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Abstract
With increasing deployment of Web services, the research on the dependability and availability of Web service composition becomes more
and more active. Since unexpected faults of Web service composition may occur in different levels at runtime, log analysis as a typical data-
driven approach for fault diagnosis is more applicable and scalable in various architectures. Considering the trend that more and more service
logs are represented using XML or JSON format which has good flexibility and interoperability, fault classification problem of semi-structured
logs is considered as a challenging issue in this area. However, most existing approaches focus on the log content analysis but ignore the
structural information and lead to poor performance. To improve the accuracy of fault classification, we exploit structural similarity of log files
and propose a similarity based Bayesian learning approach for semi-structured logs in this paper. Our solution estimates degrees of similarity
among structural elements from heterogeneous log data, constructs combined Bayesian network (CBN), uses similarity based learning algorithm
to compute probabilities in CBN, and classifies test log data into most probable fault categories based on the generated CBN. Experimental
results show that our approach outperforms other learning approaches on structural log datasets.
Copyright © 2016, Chongqing University of Technology. Production and hosting by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In recent years, as a promising computing paradigm,
service-oriented computing (SOC) [1] has changed the way of
design, delivery and consumption of software applications.
Web services technology aiming at implementing service ori-
ented architecture has been widely applied to different areas for
research or business purposes. Accordingly, more and more
business functions are published as Web services (WS) by
various organizations and companies. There are two main ap-
proaches of developing Web services, including SOAP-based
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Web services [2] and RESTful Web services [3,4]. Numerous
atomic Web services can be regarded as access points for ap-
plications without relying on other Web services. When a user
request cannot be fulfilled by atomic Web services, composite
Web service plays an important role in providing complex
collaboration and interaction between multiple Web services.

During the past ten years, a large number of existing
standards [5] for Web service composition have been defined.
Web service orchestration language is one of these standards
for describing executable business processes, which are
composed of Web services. Based on OASIS standards, Web
Services Business Process Execution Language (WSBPEL or
BPEL) [6] is an executable orchestration language for
modeling business processes with Web services. Depending on
Web service composition, business processes can be executed
by the support of BPEL engine from a third party. Some recent
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research work has focused on extending BPEL engine to
enable composition of SOAP-based, RESTful and OSGi ser-
vices [7]. Since there are more and more Web services (esp.
RESTful Web services) used in practice, the complexity of
Web service composition is becoming higher than before. For
this reason, how to ensure dependability and availability is
essential for Web service composition. To enhance the
dependability of service flow execution, fault tolerant Web
service orchestration [8] was proposed. As a critical aspect in
fault tolerance framework, fault diagnosis aims at identifying
or locating the causes with high probability to explain process
exceptions and failures based on runtime information. Since
most detailed running information in processes execution is
recorded in log files, fault diagnosis by learning from log data
is becoming an important issue in this area.

Currently, semi-structured data formats, including XML
and JSON, are used as the standards of information repre-
sentation on the Internet. Due to its good flexibility and
interoperability, more and more log files of software running
information are represented using the XML/JSON format,
especially for Web services. Thus, it becomes a key topic of
fault diagnosis research which focuses on analyzing semi-
structured and XML/JSON like log. Generally, semi-
structured documents have much richer structural informa-
tion than flat ones, which has potential influence on classifi-
cation accuracy. Taking this into account, the main task of
learning from this kind of documents will have more chal-
lenges than before. However, for most classification methods
of log analysis, IR-based methods are commonly used
ignoring a significant amount of structural information, which
leads to low classification accuracy. Therefore, how to learn
the structural information from the log has great impact on the
accuracy of fault classification.

In this paper, we propose a similarity-basedBayesian learning
approach for fault classification of semi-structured logs. Our
method is to first estimate similarity degrees of structural ele-
ments from heterogeneous log data. Then the basic structure of
combined Bayesian network (CBN) is constructed, and the
similarity-based learning algorithm is used to compute proba-
bilities in CBN. Finally, test log data can be classified into most
probable fault categories based on the generated CBN.

The rest of this paper is organized as follows. Section 2 in-
troduces the related work concerning fault diagnosis of Web
service composition and existing classification methods for
(semi-)structured documents. Section 3 provides an overview of
the similarity based structural classification approach and the
CBN model. The details of CBN generation, including how to
compute probabilities of CBN using similarity-based learning
algorithm, are presented in Section 4. Experimental results of this
approach compared to other learning approaches are shown in
Section 5. Finally, Section 6 draws the conclusion.

