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Following extreme flooding in eastern Australia in 2011, the Australian Government established a programme to
improve access to flood information across Australia. As part of this, a project was undertaken tomap the extent
of surface water across Australia using the multi-decadal archive of Landsat satellite imagery. A water detection
algorithmwas used based on a decision tree classifier, and a comparisonmethodology using a logistic regression.
This approach provided an understanding of the confidence in the water observations. The results were used to
map the presence of surface water across the entire continent from every observation of 27 years of satellite im-
agery. The Water Observation from Space (WOfS) product provides insight into the behaviour of surface water
across Australia through time, demonstrating where water is persistent, such as in reservoirs, and where it is
ephemeral, such as on floodplains during a flood. In addition the WOfS product is useful for studies of wetland
extent, aquatic species behaviour, hydrological models, land surface process modelling and groundwater re-
charge. This paper describes the WOfS methodology and shows how similar time-series analyses of nationally
significant environmental variables might be conducted at the continental scale.
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1. Introduction

Floods, droughts and water shortages pose global challenges
(Vörösmarty et al. 2000). In Australia, severe flooding in late 2010 and
early 2011 caused billions of dollars in damage and many deaths. As a
result, the Australian Government announced the Natural Disaster
Insurance Reviewwhich contained a provision to improve the availabil-
ity of flood risk information. Reducing future flood impacts calls for im-
proved mitigation planning and response underpinned by fundamental
knowledge of the geography of floodplains and surface water (Shan
et al. 2009). Severe floods are a feature of the Australian climate and
landscape and are likely to continue with increasing regularity and se-
verity. Therefore, from a government policy perspective, it is particular-
ly important to understand where flooding may have occurred in the
past to reduce its impact in the future through proper disaster planning
and initiatives supporting communities to be better prepared andmore
disaster resilient. This means it is particularly important to understand
the temporal aspect of these natural disasters at a continental scale.

In response to the National Disaster Insurance Review, Geoscience
Australia was tasked with building, hosting, and populating a single au-
thoritative source of flood related information in theNational Flood Risk
Information Project (NFRIP). One component of NFRIP is the production
r Inc. This is an open access article un
of historical flood information about the Australian continent from
satellite imagery. Satellite imagery captures information about surface
water in areas that are remote, inaccessible, extremely large or dangerous
to approach, such as during floods (Frazier et al. 2000). Satellite images
are especially valuable in areas that have sparse in-situ monitoring sys-
tems and areas with broad floodplains that are characterised by extreme
flood events with large extent and temporal variability (Thomas et al.
2011). The detection of water from satellite imagery can also provide in-
sight into the hydrological conditions of large rivers and the interactions
between rivers andhighlywater-dependent ecosystems such aswetlands
(Frazier et al. 2003; Thomas et al. 2011). Knowledge of the location,
extent, persistence and recurrence of surface water is also needed for
water resources assessments, for the allocation of water and regulation
of its use (Khawlie et al. 2005; Morse et al. 1990), and for environmental
water management (Kingsford 2000).

Flood mapping from the Landsat satellites began with Landsat-1 in
the early 1970s (Robinove 1978), demonstrating that flood mapping
from the Landsat satellites was feasible, potentially very accurate, and
could assist with flood prediction, monitoring and relief (Smith 1997).
The fixed orbital period of the Landsat satellites, and the presence of
clouds, mean that the peak of the flood event is not always observed,
which reduces the capacity of Landsat data to provide comprehensive
flood mapping. However images acquired even several days after a
flood peak are still able to capture a high proportion of the flood extent
der the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The data cube. Each 1° × 1° cell contains a time-series of observations as ‘tiles’ of
data.
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in slowly changing systems, providing valuable information on the in-
undated area (Wang 2004). The methods for detecting water from
optical satellite imagery are well established and are considered to be
effectively operational at local and regional scales so long as the water
target is not obscured by vegetation (Smith 1997). Detection methods
typically exploit the absorption of longer wavelengths of light in
water, especially the near and shortwave infra-red parts of the electro-
magnetic spectrum (Smith 1997; Frazier et al. 2000). This results in the
corresponding infra-red spectral bands in the Landsat-5 and Landsat-7
satellites (Bands 4, 5 and 7) detecting low to no reflection from water
as the wavelength increases, and hence being able to be used as a
spectral indicator for water. Several methods take advantage of spectral
indices exploiting the difference in reflectance between the visible and
infra-red parts of the spectrum such as the Normalised Difference
Vegetation Index (NDVI) (Tucker 1979) and the Normalised Difference
Water Index (NDWI) (Gao 1996). Statistical classification methods
applied to Landsat data have demonstrated highly accurate results,
including supervised maximum likelihood (Frazier et al. 2000) and
decision trees (Tulbure and Broich 2013).

