Note

A theorem in edge colouring

David Cariolaro
Institute of Mathematics, Academia Sinica, Nankang, Taipei, 11529, Taiwan

ARTICLE INFO

Article history:

Received 30 June 2008
Received in revised form 22 December 2008
Accepted 23 December 2008
Available online 15 January 2009

Keywords:

Chromatic index
Edge-colouring
Fans
Multigraph

Abstract

We prove the following theorem: if G is an edge-chromatic critical multigraph with more than 3 vertices, and if x, y are two adjacent vertices of G, the edge-chromatic number of G does not change if we add an extra edge joining x and y.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider only finite graphs without loops, but possibly with multiple edges. If G is a graph, we denote by $V(G)$ its vertex set and by $E(G)$ its edge set. Two vertices of G are adjacent if they are distinct and there is at least one edge of G joining them. Two edges of G are adjacent if they are distinct and incident with the same vertex. The set of edges joining x and y in G will be denoted by $x y$. If $S \subset E(G)$, we denote by $G-S$ the graph obtained from G upon suppression of all the elements of S. (However, when S consists of a single edge e, we use the notation $G-e$ instead of $G-\{e\}$.) Thus $G-x y$ denotes the graph obtained from G by removing all the edges joining x and y. For the purposes of this paper, it will be convenient to also have at our disposal the following notation. Namely, if x, y are distinct vertices of G, the symbol $G \diamond x y$ will be used to denote the graph which is obtained from G by adding one single edge joining x and y.

The chromatic index of G, denoted by $\chi^{\prime}(G)$, is the minimum integer k such that there exists a set \mathcal{C} of cardinality k and a $\operatorname{map} \varphi: E(G) \rightarrow \mathcal{C}$ with the property that $\varphi\left(e_{1}\right) \neq \varphi\left(e_{2}\right)$ for any pair e_{1}, e_{2} of adjacent edges of G. Such a map φ is called an optimal edge colouring of G. Clearly $\chi^{\prime}(G) \geq \Delta(G)$, where $\Delta(G)$ is the maximum vertex degree of G. If $\chi^{\prime}(G)=\Delta(G)$, we say that G is Class 1, and otherwise we say that G is Class 2. G is called critical if it is Class 2 and, for every proper subgraph H of $G, \chi^{\prime}(H)<\chi^{\prime}(G)$.

Let $e \in E(G)$. A tense colouring of G with respect to the edge e (or e-tense for short) is a map $\phi: E(G) \rightarrow \mathcal{C} \cup\{\emptyset\}$ with the following properties:

1. $\phi(e)=\emptyset$;
2. $\left.\phi\right|_{E(G) \backslash\{e\}}: E(G) \backslash\{e\} \rightarrow \mathcal{C}$;
3. The colouring $\left.\phi\right|_{E(G) \backslash\{e\}}$ is an optimal edge colouring of $G-e$.

We refer to \mathcal{C} as to the "colour set" of ϕ (so that \emptyset is not considered to be a colour). If $\alpha \in \mathcal{C}$ and $w \in V(G)$, we say that α is missing at w (or that w is missing α) if there is no edge f incident with w such that $\phi(f)=\alpha$, and we say that α is present at w otherwise.

[^0]Let e be an edge of G and let u be an endpoint of e. Let ϕ be an e-tense colouring of G. A fan at u with respect to ϕ is a sequence of distinct edges of G, all incident with u, of the form

$$
F=\left[e_{0}, e_{1}, e_{2}, \ldots, e_{k-1}, e_{k}\right]
$$

where $e_{0}=e$, and, if e_{i} is of the form $e_{i} \in u v_{i}$, then the vertex v_{i} is missing the colour $\phi\left(e_{i+1}\right)$, for $i=0,1, \ldots, k-1$. An edge f is called a fan edge at u if it appears in at least one fan at u. A vertex $w \neq u$ is called a fan vertex at u if it is the endpoint of a fan edge at u.

We shall use the following property, discovered independently by Andersen [1] and Goldberg [5,6] and implicit in the work of Vizing [9].

Lemma 1. Let G be a critical graph and let $e \in E(G)$. Let ϕ be an e-tense colouring of G with colour set \mathcal{C}. Let u be an endpoint of e and let $V(\mathcal{F})$ be the set of fan vertices at u with respect to ϕ. Then, for every colour $\alpha \in \mathcal{C}$, there is at most one vertex $x \in V(\mathcal{F}) \cup\{u\}$ which is missing colour α.

For an introduction to edge colouring the reader is referred to Fiorini and Wilson [4]. A study of the concept of fan and a proof of Lemma 1 may be found in [2].