2. Related work

Over the past years, some research work in Web services
area has concentrated on how to enhance dependability and
availability of Web services. Fault tolerant Web services
orchestration [8] is supported by fine grained identification of
exception and fault causes and the consequent execution of
effective exception and fault handlers [9,10]. As an important
step of fault tolerance, fault diagnosis has attracted wide
attention of academic community increasingly. From the
methodology perspective, the existing work on fault diagnosis
in this area can be divided into two main categories, including
model-based diagnosis and data-driven diagnosis.

With respect to model-based approaches, the basic idea is to
model the behavior and inner logic of the diagnosed service, and
then discover runtime faults based on its model. The on-going
work has been described in some published papers. WS-
DIAMOND [11] is a European research project which eight
research agencies have participated in. In this project, model-
based diagnosis is adopted as the principal approach. Yan et al.
[12,13] presented a model-based approach for diagnosing
orchestrated Web service processes. In their approach, Web
serviceswith faults can be deduced from thevariable dependency
on execution trajectory, which is represented by the generated
automata of BPEL description. With the assumption that
behavioral descriptions of individual activities may not be totally
given, Mayer et al. [14] presented an approach of isolating
minimal sets of faulty activity executions based on the process
structure. Considering composite service adaption to the dy-
namic execution environment, Dai et al. [15] analyzed the error
propagation relation between any two services and gave uncer-
tain casual relation between exceptions and services by
computing error propagation degree. In addition, some research
groups proposed testing frameworks [16] and hybridmodels [17]
for fault diagnosis of Web service composition.

For data-driven approaches, the diagnosis problem is usu-
ally transformed into the classification problem. Then it can be
solved by using data mining and machine learning algorithms
on log file data. As we know, many reported research efforts
have focused on mining log files of computing systems. And
there are some common places in log mining methods for
regular computing systems and Web services. For this reason,
we can make reference to those existing methods in the related
area. Considering the differences between two basic data types
e plain text data and semistructured data, mining approaches
are often designed and implemented according to the type of
training and test data. For plain-text log data, Li et al. used
Bayes method [18,19] to categorize text messages in log files,
and utilize the temporal information to improve classification
performance. In Ref. [20], Bayes classifier, semi-supervised
learning, and decision trees, are used to automatically recog-
nize symptoms of recurrent faults. As for semi-structured log
data, there are also some corresponding classification ap-
proaches. In Ref. [21], a database of failure signatures against
which undiagnosed failure data can be matched, is constructed
from monitoring data. And then anomaly-based clustering
method is proposed to generate right clusters for diag- nosing
failures with low-confidence match. Denoyer and Gallinari
[22] provided a generative model for classification task based
on Bayesian networks, which can handle both structure and
content. Zaki and Aggarwal [23] presented an effective rule
based classifier for XML data using frequent discriminatory



Fig. 1. Fragments of two sample XML log files.
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substructures within XML documents. As a Bayesian learning
approach of semi-structured data, our approach is similar to
that given by Denoyer and Gallinari in methodology aspect.
But they are different in nature, because their generative model
only concerns the training data in identical logic structure,
whereas our approach aims at constructing the CBN model
based on log data in different structures from heterogeneous
sources (which will be discussed later in detail).

In addition, there are other diagnosis mechanisms and
frameworks for Web services. In Ref. [24], a self-healing plug-
in for BPEL engine is presented, which can enhance the ability
of a standard engine to provide process-based recovery ac-
tions. It only provides the self-healing mechanism at infra-
structure level without referring to diagnosis methods in detail.
Ardissono et al. [8] proposed a framework for Web Service
orchestration which employs diagnostic services to support a
fine grained identification of exception causes.