Whilst these methods have proven accurate at local to regional
scales, systematic surface water information products are required at
the continental and multi-decadal scales. This type of continental-
scale space-time analysis poses a number of challenges. First, sufficient
observations must be collected over the temporal and geographic
region of interest. Earth observation satellites have imaged Australia
from 1972, building a large national archive of data with the potential
to provide unique and comprehensive information on Australia's
surface water (Draeger et al., 1997; Tulbure and Broich 2013). The
temporally deep archives of Landsat data that have been acquired as a
result of the Landsat long term acquisition plan (Arvidson et al., 2001)
provide a consistent, long-term, continent-wide coverage for analysis
(Thomas et al. 2011). Second, the time required to extract images
from the tape-based archives, the manual tasks involved in processing
and the difficulties of calibration and consistent rectification have all
posed barriers. These barriers have only recently been overcome
through bulk processing of satellite images (Purss et al. 2013) the use
of physics-based processes to calibrate observations (Li et al. 2010),
and systematic quality assurance of observations to remove artefacts
(Sixsmith et al. 2013). Third, the processing required for these steps
requires substantial technical infrastructure andhighperformance com-
puting facilities capable of providing the necessary storage, processing
and analysis platform. This was addressed by placing Geoscience
Australia's archive and processing algorithms on the National Computa-
tional Infrastructure (NCI) which provides access to petabytes of high
speed storage and 1.2 petaflops of processing power. High performance
computing and storage combined with data standardisation and
systematic quality flagging now makes it possible to apply sophisticated
analyses on an entire continental Landsat archive over multiple decades.

In this paper, we present a consistent and continent-wide mapping
of surface water through time using satellite imagery. We believe that
we are the first to achieve such a large-scale continental analysis of sur-
face water in both space and time for Australia. This involved analysing
close to 200,000 Landsat images comprised of approximately 2 × 1013

individual observations covering the years 1987 to 2014 at 25m resolu-
tion on the ground. The approach combines a number of water surface
models and ancillary data sets to provide a level of confidence for the re-
sults. The base water detection method is similar to Tulbure and Broich
(2013) in using a decision tree approach on a combination of spectral
bands and derived indices. The decision tree method delivers a high
accuracy across many environments while allowing fast processing
suited to this very large dataset. The results of the decision tree classifier
are summarised over all observations through time with ancillary
analysis to obtain a confidence probability for each pixel value as a
“confidence layer” that provides a measure of certainty in the results.
This analysis provides a comprehensive and publicly-accessible product,
called Water Observations from Space (WOfS), providing a continent-
wide understanding of surfacewater persistence and recurrence, giving
insight into which surface water bodies are frequently observed (such
as dams or reservoirs), those which are observed infrequently (such
as floods), and their temporal dynamics.

2. Data

2.1. Landsat archive

The core dataset is the Australian archive of Landsat-5 and Landsat-7
data from 1987 to 2014. Approximately 184,500 satellite images were
produced from raw data using the USGS Landsat Product Generation
System with a pixel size of 0.00025° (approximately 25 m resolution).
The images are ortho-rectified, and corrected to measurements of sur-
face reflectance using the method of Li et al. (2010). To facilitate pro-
cessing, the images are spatially organised into 1 × 1 degree cells.
Image acquisitions are organised as a set of data tiles corresponding to
the cell area. The tiles therefore provide a complete time series of obser-
vations for every pixel and thus provide every observation for analysis
(Fig. 1). We refer to this structure as the Australian Geoscience Data
Cube (AGDC). The AGDC is located on the ‘Raijin’ supercomputer at
the National Computational Infrastructure (NCI) and housed at the
Australian National University (ANU) in Canberra, Australia. The Raijin
supercomputer consists of approximately 10 petabytes of storage,
Infiniband interconnect between the nodes, and 57,472 processing
cores allowing large-scale parallel processing.

2.2. Shuttle radar topographic mission digital surface model (SRTM DSM)
The shuttle radar topography mission (SRTM) provides digital sur-

face and elevation models on a near-global scale. The available resolu-
tion for government use is one arcsecond (approximately 30 m) for all
of Australia (Gallant et al. 2011). The WOfS product makes use of the
digital surface model (DSM) including on-ground features such as
trees. The DSMwas resampled to match the 25 m Landsat data and ar-
ranged into AGDC tiles, each covering onedegree of latitude and onede-
gree of longitude, named according to their south western corners. The
SRTMDSM contributed to the analysis by providing indication of terrain
shadow for pixel quality, steep slope masking, and through ancillary
products (see Section 2.3).

2.3. Pixel quality
Observations from satellites are subject to many factors which can

lead to poor observational quality, including instrument failure, instru-
ment saturation, topographic shading, clouds, cloud shadows, and
poor geo-location. Any pixel failing a series of automated quality tests
was masked. The methodology of Sixsmith et al. (2013) was followed
whereby for every pixel q and at observation time t∈ {1,2, … ,N}
where N denotes themaximum number of observations, the pixel qual-
ity qt is obtained by amalgamating the binary outcome of each quality
indicator. If any of the indicators are triggered, qt takes on a non-zero
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value and the pixelwill bemasked in the analysis. The quality indicators
considered are:

Pixel saturation: Saturation was evaluated for each spectral band
per pixel except the panchromatic band of Landsat 7. Pixel saturation
can only be determined from Level 1 (L1) products produced from the
Level 1 Product Generation System (LPGS). Pixels with a byte-scaled
radiance value of 1 and 255 represent under and over saturated pixels
respectively. For the purposes of pixel quality, both under and over
saturated pixels share the same flag.

Band contiguity: Contiguity is defined as a pixel having a valid ob-
servation for every spectral band. A missing value in any one band will
flag that pixel as being non-contiguous. This is considered an important
factor when calculating band ratios, where a pixel may only provide a
valid ratio result where the component band values are valid.