2. Main result

The objective of this note is to prove the following theorem.
Theorem 1. Let G be a critical graph with more than three vertices and let x, y be adjacent vertices of G. Then $\chi^{\prime}(G \diamond x y)=\chi^{\prime}(G)$.
Proof. Assume, on the contrary, that $\chi^{\prime}(G \diamond x y)>\chi^{\prime}(G)$. First observe that every edge in G is incident with either x or y (or both). To see this, assume there was an edge h neither incident with x nor with y. Since G is critical, $\chi^{\prime}(G-h)<\chi^{\prime}(G)$, so there is an optimal colouring φ of G and a colour α such that $\varphi^{-1}(\alpha)=\{h\}$. Such colouring is easily extendable to a colouring of $G \diamond x y$ by colouring the extra edge joining x, y with colour α, thus contradicting the assumption that $\chi^{\prime}(G \diamond x y)>\chi^{\prime}(G)$. Hence, every edge is incident with either x or y, i.e. the graph $G-x y$ is bipartite with bipartition $(\{x, y\}, V(G) \backslash\{x, y\})$. Let ϕ be any optimal colouring of G. We may think of ϕ as a tense colouring of $G \diamond x y$, where the uncoloured edge is the extra edge joining x and y in $G \diamond x y$. Let e be an edge joining x and y in G. Let $\epsilon=\phi(e)$. Since every edge of G is adjacent or coincident with e, there is no other edge in G coloured ϵ, and hence the colour ϵ is missing at every vertex other than x and y. Let α be a colour missing at x under the colouring ϕ and let β be a colour missing at y. If $\alpha=\beta$, then we can colour the uncoloured edge with colour α, thus contradicting the assumption that $\chi^{\prime}(G \diamond x y)>\chi^{\prime}(G)$. Thus $\alpha \neq \beta$. Moreover there must be a bicoloured $\alpha-\beta$ path joining x and y, otherwise a colour exchange along a bicoloured $\alpha-\beta$ path starting at x would result in a colouring ϕ^{\prime} such that x and y are missing the same colour under ϕ^{\prime}, and this would contradict what was proved before. The bicoloured $\alpha-\beta$ path joining x and y necessarily has length 2 because every edge of G is incident with x or y, and hence such a path is of the form $x z y$, for some vertex $z \neq x, y$. If all the $\chi^{\prime}(G)$ colours used by ϕ appeared on some of the edges of the multitriangle $x y z$, then G would have a subgraph on 3 vertices with the same chromatic index as G, contradicting the fact that G is critical and $|V(G)| \geq 4$. Hence there exists a colour λ which is not present on the edges of the multitriangle $x y z$. By symmetry, we may assume that λ is present at the vertex x, say on the edge $x w$, where $w \neq y, z$. The vertex z is a fan vertex at x with respect to ϕ, and is missing colour ϵ. Since w is also missing the colour ϵ under the colouring ϕ, by Lemma 1 it cannot be a fan vertex at x, and hence the colour λ must be present at y. Therefore there exists an edge $f \in y t$, where $t \neq x, w, z$, such that $\phi(f)=\lambda$. Now, the colour β is present at most one of w, t (since it is present at z and there can be at most two edges coloured β). Suppose β is missing at w. Then, by interchanging the colours of the bicoloured $\lambda-\beta$ path $w x z$, we may guarantee that β is missing at z. But now both z and w become fan vertices at x under the current colouring ϕ^{\prime}, because $\left[e_{0}, e_{1}, e_{2}\right]$ is a fan at x, where e_{0} is the uncoloured edge, e_{1} is the λ-edge joining x to z, and e_{2} is the β-edge joining x to w. Since z and w are both missing the colour ϵ under ϕ^{\prime}, and they are both fan vertices at x with respect to ϕ^{\prime}, we have, by Lemma 1, a contradiction. Therefore we may assume that β is missing at the vertex t under the colouring ϕ. However, interchanging the colours of the edges of the $\alpha-\beta$ path joining x and y yields a colouring $\phi^{\prime \prime}$ such that β is missing at x and α is missing at y, and hence creates a situation symmetrical to the one of the other case, which also results in a contradiction. This contradiction proves the theorem.

We believe that this theorem may prove to be useful in the study of classical edge colouring problems and conjectures such as the Goldberg-Seymour Conjecture [7,8] and the Overfull Conjecture [3].

References

[1] L.D. Andersen, On edge-colourings of graphs, Math. Scand. 40 (1977) 161-175.
[2] D. Cariolaro, On fans in multigraphs, J. Graph Theory 51 (2006) 301-318.
[3] A.G. Chetwynd, A.J.W. Hilton, Star multigraphs with three vertices of maximum degree, Math. Proc. Cambridge Philos. Soc. 100 (1986) $303-317$.
[4] S. Fiorini, R.J. Wilson, Edge-colourings of graphs, in: Research Notes in Mathematics, Pitman, 1977.
[5] M.K. Goldberg, Remark on the chromatic class of a multigraph, Vycisl. Mat. i Vycisl. Tech. (Kharkov) 5 (1975) 128-130 (in Russian).
[6] M.K. Goldberg, Edge-coloring of multigraphs: Recoloring technique, J. Graph Theory 8 (1984) 123-137.
[7] M.K. Goldberg, On multigraphs of almost maximal chromatic class, Diskret. Anal. 23 (1973) 3-7 (in Russian).
[8] P.D. Seymour, On multicolorings of cubic graphs and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. 33 (1979) 423-460.
[9] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. 3 (1964) 25-30 (in Russian).

[^0]: E-mail address: cariolaro@math.sinica.edu.tw.
 0012-365X/\$ - see front matter © 2009 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2008.12.017