3. A Bayesian network approach to fault diagnosis

As a data-driven approach, the task of fault diagnosis is to
construct the generative model based on the training data from
semi-structured log files, and then classify test log data into
possible fault categories using this model. On account of the
heterogeneity of log file sources in practice, it is a new chal-
lenge to develop methods of learning from the semi-structured
log data, which are similar in content but not identical in
structure. For this reason, it is important to exploit the struc-
tural information contained in XML/JSON documents for
learning task. For sake of simplicity, we take XML log files as
example in this paper. According to the classical representa-
tion, an XML document can be considered as a tree in which
each node represents a structural element. Given two XML log
files generated by different service execution engines, the
corresponding schema trees can be extracted from them,
which often have similar content but slightly different struc-
tures. In this paper, we extend our previous work [25] by
proposing an efficient online learning algorithm for the dy-
namic environment. Our main idea is to find the similarity
between the nodes of these two trees, and then construct the
generative model by learning from the training log data based
on similarity degrees. Herein, we propose combined Bayesian
network as a generative model for semi-structured log data,
the probabilities of which depend on training data distribution
of both corresponding elements and their counterparts with
high similarity degrees.
3.1. Overview of the approach
In this approach, the learning problem is simplified by
limiting the number of XML log files to two, which constitute
the training dataset. (If the number of log files is more than
two, the learning problem can be transformed into the equiv-
alent one which consists of several two-file problems.) For
example, suppose there are two log files F0 and F1 as shown in
Fig. 1. We can find that F0 and F1 have similar content but
slightly different structures. In view of their structural
differences, generating Bayesian network model from the
training dataset is non-trivial. Herein, how to handle the
similarity relation between schema elements of F0 and F1 can
be taken as the key point. The objective of our approach is to
generate the CBN by learning from all relevant data in training
dataset based on quantified similarity.

To give an overview of the fault diagnosis approach, we
will firstly introduce its principal steps. Suppose the schema
trees T0 and T1 are extracted from XML log files F0 and F1,
then the main steps in this approach can expressed as follows:

1. Estimate the normalized similarity degrees of the nodes of
T0 and T1, and then find the similar node pairs by ignoring
those pairs whose degrees are under the threshold value.

2. Create the basic structure of combined Bayesian network,
which includes combination part and private part.

3. For each schema tree, calculate the combination similarity
degrees between its nodes and corresponding ones in CBN,
and normalize the values of combination similarity degrees.

4. Compute the probabilities of the constructed CBN on all
relevant data in training dataset using the similarity de-
grees obtained from steps 1 and 3.

5. Given a runtime log record in XML format, use the
generative CBN model to classify the test log data, and
diagnose possible faults according to the category it
falls in.

As we see, steps 1, 3 and 4 play important role in this
approach, which are responsible for the computation of simi-
larity degrees. The detailed discussion of these steps will be
given in Section 4.
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3.2. Modeling semi-structured log files with combined
Bayesian networks
The Bayesian network is a suitable model for representing
the dependencies and relations between different elements of
semi-structured data. On account of structural differences of
training data, we propose combined Bayesian network, which
is modeled by learning from heterogeneous training data based
on quantified similarity. As a generative model, CBN is
capable of handling both structure and content information,
and can be used to classify test log data.

Generally, each log file consists of a set of log data records,
which will be labeled with related fault categories. These
labeled log records constitute the training dataset. We asso-
ciate a CBN model to each category of the training dataset.
Since data records in same category may have different logical
structures, a CBN is constructed by combining structural and
content information of all data records in corresponding
category. Then, the network parameters are learned from all
training data records in this category. To realize fault diag-
nosis, we classify test log data records into possible fault
categories by performing inference in constructed CBNs.

Consider the sample XML log files F0 and F1 in Fig. 1. For
the training data in a given category c, the schema information
of each log record can be represented by T0 or T1. According
to this, we can construct the basic structure of CBN by
combining T0 and T1, which contains a set of structural nodes
denoted by Ns. In addition, there are also a set of content
nodes (as the leaf nodes in CBN) denoted by Nt for repre-
senting textual information of log data. For simplicity, the
discussion below will mainly focus on those structural nodes.
Fig. 2 shows the basic structure of CBN, which is a directed
graph with T0 and T1 as its subgraphs. In fact, each node in this
CBN has node c for the corresponding category as its father
(which is omitted for sake of simplicity). According to
quantified similarity results, the structural nodes can be
divided into two groups, including combination group and
private group. The combination group contains the nodes
which have the corresponding nodes or their similar
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Fig. 2. Basic structure of the CB
counterparts in both T0 and T1. In comparison with combi-
nation group, the private group is composed of the nodes,
which only have the corresponding nodes in T0 (or T1).