Clouded or cloud shadow: Clouded pixels were flagged using two
separate methods of cloud detection, similar to that used with the
Web Enabled Landsat Data (WELD) products (United States Geological
Survey 2014). The presence of cloud and cloud shadow is computed
by combining the ACCA (Irish 2000) and Fmask (Zhu and Woodcock
2012) methods to provide a combined certainty measure of a pixel
being cloudy or shadowed.

Terrain shadow: Topographic shadow is similar to cloud shadow in
that the underlying spectral characteristics of the surface are not truly
represented. The algorithmused for identifying terrain shadowedpixels
is detailed in Li et al. (2012).

2.4. Ancillary data and products
A number of datasets and products provide support to the base

water classification model. These datasets and products are modelled
as a set of “experts” (Cesa-Bianchi et al., 2006) that indicate the reliabil-
ity of the surface water classification at any point in the landscape.

2.4.1. MrVBF.MrVBF is amulti-resolution valley bottom flatness product
derived from the SRTM DSM (Gallant and Dowling 2003). The presence
of a flat valley bottom is generally consistentwith an observation of sur-
facewater, andMrVBF is designed to indicate deposition areas.MrVBF is
an integer value with range 0 to 9. MrVBF was implemented as a 25 m
resolution Australia-wide coverage to match the Landsat data in resolu-
tion and projection.

2.4.2. Slope. Slope is also derived from the SRTM DSM. The hypothesis is
that, as slope increases, it becomes less likely that surface water will be
present at a location. A high value of slope therefore suggests that a
classification of water is less likely to be correct. Slope is a decimal
value, in degrees, with range of 0–90.

2.4.3. Open water likelihood (OWL). The MODIS open water likelihood
(Guerschman et al. 2011) is a classification model of the likelihood
that water had been observed between 1999 and 2010 based on
MODIS short-wave infra-red spectral data, the normalised difference
vegetation index (NDVI), the normalised difference water index
(NDWI), and the multi-resolution valley bottom flatness (MrVBF)
index. The factor weights in the OWL classification model are
determined using a logistic regression. The OWL product provides a com-
parative satellite-based surface water product across all of Australia for
the period 1999 to 2010. The result is a percentage coded as a floating
point variable ranging from 0 to 1.

2.4.4. Australian hydrological geospatial fabric (geofabric). The Australian
hydrological geospatial fabric (Atkinson et al. 2008) is a vector GIS rep-
resentation of hydrological features derived from digitisation of topo-
graphic map features and analysis of elevation models. Each polygonal
Geofabric feature type was converted to raster using GDAL Transform
at a resolution and projection matching the Landsat data, and coded as
a binary variable with values of 0 (no feature) or 1 (hydrological feature
present).
2.4.5. Australian statistical geography standard (ASGS). TheAustralian sta-
tistical geography standard (ASGS) by the Australian Bureau of Statistics
(2012) is a geographical framework effective from July 2011. The
Australian Bureau of Statistics ASGS 2011 Urban Centre and Locality
dataset (for urban centres of populations of 100,000 and over) was
used to derive an “urban area” indicator with values of 0 (not an
urban area) or 1 (urban area).

3. Method

The requirements for the model implementation were manyfold.
First, a single water classifier was required for the entire continent of
Australia, that was robust against climatic changes across multiple de-
cades, and the varied, regional climates observed across the Australian
continent (tropical, subtropical, desert, grassland, and temperate).
Second, as the model was applied over decades of data, an algorithm
was required that was computationally efficient so that the model
could be recalculated in a reasonable time framewhen newdatawas re-
ceived or the algorithm revised. Third, the model needed to accurately
detect intermittent water bodies such as occur with flooding, and
account for the wide variety of optical properties encountered in inland
waters (Dekker et al. 1997). Finally, since the results would be released
to the public through an online portal, the model output needed to be
simple enough so that it could be easily interpreted and explained to a
non-technical person, while at the same time provide a level of
detail to suit future scientific applications and an indication of
confidence of each observation. To meet these requirements the
proposed model combines on a pixel-by-pixel basis: a water classi-
fication on each satellite observation, pixel quality information to deter-
mine valid from invalid observations, and ancillary information from
number of third party “expert” datasets to provide a confidence assess-
ment in the results.

3.1. Water classification

The Landsat archive provides a time series ofN observations for each
1°×1° tile stored in the AGDC, with each tile consisting of 4000×4000
pixels. The classification of each pixel as water (coded as 1) or not-
water (coded as 0) over time is denoted by ψ1 ,ψ2 ,… ,ψN. Thus
ψt ∈ {0,1} is the classification of a particular pixel at observation time
t ∈ {1,2,… ,N}.

The classifications (ψt)1≤t≤N were obtained using a regression tree
classification (Breiman et al. 1984) that used individual Landsat spectral
bands and normalised difference ratios (NDI) commonly used in water
detection (Smith 1997; Frazier et al. 2000). The regression tree was
trained on a set of water and non-water training samples that were
manually selected from 20 tiles across Australia as shown in Fig. 2.
Each one of these training tiles was analysed over multiple seasons to
provide data from a total of 59 Landsat scenes as samples. The scenes
were chosen to represent the broad variety of landscapes, vegetation,
soil and water colour that occurs across Australia.

