Thus S has the following presentation:

Syr=le. fo. fil fofl fo=fo. =0, foff = fofi. p=1).

It follows from item (2) that the monoid S’ is a factor-semigroup of the monoid S that can be
considered as a pointwise limit of the semigroup sequence {S;, ., m > 2}, but they are supposed
to be isomorphic. Moreover, for n > 1 there are 3n semigroup elements of length n:

flp, p=0,1,...,n,
f]pf07 p:Osl’---,n_l,
L fofi. p=0,1,...,n-2;
whence the equality ys(n) = 3n holds for all n > 1. Obviously the growth functions ys,, and ys
have different polynomial growth orders.
The theorem is completely proved. O
7. Final remarks
In the paper the sequence of the Mealy automata J, is described. From our point of view

one of the most interesting properties is the property of the growth function y;,,, m > 2, that is
described in Corollary 2.5, item (1):

55, (n+1)=3s, (n)+3s, ([%D
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Fig. 5. The automaton A.

where n > 0. Due to this fact, the second difference of the function y,, is defined by the follow-
ing equality

(2) n—1
Vi (n) = 551”’ (n) — 8Sfm n-1= 551’” ([7])’

where n > 1, and, hence, we have

<2>(mn T 1) = y(z)(mn 4 == J(’i)(mn +m)

for all n > 0. Hence, the function y ) consists of m times repeated values of ds,
Let A be the 3-state Mealy automaton over the 2- symbol alphabet such that its Moore diagram
is shown on Fig. 5. Let us denote its growth function by the symbol y4. The proposition holds

Proposition 7.1. The second difference yf) satisfies the following equality

3
ydm=2yP -0 -y -2+ <2>([—2 D

wheren>5, and y P () =1,y @) =2, yP3) =3, yP @ =5

It follows from this proposition that the second difference of the function y ) , 1.e., the fourth

difference y A , ), for n > 5 consists of doubled values of y A @ Ttis possible to assume that there
exist 3-state Mealy automata such that the fourth difference of the growth function consists of
the second difference values that repeats m times, where m = 3, 4, . ... Moreover, we put up the
following problem:

Problem 7.2. Let m > 2, k > 1 be arbitrary positive integers. Do there exist Mealy automata
such that the 2kth finite difference of the growth function consists of m times repeated values of
the kth finite difference of this growth function?

It requires additional researches, but we think that the studying of Mealy automata through
the arithmetic properties of their growth functions and their finite differences can produce many
interesting examples.
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