4. Similarity-based Bayesian learning for fault diagnosis

In this section, we propose a similarity-based Bayesian
learning approach for fault diagnosis. Firstly, we introduce
how to estimate similarity degrees of schema elements for
constructing combined Bayesian networks. Then, we present
how to learn probabilities o CBNs in detail. Finally, we give
the method of classifying log data records using CBNs for
fault diagnosis in subsection 4.3. To illustrate this learning
approach, we will continue to use the example given in
Section 3.
4.1. Estimating similarity degrees for constructing CBNs
Since the probabilities of CBNs depend on the distribution
of both corresponding data and their similar counterparts in
training dataset, we need to find the correspondences between
the nodes of extracted schema trees. Consider the schema trees
T0 and T1 in previous example. There are a number of nodes in
T0 and T1 which have similar meaning but different names. In
order to discover the correspondences between these nodes,
we will exploit both textual and structural information of T0
and T1.

The task of finding consistency between similar elements of
two schemas is often regarded as matching. In this subsection,
we will estimate element similarity degrees by schema match-
ing. As for the matching method, we have made a reference to
the similarity flooding algorithm [26]. This algorithm takes two
graphs (schemas, catalogs, or other data structures) as input, and
produces a mapping between corresponding nodes of the graphs
as output. Based on the similarity flooding algorithm, our
method tries to find a mapping between corresponding nodes of
the schema trees. Moreover, we utilize graded structural infor-
mation in different stages, which can improve both of initial
mapping accuracy and computation efficiency. In the matching
FaultEntries
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faultEvent

FaultStringtion
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N by combining T0 and T1.



Table 1

Similarity estimation result.

Node in T0 Node in T1 Similarity (Sim)

Fault Fault 0.90

DetailEntries DetailEntries 0.68

DetailEntries FaultEntries 0.44

FaultEvent FaultEvent 0.19

SourceActivity Activity 0.19

Name Name 0.17

Type Type 0.17

Value Value 0.17

FaultCode FaultCode 0.16

Description FaultString 0.10

Scope EncodingURI 0.10
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process, we take T0 and T1 as input, and produce similarity de-
grees between corresponding nodes ofT0 andT1 as output. There
are two steps in this process based on pairwise graph, including
initial matching and similarity propagation. In initial matching,
we additionally exploit the structural information in attribute
level. Given two nodes m0 and n1 of T0 and T1 which has
attribute sets Am and An respectively, we will match attributes
of A and A as well as. names of m0 and n1. The computation
formula is

Sim0ðm0;n1Þ ¼ q
jAm∩Anj

jAmj þ jAnj þ ð1� q Þ StrSimðm0;n1Þ ð1Þ

where jAmj is the number of elements in set Am, StrSimðm0; n1Þ
represents the similarity value of m0 and n1 by string match-
ing, and is a weight coefficient fixed by users. Based on initial
matching results, we construct the pairwise graph in step (2).
A portion of this pairwise graph is shown in Fig. 3, where
some nodes of low degrees in initial matching are ignored.
Then, similarity propagation is executed based on this graph.
The computation formula for similarity propagation is
Simiþ1ðn0;n1Þ ¼ Simiðn0;n1ÞþX
ðm0;m1Þ2NeigSetððn0;n1ÞÞ

Simiðm0;m1Þ uððm0;m1Þðn0;n1ÞÞ ð2Þ
where Simiðn0; n1Þ indicates the similarity degree of pairwise
node ðn0; n1Þ in the i-th iteration, uððm0;m1Þðn0; n1ÞÞ denotes
the weight of edge between the given nodes (whose value
equals to that of 1 divided by the outgoing edge number of the
source node for this edge), and NeigSetððn0; n1ÞÞ represents
the set of neighbors of node ðn0; n1Þ in the pairwise graph.
Fault
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Fig. 3. A portion of pairwise gra
This computation process is performed iteratively to estimate
similarity degrees between nodes of T0 and T1. After this
process, the computed similarity degrees will be normalized to
the range of [0, 1].

Table 1 shows a portion of the similarity estimation result.
If we set the value of filtering threshold to 0.1, the pairs whose
similarity degree is no bigger than 0.1 will be deleted from the
CBN.

As shown in Table 1, an example of the matching results
could be the correspondence between node “DetailEntries”
and node ”FaultEntries”.
4.2. Similarity-based Bayesian learning algorithm for
computing CBN probabilities
In this subsection, we will introduce how to compute CBN
probabilities using similarity-based learning algorithm. Ac-
cording to computed similarity degrees, the conditional
probabilities of CBNs will be obtained.