The training samples were chosen by breaking each tile into objects
using eCognition (Trimble Geospatial Imaging, 2014) and then manually
classifying objects within each scene into one of 26 classes, representing
a variety of water and non-water targets. Objects were selected based
on the criteria that they only contain pixels of the required classes and
they represent a broad variety of conditions for that class (such as clear
water, turbid water and water/non-water mixtures). Each classified ob-
ject was then broken down into single pixels to obtain a large number
of training sampleswith a variety of spectra to cover the range of different
characteristics of each class. The data derived from each sample consisted
of individual spectral bands and associated normalised difference ratios.
In total, 2.8 million samples were created to produce a pool of training
data. A random set was then generated from the sample pool, resulting
in 180,000 samples for the regression analysis covering all 26 classes,



Fig. 2. Location of the twenty 1° × 1° cells used to generate training data for the model. Training data were selected from multiple Landsat scenes covering each tile.

344 N. Mueller et al. / Remote Sensing of Environment 174 (2016) 341–352
and the regression implemented on every pixel to produce a binary clas-
sifier of water or non-water. The sample class types are shown in Table 1.

To determine the best threshold regime the regression tree outputs
were tested in three scenarios: (1) where only spectral bands were
used, (2) where only normalised difference ratios were used,
(3) where both spectral bands and normalised difference indices were
combined. The test was assessed by comparing the performance of the
resulting regression trees in obtaining a predicted 95% classification
accuracy in the smallest number of threshold steps. This resulted in a re-
gression tree based on variables from both spectral bands and normal-
ised difference ratios. The scoring of the best variables is shown in
Table 2.

The resulting regression treewas optimised by analysing the relative
cost of increasing the number of tree splits versus the improvement in
Table 1
Sample class types used in the manual classification to create samples for the regres-
sion analysis.

Not water Water

Bare Cloud shadow on water
Building shadow Estuarine
Cloud shadow on bare Large water body
Cloud shadow on veg River water
Cropping bare Saline flats
Cropping dense veg Salt lake
Dark soil Sea
Road Small water body
Salt Swamp
Snow Water and veg mix
Terrain shadow on bare
Terrain shadow on snow
Terrain shadow on veg
Forest
Grassland
Riparian veg
accuracy obtained as the number of splits increased. A level of pruning
was chosen beyond which each extra threshold step created more pro-
cessing cost than the associated accuracy increase. The level of pruning
resulted in a projected accuracy of 97% using 23 steps. The final classifi-
cation tree is shown in Fig. 3.

3.2. The confidence and summary layers

The model applies a logistic regression to provide a probabilistic
linear classification to create a comparison between thewater classifica-
tion results and a set of other Australia-wide datasets related to surface
water analysis. A linear regressionmeasures the relationship between a
categorical dependent variable and one or more independent variables
(aka. factors, predictor variables, or features) by using probability scores
as the predicted values of the dependent variable (see for example
Hastie et al. (2009)). In (binary) logistic regression, the binary outcome
Table 2
Variable importance produced by the regression tree
from the prospective spectral bands and normalised
difference ratios for the water classifier. Higher
values indicate a higher classification effectiveness
of the variable. Spectral bands are designated as
TM# (Thematic Mapper Band). Normalised differ-
ence ratios are designated as NDI_XY (Normalised
Difference Index of Band X and Band Y).

Variable Score

NDI_52 100.
NDI_72 98.5162
TM5 97.9127
TM7 77.2063
NDI_43 73.8958
TM1 22.0880
TM3 13.0902



Fig. 3. Diagram of the regression tree underlying the water detection classifier. Tree branches are shown in green with endpoint for water and not-water displayed as blue and red
respectively. Each branch indicates the variable used to split and the resulting balance of water and not-water samples created by the split.
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of the model is usually coded as 0 or 1. The probability that a given
sample Y, with factor vector X should be classified 1 is

Pr Y ¼ 1ð Þ ¼ σ βTX
� �

: ð1Þ

where β is a vector of weights that defines a line in the factor space. The
logistic function σ, defined by

σ xð Þ :¼ 1

1þ e−βT x
; ð2Þ

takes the output of the linear function βTx that ranges from −∞ to ∞
and converts it to a probability that ranges from 0 to 1. The weight
vector β can be found by directly optimising the log-likelihood of a
training set.

For each pixel, there areM experts: f1 , f2 ,… , fM. The experts here are
third-party products and data sets that provide advice as to whether an
observation of water in a location is likely. Depending on the expert,
advice is provided in different ways. For example, as a binary outcome
(e.g.: 1 = hydrological feature, 0 = no feature), a likelihood (of water
in the range [0,1]), a real value, etc. In the implementation used here,
the ancillary datasets and products were mapped to the experts as
follows: MrVBF (f1), MODIS OWL (f2), slope (f3), the features in the
Geofabric product as f4 to f12 (see Table 4), and the urban areas indicator
as f13. Hence the analysis usedM=13experts. However themethodology
could potentially accommodate more ancillary products and datasets in
the future.
Using p to denote a pixel instance and applying a logistic regression
framework, the probability of classification of this pixel p as water
(coded as 1) is.