Based on the similarity result, the combination part of
CBN can be created as shown in Fig. 4. Then, the condi-
tional probabilities related to the nodes of this part will be
learned from training data. In fact, the similar counterparts
,
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Fig. 4. Combination part of the CBN.
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of log records in training dataset also influence corre-
sponding probability distribution of the CBN. Taking the
influence of the similar counterparts into consideration, we
will calculate the probabilities in the combination part of
CBN, based on similarity degrees between nodes of Ti and
CBN.

Before going into details of probability computation, it is
necessary to introduce the concept of combination similarity
degree CSim, which represents the similarity between a node
of Ti and its corresponding node (with the same name) of
constructed CBN. Assume n and s are the CBN nodes which
correspond to nodes ni and si respectively. The CSim is
computed recursively from leaf to root nodes for each schema
tree, using the following formula

CSimiðni;nÞ ¼
1þ P

si2SonsOf ðniÞ;s2SonsOf ðnÞ
CSimiðsi; sÞ

1þmaxfjSonsOf ðniÞj; jSonsOf ðnÞjg ð3Þ

where SonsOf ðniÞ denotes the set of son nodes for node ni (and
it is the same for node n). According to this, we can obtain the
Table 2

Combination similarity degrees.

(a) CSim between nodes of T0 and CBN

Node in T0 Node in CBN Combination similarity (CSim0)

Fault Fault 0.65

DetailEntries DetailEntries 0.88

FaultCode FaultCode 1

Description Description 1

... ... ...

(b) CSim between nodes of T1 and CBN

Node in T1 Node in CBN Combination similarity (CSim1)

Fault Fault 0.77

DetailEntries DetailEntries 0.63

FaultEntries FaultEntries 1

FaultCode FaultCode 1

... ... ...
combination similarity degrees between nodes of T0 (T1) and
CBN, as shown in Table 2.

For the example mentioned above, suppose R0 and R1 are
the record sets of training data, from which T0 and T1 can be
extracted. Let Rc

0 and Rc
1 be the subsets of R0 and R1 with fault

category c. Then, let Rc be the union of these two subsets, i.e.,
Rc ¼ Rc

0∪Rc
1 . Accordingly, given a log record ri from record

set Ri, we use SD(ri, mi, n) to denote the similarity degree of
tree node (corresponds to element) mi of ri and node n of CBN.
The similarity degree SD will play an important role in
learning process, which can be computed by the following
formula

SDðri;mi;nÞ ¼8<
:

CSimiðmi;nÞ; mi2CSetðnÞ
Simðmi; lÞ$CSim1�iðl;nÞ; mi2SimSetðlÞ∧l2CSetðnÞ
0; other

ð4Þ

where CSetðnÞ represents the set of tree nodes corresponding
to node n (with the same name), and SimSetðlÞ denotes the set
of nodes similar to a tree node l. As an important step in
learning, the times of a specific node and its parent appearing
in the record set will be counted. Herein, we use SimNum(r, p,
q) to represent the similarity-based number of node q having
node p as its parent for record r. We compute the value of
SimNum(r, p, q) by the formula shown below

SimNumðr;p;qÞ ¼8><
>:

P
e;paðeÞ2NodeSetðrÞ

SDðr;paðeÞ;pÞ SDðr;e;qÞ; q2Ns

P
paðeÞ2NodeSetðrÞ

SDðr;paðeÞ;pÞ StrEquaðe;qÞ; q2Nt

ð5Þ

where pa(e) denotes the parent node of node e in record r,
NodeSet(r) is the node (or element) set of record r, and
StrEqual(e, q) means whether e equals to q by string matching.

For the CBN of category c, we suppose each node has node
c as its father. Thus, the root element of each record in this
category has the same parent node c. The conditional proba-
bility can be computed as follows
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pðn¼ qjpaðnÞ ¼ p;cÞ ¼

P
r2RC

SimNumðr;p;qÞ
P

u2Ns∪NT

P
r2RC

SimNumðr;p;UÞ ð6Þ

Based on above computation formulas, the similarity-based
learning algorithm is shown below.
Given the training records in a category c and the node set
of constructed CBN, we can compute the conditional proba-
bility P(q j p, c) for each node q and its parent p in the CBN,
using this learning algorithm.
4.3. Similarity-based Bayesian learning algorithm in
dynamical environment
Considering the dynamic nature of log data from realworld
systems, we need to update the existing classification model to
get accurate diagnosis in dynamic environment. Actually, the
dependent information of existing CBN model may be inac-
curate or incomplete when training data are changing. It re-
quires dynamically updating the structure and dependency
probabilities of the CBN model. To obtain a more accurate
generation model, we dynamically update existing CBN
model based on incremental training data, by (1) adding new
nodes to current node set, (2) changing dependency between
nodes, and (3) calculating the dependency probability for the
updated dependency set.

Depending on new training data, we incrementally generate
the classificationmodelCBND for different categories. Then, for
a specific category c, we dynamically update the probability setP
of existing CBN0, based on the structure Gc

D and probability set
Pc
D of newly constructed CBND. In this subsection, we propose

the dynamic similarity-based learning algorithm, which can
update the existing model and calculate its corresponding prob-
abilities when new training data are arriving.

In this algorithm, according to the obtained similarity, we
calculate the similarity degree SDD for different categories
between nodes of new model CBND and the existing model
CBN0. Herein, SDDðmD; n; cÞ denotes the similarity degree for
category c between the node mD of new model CBND and the
node n of current model CBN0. The corresponding formula is
shown as follows.
SDDðmD;n;cÞ¼8<
:
CSimiðmi;nÞ; mD2EquSetðmiÞ
argmaxSimDiðmD;miÞ$CSimiðmi;nÞ; mD2SimSetðmiÞ
0; other

ð7Þ

where EquSet(mi) and SimSet(mi) represent the equivalent set
and the similar set of a node mi from schema tree Ti, respec-
tively. Herein, SimDiðmD;miÞ denotes the similarity degree
between node mD and node mi. In other words, if node mD is
equivalent to a schema tree node mi, we can obtain SD by
directly calculating combination similarity degree of node mi

and node n. Otherwise, when node mD is similar to a schema
tree node mi, we can get SD by multiplying the similarity
degrees SimDiðmD;miÞ and CSimiðmi; nÞ.

Based on the above computation formula, the dynamic
similarity-based learning algorithm is shown below. The focus
of the improved algorithm is the dynamical update of the
dependency probabilities of the CBN model. In this algorithm,
if an edge does not belong to the intersection of Gc andGc

D, its
probability will be calculated based on the value of the simi-
larity degree SDD.
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Using the proposed dynamic similarity-based learning al-
gorithm, we can update the existing CBN model and calculate
its corresponding probabilities based on incremental training
data in the dynamic environment.
4.4. Fault diagnosis by classifying log data with CBNs
By labeling the training log records from heterogeneous
sources with related categories, fault diagnosis can be viewed
as a classification problem for log records obtained in runtime.
As mentioned above, we can achieve the goal of fault diag-
nosis by classifying log data using the proposed generative
model. According to this, the main approach of fault diagnosis
is to first construct the combination part of CBNs by matching
schema trees, then compute the probabilities of CBNs from
training data based on estimated similarity degrees, and finally
classify the newly obtained log data into possible fault cate-
gories using generated CBNs.

In classification task, the CBN model plays a key role
which is proposed as a generative model based on Bayesian
networks. The log records in training dataset with the same
category will share the parameters of a CBN. That is to say,
there is a set of such parameters for each fault category. The
similarity-based probabilities of the CBNs can improve the
accuracy of the classification task. Then, the log records in
testing dataset can be classified into possible fault categories,
by calculating the probability that each category will generate
the log data record. Given a category c and a test log record
rtest, we can estimate the conditional probability by the
formula

PðrtestjcÞ ¼
Y
ns2Ns

PðnsjpaðnsÞ;cÞ
Y
nt2Nt

PðntjpaðntÞ;cÞ ð8Þ

Given the set of predefined categories, our objective is to
assign most probable category labels to unlabeled log re-
cords, based on the likelihood inference in corresponding
CBNs. According to computed conditional probabilities, we
will choose the category cMAP which has the maximum
posteriori probability value to label the test log record, as
shown below.