Pr p ¼ 1ð Þ ¼ σ α1ψ1 þ⋯þ αNψN þ β1 f 1 þ⋯þ βM fMð Þ ð3Þ

where the N+M weights α1 ,… ,αN ,β1 ,… ,βM are to be determined.
For the 1987 to 2014 period of the data, the number of observations N
varies between 600 and 1200 depending on the location of pixel
under consideration. To simplify the calculation, we used the term

α1ψ1 þ α2ψ2 þ⋯þ αNψN ð4Þ

and made the choice of weights using

αt :¼ β0=C; qt ¼ 0;
0; qt N 0;

�
ð5Þ

for 1≤ t≤N, where β0∈ is a new weight to be determined, qt is the pixel
quality at observation time t, and C is the total of number of times that
the pixel was not masked by pixel quality, i.e.,

C :¼
XN
t¼1

I qt¼0f g ð6Þ

where I is the indicator function (IA=1 if A is true, and 0 otherwise).
Next the classifications (ψt)1≤ t≤N were re-indexed in terms of the C
clear observations (as determined by pixel quality): ψ(1) is the



Table 3
Accuracy assessment of the water classifier including a breakdown into the 26 spectral
subclasses. Situations where the classifier performs poorly are highlighted in red and
where the classifier performs well are highlighted in green.

Spectral

Subclass

Bare

Building shadow

Cloud shadow bare

Cloud shadow veg

Cropping bare

Water Not Water

% # % #

0% 2 100% 756,974

6% 198 94% 2903

6% 4167 94% 67,852

2% 3033 98% 134,788

0% 0 100% 60,210
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classification of the first clear observation, ψ(2) is classification of the
second clear observation, and so forth up to ψ(C). Using the choice for
the weights α1 ,… ,αN gives

α1ψ1 þ α2ψ2 þ⋯þ αNψN ð7Þ

¼ β0

C
ψ 1ð Þ þ

β0

C
ψ 2ð Þ þ⋯þ β0

C
ψ Cð Þ ð8Þ

¼ β0

C
ψ 1ð Þ þ ψ 2ð Þ þ⋯þ ψ Cð Þ

� �
ð9Þ

¼ β0
W
C

ð10Þ

Cropping dense veg

Dark soil

Road

Salt

Snow

Terrain shadow bare

Terrain shadow snow

Terrain shadow veg

Forest

Grassland

Riparian veg

Cloud shadow water

Estuary

Large water body

River

Saline flats

Salt lake

Sea

0% 0 100% 34,762

0% 36 100% 17,450

1% 60 99% 5337

1% 1023 99% 93,141

0% 113 100% 93,695

11% 44,492 89% 352,121

1% 64 99% 7659

4% 3161 96% 74,022

0% 24 100% 285,875

0% 28 100% 594,384

0% 184 100% 61,587

99% 1676 1% 11

95% 72,585 5% 3850

98% 124,826 2% 3057

80% 46,778 20% 11,651

92% 404 8% 33

99% 13,982 1% 139

98% 339,876 2% 5932
where W is the number of times that the pixel is classified as water by
the decision tree. This gives the simplified logistic regression

Pr p ¼ 1ð Þ ¼ σ β0
W
C

þ β1 f 1 þ⋯þ βM fM

� �
ð11Þ

where the M+1 weights β0 ,β1 ,… ,βM need to be determined. At this
point the model no longer depends directly on N but only on the
proportion W/C which will vary between 0 and 1 and can be updated
(by adding new observations) without changing the weight β0. The term

S :¼ W
C

; ð12Þ

is termed the summary as it is the proportion of clear observations of a
pixel in which water was detected (see Fig. 4). Higher values of S tend
to indicate that water is consistently detected (i.e., permanent water
bodies) and lower values indicate a pixel wherewater is detected irreg-
ularly. The summary S provides an easy to interpret (and visually strik-
ing) representation of surfacewater over time. This results in themodel

Pr p ¼ 1ð Þ ¼ σ β0Sþ β1 f 1 þ⋯þ βM fMð Þ: ð13Þ

Hence, the model provides an assessment of confidence in the sur-
face water classification, by combining a set of surface water datasets
Fig. 4. Each 1° tile is composed of 4000 × 4000 pixels. The pixels in each tile are classified
as water or not-water. The classifications over time are aggregated into a summary layer
which gives the proportion of times that water was detected.

Small water body

Swamp

Water veg mix

Producers accuracy

Users accuracy

Overall accuracy

88% 12,266 12% 1730

63% 22,758 37% 13,519

74% 34,636 26% 12,060

93% 98%

92% 98%

97%

Table 4
Logistic regression model weights.

Symbol Description Weight Value

S Summary β0 0.1703
f1 MrVBF β1 0.1671
f2 MODIS OWL β2 0.0336
f3 Slope β3 −0.2522
f4 Geofabric – canal β4 0.0000
f5 Geofabric – foreshore β5 4.2062
f6 Geofabric – pondage β6 −5.4692
f7 Geofabric – reservoir β7 0.6574
f8 Geofabric – flat β8 0.7700
f9 Geofabric – lake β9 1.9992
f10 Geofabric – rapid β10 0.0000
f11 Geofabric – swamp β11 1.3231
f12 Geofabric – watercourse β12 1.9206
f13 Urban Areas β13 −4.9358
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and terrain-based factors with the Landsat observation frequency to
create a confidence layer. This layer provides a point of comparison
with the surface water classification to indicate whether the classifica-
tion results are in line with other surface water datasets.

By itself the raw summary value S has a flaw due to classification er-
rors thatmight occur in the classifiers (ψ(t))1≤t≤C, or alternatively, errors
in the pixel quality mask (e.g., a cloud pixel is not flagged as having
cloud cover). For example, consider the situation where C=100 clear
observations and one of the classifiers mistakenly classifies a cloud (or
shadow) as water while all the other classifiers flag it as no-water,
hence W=1. This would give a summary score of S=0.01. This is a
phenomenon leading to noise in the summary, often characterised by
‘lone pixels’with a small summary value S. A naïve way to fix these ar-
tefactswould be to simplyfilter S based on somearbitrary low threshold
(say, 0.05) and then set S=0when S b 0.05. Although this does remove
the artefacts and noise, it also removes all traces of the low frequency
surface water that characterises flooding and ephemeral water
bodies. This is resolved by filtering the summary S by the probability
of the pixel being an actualwater pixel, by defining the filtered summary
~S as

~S :¼ S if Pr p ¼ 1ð Þ N κ ;
0 otherwise;

�
ð14Þ

where κ is a small value to be chosen (e.g., κ=0). This approach is
significantly more robust as it filters the summary using the advice
Fig. 5. Heatmap showing number of clear observations p
from all the experts. It also removes a significant amount of noise but
keeps the low frequency water observations.
4. Results and discussion

The analysis procedure generated surface water classifications for
each pixel, for each observation, from 1987 to 2014. Water classifier
accuracy was assessed by creating an additional set of test samples
over the same locations as the original training data, but from differ-
ent years, resulting in an additional 3.4 million samples, thereby en-
suring that the accuracy assessment data were independent of the
training data. The assessment is presented as a confusion matrix in
Table 3, and indicates an overall classification accuracy assessment
of 97%.

The confusion matrix highlights where the classifier performs well,
and where it performs poorly. Areas identified as water are being
correctly identified 93% of the time and are being misclassified as not-
water 7% of the time. These errors of omission typically occur along riv-
ers, small waterbodies and swamps where the presence of both water
and vegetation within the pixel leads to a failure to identify water.
This means that theWOfS product is likely to underestimate the extent
of water in locations that contain mixed water and vegetation pixels.
As a consequence the WOfS product may not be fit for applications
that require information about the inundation characteristics of vege-
tated wetlands, small farm dams, and rivers with significant riparian
vegetation.

Areas of water are being incorrectly identified within not-water
areas in steep terrain or dense urban areas where shaded pixels are
er pixel across Australia for the 1987–2014 period.



Fig. 6. An area of south-western Queensland from the WOfS product, demonstrating some instances of inundation affected by the “venetian blinds” of the Landsat-7 SLC-Off fault.
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misclassified aswater. These errors of commission are occurring in 8% of
samples. This means that the WOfS product may overestimate the
amount of water in locations that are in areas of steep terrain or in
dense urban areas. The terrain and urban data used in the confidence
layer help to reduce this overestimation, however some residual errors
remain. As a consequence of this theWOfS productmaynot be fit for ap-
plications that require information about the inundation characteristics
of urban areas or in mountainous regions.

A significant issue for large water bodies is signal noise for very clear
water (Nichol and Vohora 2004). Data values in areas of very clear
water are extremely low, often only 1 to 2 DN in the uncorrected
Landsat data. This results in corresponding low values once the surface
reflectance correction has been implemented, with additional issues
from any error in the ancillary data used to produce the correction. As
such it becomes possible for the noise to exceed the measurement by
Fig. 7. Sydney area confidence filtered at κ=0%
the ThematicMapper sensor and hence the observed spectra to indicate
that the target is not water. The observed values of NDI_43 and NDI_52
(see Table 2) can easily result in a water pixel in the centre of a lake
being detected as not-water as the noise results in unusual values
and the resulting index displays a strong positive value where it
should physically be equally negative. Hence some issues arise in
permanent water bodies (and ocean areas) occasionally being classi-
fied as not-water. This appears as speckle within large water bodies.
A curious side effect of this behaviour is that shallow areas often dis-
play as having a higher water observation frequency than deep areas,
apparently due to the improved signal to noise associated with the
contribution of substrate reflectance. This is a subject for further
investigation.

Another error that is not accounted for by the classification algorithm
derives from problems with Scan-Line-Corrector-Off (SLC-Off) problem
(left), κ=1% (centre), and κ=2% (right).



Fig. 8.Receiver operating characteristic (ROC)of the surfacewatermodel. A stratified six-fold
cross-validationwas applied and the average ROC is plotted.We compare the fullmodel vs. a
model where only the summary layer is used for classification (i.e., βi=0 for iN0).
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on Landsat-7 (Markham et al. 2004). The SLC-Off problem creates data
gaps in the Landsat-7 imagery, worsening towards the east and west
edges of the data. The classification results from SLC-Off data create cor-
responding gaps in the classification, and hence an inundation eventwill
Fig. 9.WOfS filtered summary product for Australia, de
appear as though viewed through “venetian blinds” (Fig. 6). While
methods exist to correct the SLC-Off gaps in Landsat 7 data, the current
policy around data in the AGDC is that only “real” observations will be
included, so the SLC-Off error will be an artefact inWOfS for the foresee-
able future.