cMAP¼argmax
c2C

PðcÞPðrtestjcÞ

¼argmax
c2C

PðcÞ
Y
ns2Ns

PðnsjpaðnsÞ;cÞ
Y
nt2Nt

PðntjpaðntÞ;cÞ ð9Þ

5. Evaluation

To evaluate our approach for fault classification of Web
service flows, we have conducted experiment on both real and
synthetic log datasets in this section. We compare the classi-
fication results of our approach with those of other classifiers
for semi-structured documents. Experimental results show our
approach outperforms other two approaches in dynamic and
heterogeneous environment.
5.1. Experiment setup
The log data used in our experiments are collected from our
Web services platform which is supported by ActiveVOS en-
gine [27]. The log data are generated by the monitoring
module of execution engine. The raw log data have different
levels including debug, information, warning, error, and fatal
levels. In preprocessing step, we have implemented a moni-
toring module to extract fault related log data, which ignores
the low level information (e.g. the information in debug level)
of raw log data. To simulate the data obtained from hetero-
geneous sources, we represent a portion of these log data using
different XML structure. Then, we get the training dataset by
labeling each record of these XML log data. There are 30 Web
services running on this platform which is taken as the testbed
of our experiment. Since faults in application and middleware
levels are the common causes of failures in Web services
execution, we inject 95 such faults into running services in-
stances. In addition, we implement a synthetic data generation
program to simulate the creation of log data, based on the
symptom database [28] for IBM WebSphere Application
Server. We have generated 1000 pieces of log records from
11,601 pieces of XML log records in this database. And the
training dataset is obtained by labeling each data record ac-
cording to the value of “symptomtype” attribute.
5.2. Datasets
Herein, training data and test data are selected randomly in
accordance with the 90/10 ratio. Then, 50 percent of training
data is used as new data. To simulate the update of the training
dataset in dynamic environment, new log data are added to the
training dataset at a fixed speed. For each dataset, we design
40 simulation cases, which has a corresponding training and
test datasets.

Table 3 shows the detailed information of example datasets
used in evaluation. The real and synthetic datasets are further
divided into two subsets in different structure, respectively. We
select 65 percent of data records in training dataset, which
have the structure different from those of the other portion.
Then, to show the advantage of our approach, we choose only
30 percent of records in testing dataset, whose structure is the
same to that of the major portion of training dataset.

There are some advantages to evaluate our approach on
both real and synthetic log datasets. On one hand, we use the
real dataset to validate the approach in practical situations. On
the other hand, the synthetic dataset help us to study the effects
of different kinds of structural patterns.
5.3. Evaluation results
For evaluating the performance of corresponding ap-
proaches, we define accuracy as the proportion of log records
that are correctly assigned to a category. The average accu-
racy is used as the key metric in this experiment, which is the
mean accuracy over all categories of the real and synthetic
datasets.



Table 3

Example datasets used in evaluation.

Record number Real dataset Synthetic dataset

Structure T0 StructureT1 Structure T 0
0 Structure T 0

1

Training Dataset 28 52 315 585

Testing dataset 10 5 70 30
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Those algorithms for fault classification are implemented in
Java, and runs on a Windows machine with a dual (2.4 GHz)
core Intel processor. To show the advantage of our approach in
classification task, we compare it with other classifiers
designed for semistructured documents, including Bayesian
network model (BN).

For simplicity, we use SBN and DSBN to represent original
and improved similarity based learning algorithms respec-
tively. Both of SBN and BN methods [22] achieve learning
model updates learning from entire training datasets repeat-
edly. In contrast, DSBN method is able to update its model
incrementally in dynamic environment. Considering the dy-
namic feature, we assume new training data appear at some
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fixed rate. Herein, we use update rate (UR) to represent the
fixed rate and set the value of UR to r records per minute. And
the occurrence time of each new record is set randomly. In the
simulation of dynamic environment, we add the new training
data at various update rates (e.g., UR ¼ 5 and UR ¼ 10).

In Fig. 5, the comparative results of three classification
approaches are demonstrated. Fig. 5a shows comparative
result on average diagnosis accuracy of BN, SBN and DSBN
algorithms. For different algorithms with the same UR, BN
has poor diagnosis accuracy since it cannot handle heteroge-
neous training data. Though DSBN can efficiently integrate
heterogeneous information in dynamic environment, its ac-
curacy has been affected by updating model incrementally. In
contrast to DSBN, SBN learns from the entire training dataset
from time to time, so it can obtain a precise model and achieve
relatively high accuracy. Similarly, due to higher UR, the
update speed of training data increases, resulting in the delay
of model update. Because of high cost of model update, SBN
has downward trends in diagnosis accuracy. Fig. 5b demon-
strates the comparative result of accuracy variance of BN,
SBN and DSBN algorithms. Considering different algorithms
0.00

0.05

0.10

0.15

0.20

0.25

0.30

200 300 400 500 600 700 800 900

V
ar

ia
nc

e 
of

 D
ia

gn
os

is
 A

cc
ur

ac
y

Dataset Size

DSBN(UR=5)
SBN(UR=5)
BN(UR=5)
DSBN(UR=10)
SBN(UR=10)
BN(UR=10)

0

5

10

15

20

25

30

200 300 400 500 600 700 800 900

D
ia

gn
os

is
 T

im
e 

(s
)

Dataset Size

DSBN(UR=5)
SBN(UR=5)
BN(UR=5)
DSBN(UR=10)
SBN(UR=10)
BN(UR=10)

(d) Diagnosis time

(b) Variance of diagnosis accuracy

agnosis approaches.



70 X. Han et al. / CAAI Transactions on Intelligence Technology 1 (2016) 61e71
with the same UR, the curves of SBN and DSBN are relatively
close to each other. The changing trends of SBN and DSBN
seem more stable than BN. For the same algorithm with
various UR, higher UR is often companied by larger accuracy
variance. In Fig. 5c, we give the comparative result of
misdiagnosis rate of BN, SBN and DSBN algorithms.
Comparing different algorithms with the same UR, the
misdiagnosis rates of SBN and DSBN are lower than that of
BN. And SBN has a slight advantage over DSBN in terms of
misdiagnosis rate. Since SBN and DSBN can handle hetero-
geneous data, they have low misdiagnosis rate. Moreover,
SBN is able to get a more accurate model by repeatedly
learning from entire training dataset, thus it can outperforms
DSBN. However, with increasing UR, the misdiagnosis rate of
SBN becomes higher than before. Fig. 5d shows the
comparative results of diagnosis time. For the same algorithm
with different URs, the diagnosis time seems close to each
other. While, for different algorithms with the same UR, SBN
spends the most time since it need to learn from the whole
dataset for updating the generation model. In comparison to
SBN, the time cost of DSBN is slightly more than BN, since it
only adjusts the generation model in an incremental way.
Accordingly, BN is capable of learning from data with the
identical structure, so it has the least time consuming.

In terms of diagnosis accuracy and its variance, experi-
mental results show that SBN algorithm outperforms BN al-
gorithm when the size of log dataset is increasing. In contrast,
DSBN algorithm has advantages over SBN and BN algo-
rithms, in terms of both diagnosis accuracy and time. Since
diagnosis time is a major consideration in fault tolerant service
flow execution, DSBN algorithm is more suitable for deploy-
ment in practical systems, which support diagnosing faults of
Web service composition in dynamic and heterogeneous
environment.

6. Conclusion

In this paper, we focus on fault diagnosis by analyzing
semi-structured log data. By transforming fault diagnosis
problem into classification problem, we can utilize the corre-
sponding classification methods to diagnose faults. We pro-
pose a similarity-based Bayesian learning approach for
constructing combined Bayesian networks, which are used as
generative model to classify fault related log data. Different
from other approaches, it can learn from training data with
different structural information. To realize fault diagnosis, our
approach consists of three main steps: (1) estimate similarity
degrees of structural elements from different log files, (2)
construct the basic structure of CBNs by computing its prob-
abilities using similarity-based learning algorithm, and (3)
classify test log data into possible fault categories based on the
generated CBNs.

Based on evaluation results, SBN algorithm outperforms
BN algorithm when the size of log dataset is increasing. In
terms of both diagnosis accuracy and time, the proposed
DSBN algorithm has advantages over SBN and BN algo-
rithms. Since diagnosis time is a major consideration in fault
tolerant service flow execution, DSBN algorithm should be
chosen and deployed in practical system for diagnosing faults
of Web service composition.

As the first step, this paper presents our work in fault diag-
nosis of Web service composition by analyzing log data, espe-
cially in dynamic and heterogeneous environment. In the future,
we will enlarge the size of log datasets from more real-world
service flows. Moreover, we are to study on strategies and
mechanisms for optimizing the trade-off between accuracy and
efficiency of fault diagnosis for Web service composition.
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