The confidence layer provides an assessment of the validity of the
summarised water results for each pixel. The confidence was applied
to the water summary layer to mask any pixels classified as water
where the confidence was less that 1%. Fig. 7 demonstrates the effect
that applying the confidence layer has on the water summary for
confidence levels (κ) of 0, 1 and 2%.

Filtering the summarised water result at an inappropriately high
confidence removes all results that indicate the presence of ephemeral
water such as floods.

To assess the degree to which the logistic regression model (for the
confidence layer) correctly classifies water, a stratified six-fold cross-
validation was applied using the training tiles selected from across
Australia. The entire training data set was randomly divided into six
even subsets containing similar proportions of water and not-water
samples. A different set of samples was iteratively chosen as the testing
set and the other five subsets of samples were combined into a training
set. An individual logistic regression model was constructed based on
each training set and used for predicting the testing set. This methodol-
ogy was repeated six times until all the subsets were tested. Area under
rived from water observations from 1987 to 2014.



Fig. 10. TheMenindee Lakes region of the Darling River in western New SouthWales and
the associated WOfS Filtered Summary. Dark blue areas indicate permanent water, while
red areas indicate infrequent water observations including flood-related phenomena.
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the receiver operating characteristic (ROC) curve was used to assess the
performance of the logistic regression for the confidence layer. This is
a commonly used metric for evaluating statistical learning algorithms
(Bradley 1997). The ROC curve in Fig. 8 was generated by varying the
threshold and plotting the corresponding True Positive (TP) and False
Positive (FP) rates. When interpreting such curves, models generating
points closer to a TP rate of 1 for all FP rates are considered better
thanmodelswith a TP rate further away from1. At the extreme, achieving
a value of (0,1) represents a perfect classification with zero FP rate and
100% TP rate. A poor classifier would yield a ROC curve exhibiting a line
through the diagonal (FP rate = TP rate) which is an equivalent to the
model producing nothing more than a random result (i.e., “luck”) and
making an equal number of correct classifications between positive and
negative samples. A classifier exhibiting values below the diagonal is
considered worse than a random result.

The ROC curve shown in Fig. 8 is the average ROC curve over the six-
fold cross-validation with a mean area under the curve (AUC) of 0.985.
Introducing “experts” into the model shows the gain in classification
accuracy obtained compared to a model whereby only the summary
value S is used, i.e., β1 to βM set to zero in (13).

The resulting weights from the logistic regression for the confidence
layer demonstrate the degree to which an ‘expert’ agrees or disagrees
with the water summary created from the water classifier. Table 4
shows the individual weightings for each factor in the logistic regression.

The ‘experts’ employed in the model were:

• MrVBF. The presence of a flat valley bottom is generally consistent
with an observation of surface water, and MrVBF is designed to indi-
cate deposition areas.

• Slope. A high value of slope indicates that a classification of water is
less likely to be correct.

• MODIS-OWL. A high open water value indicates increased likelihood
in the detection of surface water.

• Urban areas derived from the ASGS 2011 Urban Centre and Locality
dataset, for urban centres of populations of 100,000 and over. In
areas where there is a significant amount of urban development the
water detection algorithm was confounded by the deep shadows
cast by multi-storey buildings and the generally noisy spectral
response created by structures.

• GeoFabric, showing known topographic surface water features. The
components of Geofabric used for the analysis were: canal, foreshore,
pondage, reservoir,flat, lake, rapid, swamp, andwatercourse. Each com-
ponent was used as a binary component in the confidence calculation.

• Quality of observations. Where observation conditions are poor, it be-
comes less likely that a good water observation can be made. Hence
image artefacts that are masked by the pixel quality data reduce the
number of times that a particular pixel was clearly observed. After ap-
plying pixel quality filters, the number of clear observations per pixel
across the Australian land surface ranged from over 1200 in central
Australia, to under 10 in persistently cloudy sites and mountainous
areas. The number of clear observations was also greater in the overlap
areas between adjacent satellite overpasses (Fig. 5). These overlap areas
are larger toward southern Australia as the satellite orbits converge to-
ward the pole.

Positive weights indicate agreement, while negative weights indi-
cate disagreement. The expectation was to have greater confidence in
the detection of water if it coincided with hydrologic features mapped
in GeoFabric. Table 4 shows that the Geofabric factors have varying
weights from the most positive to the most negative. Themore positive
features correlate with larger Geofabric polygons while the lowest
correlate with the smallest or those where the resolution of Landsat is
too low to reliably detect these features (such as rapids and canals).
The pondage feature is strongly negative due to these being small,
temporary bodies that rarely contain water. Slope shows a negative
weight, which is in line with increasing slope correlating with a
decreasing likelihood of the presence of significant surface water.
MrVBF is positive as increasingMrVBF values correlate with larger, flat-
ter terrain. The low, positive value of the MODIS OWL weighting corre-
sponds to MODIS having a far lower resolution than Landsat and
consequently a lower ability to detect smaller water features. Typically,
in areas where there is a significant amount of urban development, the
water detection algorithm is confounded by the deep shadows cast by
multi-storey buildings and the generally noisy spectral response created
by structures. Similar issues were found by Frazier et al. (2000) and
Feng et al. (2015) for Landsat data, and Shackelford and Davis (2003)
for IKONOS data. Our ‘urban area’ indicator derived from the ASGS
dataset show a strong negative weighting, which reflects that major
surface water features generally occur away from the major urban cen-
tres. Where a water feature occurs within an urban centre, it is
accounted for in the Geofabric data.



351N. Mueller et al. / Remote Sensing of Environment 174 (2016) 341–352
There are currently two global water body datasets that are derived
from large collections of Landsat data: the Global Inland Water (GIW)
bodydataset for 2000 (Feng et al. 2015) and theGLObalWAter BOdies da-
tabase (GLOWABO) by Verpoorter et al. (2014). Both demonstrate very
high accuracy inmappingwater bodies. GIWuses the year 2000 coverage
of the Global Land Survey (GLS) of Landsat 7 ETM+ data (Gutman et al.
2008), while GLOWABO uses the GeoCover product of Landsat 7 ETM+
data from around 2000. Each produces a comprehensive coverage of
water bodies of the world comprised of a mosaic of single date classifica-
tions and hence is a best snapshot of water body extent for a particular
time. These products do not seek to provide an understanding of the
variability in water body extent over time, whereas the primary driver
for WOfS was to provide information on flooding by understanding
where water was a common occurrence compared with where it was
rarely observed. In addition the GIW andGLOWABO are derived from rel-
atively cloud-free imagery, whileWOfS uses every pixel of the Australian
Landsat archive and masks cloud on a case-by-case basis. This generates
an extensive time series of data for every pixel across the continent, and
enables subsequent temporal analyses of the change in surface water
over all acquisitions for a location. GIW and GLOWABO share similar is-
sues to WOfS where water mixes with vegetation, where water areas
are smaller than the Landsat pixel (although GLOWABO is enhanced
using the panchromatic band to significantly enhance its resolution)
and where terrain and cloud shadows remain in the data. A full compar-
ison between these datasets is yet to be undertaken, and is a subject for a
future article.

As of April 2014 theWOfS product has been delivered as a consistent
continental dataset via web services, accessible at http://eos.ga.gov.au/
geoserver. The servicesmake up a suite offive layers presenting the var-
ious components of WOfS, allowing easy public access. The available
layers are:

1. number of times surface water observed,
2. number of clear observations,
3. the ratio of water observations to clear observations as a percentage,
4. confidence in the water observations,
5. filtering of the water recurrence summary for confidence.

Thefifth layer shown in Fig. 9, presenting thewater summaryfiltered
for confidence, represents the final state of this version of WOfS and
displays the percentage of clear observations for which water was
observed across Australia where the confidence value (κ) is at least
one percent. Fig. 10 shows Landsat imagery for the Menindee Lakes
region of western New South Wales and the associated WOfS
outputs, demonstrating the presence of a wide range of permanent
and ephemeral water bodies, including flood inundation. The
individual water classifications from every Landsat scene are also
available from the NCI at http://dap.nci.org.au.

Initial scoping of the full processing time required for the analysis in-
dicated that one analysis of the entire Landsat archive for surface water
was over four years. The analysis as conducted on the AGDC was com-
pleted in under 8 h, making it feasible to review and improve the algo-
rithms, and repeat the analyses many times, where previously such an
analysis was essentially not feasible.

5. Conclusion

The Water Observations from Space (WOfS) product provides a na-
tionally consistent tool for understanding surfacewater across Australia
both spatially and temporally. The maps generated usingWOfS provide
a new source of information on Australian floodplains, and a rich new
data source for visualisation and analysis of surface water in Australia
more generally. It demonstrates the power of high performance com-
puting for remote sensing applications and the advantages of having
well structured and standardised data in an accessible, high processing
speed environment. The combination of large high speed storage at-
tached to supercomputer processors, and surface reflectance data in a
standard grid arrangement has enabled the development of a single
analysis that can be applied systematically through decades of data.

We have demonstrated a method to develop a standard algorithm
for the classification of surface water from medium resolution satellite
imagery at a continental scale for decades of data. In total the process
constituted some 184,500 scenes spanning over 27 years, or approxi-
mately 2 × 1013 observations, and was able to be completed in under
eight hours to produce a continental map of surface water recurrence.
Themethod shows that it is operationally feasible to apply a single algo-
rithm over many different environmental and climatic conditions and
achieve a high degree of accuracy. Some known errors remain, mainly
derived from shadow produced by clouds and steep terrain. Important
additional errors also derive from data anomalies (especially from
Landsat-7 SLC-Off data) and urban structures. However the logistic re-
gression method provides a mechanism of understanding the nature
of the results and mitigating these errors.

WOfS is just one of many potential types of continental-scale analy-
ses using medium resolution satellite data. Our ongoing work is focus-
ing on the relationships between surface water and groundwater
recharge, vegetation response and the dynamics of Australia's river sys-
tems. Similarly we are investigating forest and rangeland dynamics
under the same workflow concepts. Our expectation is that the WOfS
product itself will mature to become a regularly updated product. Public
access to thewater summary product is available through theAustralian
Flood Risk Information Portal (www.ga.gov.au/wofs).
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