Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note A theorem in edge colouring

David Cariolaro

Institute of Mathematics, Academia Sinica, Nankang, Taipei, 11529, Taiwan

ARTICLE INFO

ABSTRACT

Article history: Received 30 June 2008 Received in revised form 22 December 2008 Accepted 23 December 2008 Available online 15 January 2009

Keywords: Chromatic index Edge-colouring Fans Multigraph

1. Introduction

We consider only finite graphs without loops, but possibly with multiple edges. If *G* is a graph, we denote by V(G) its vertex set and by E(G) its edge set. Two vertices of *G* are *adjacent* if they are distinct and there is at least one edge of *G* joining them. Two edges of *G* are *adjacent* if they are distinct and incident with the same vertex. The set of edges joining *x* and *y* in *G* will be denoted by *xy*. If $S \subset E(G)$, we denote by G - S the graph obtained from *G* upon suppression of all the elements of *S*. (However, when *S* consists of a single edge *e*, we use the notation G - e instead of $G - \{e\}$.) Thus G - xy denotes the graph obtained from *G* by removing all the edges joining *x* and *y*. For the purposes of this paper, it will be convenient to also have at our disposal the following notation. Namely, if *x*, *y* are distinct vertices of *G*, the symbol $G \diamond xy$ will be used to denote the graph which is obtained from *G* by adding one single edge joining *x* and *y*.

The chromatic index of *G*, denoted by $\chi'(G)$, is the minimum integer *k* such that there exists a set *C* of cardinality *k* and a map $\varphi : E(G) \to C$ with the property that $\varphi(e_1) \neq \varphi(e_2)$ for any pair e_1, e_2 of adjacent edges of *G*. Such a map φ is called an *optimal edge colouring* of *G*. Clearly $\chi'(G) \geq \Delta(G)$, where $\Delta(G)$ is the maximum vertex degree of *G*. If $\chi'(G) = \Delta(G)$, we say that *G* is *Class* 1, and otherwise we say that *G* is *Class* 2. *G* is called *critical* if it is *Class* 2 and, for every proper subgraph *H* of *G*, $\chi'(H) < \chi'(G)$.

Let $e \in E(G)$. A tense colouring of *G* with respect to the edge *e* (or *e*-tense for short) is a map $\phi : E(G) \to C \cup \{\emptyset\}$ with the following properties:

1. $\phi(e) = \emptyset$;

2. $\phi \mid_{E(G) \setminus \{e\}} : E(G) \setminus \{e\} \rightarrow \mathbb{C};$

3. The colouring $\phi \mid_{E(G) \setminus \{e\}}$ is an optimal edge colouring of G - e.

We refer to \mathcal{C} as to the "colour set" of ϕ (so that \emptyset is not considered to be a colour). If $\alpha \in \mathcal{C}$ and $w \in V(G)$, we say that α is *missing* at w (or that w is *missing* α) if there is no edge f incident with w such that $\phi(f) = \alpha$, and we say that α is *present* at w otherwise.

We prove the following theorem: if *G* is an edge-chromatic critical multigraph with more than 3 vertices, and if *x*, *y* are two adjacent vertices of *G*, the edge-chromatic number of *G* does not change if we add an extra edge joining *x* and *y*.

© 2009 Elsevier B.V. All rights reserved.

E-mail address: cariolaro@math.sinica.edu.tw.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2008.12.017

Let e be an edge of G and let u be an endpoint of e. Let ϕ be an e-tense colouring of G. A fan at u with respect to ϕ is a sequence of distinct edges of G, all incident with u, of the form

$$F = [e_0, e_1, e_2, \ldots, e_{k-1}, e_k],$$

where $e_0 = e_1$, and, if e_i is of the form $e_i \in uv_i$, then the vertex v_i is missing the colour $\phi(e_{i+1})$, for $i = 0, 1, \dots, k-1$. An edge f is called a fan edge at u if it appears in at least one fan at u. A vertex $w \neq u$ is called a fan vertex at u if it is the endpoint of a fan edge at *u*.

We shall use the following property, discovered independently by Andersen [1] and Goldberg [5,6] and implicit in the work of Vizing [9].

Lemma 1. Let G be a critical graph and let $e \in E(G)$. Let ϕ be an e-tense colouring of G with colour set C. Let u be an endpoint of e and let $V(\mathcal{F})$ be the set of fan vertices at u with respect to ϕ . Then, for every colour $\alpha \in \mathcal{C}$, there is at most one vertex $x \in V(\mathcal{F}) \cup \{u\}$ which is missing colour α .

For an introduction to edge colouring the reader is referred to Fiorini and Wilson [4]. A study of the concept of fan and a proof of Lemma 1 may be found in [2].

2. Main result

The objective of this note is to prove the following theorem.

Theorem 1. Let G be a critical graph with more than three vertices and let x, y be adjacent vertices of G. Then $\chi'(G \diamond xy) = \chi'(G)$.

Proof. Assume, on the contrary, that $\chi'(G \diamond xy) > \chi'(G)$. First observe that every edge in G is incident with either x or y (or both). To see this, assume there was an edge h neither incident with x nor with y. Since G is critical, $\chi'(G-h) < \chi'(G)$, so there is an optimal colouring φ of G and a colour α such that $\varphi^{-1}(\alpha) = \{h\}$. Such colouring is easily extendable to a colouring of $G \diamond xy$ by colouring the extra edge joining x, y with colour α , thus contradicting the assumption that $\chi'(G \diamond xy) > \chi'(G)$. Hence, every edge is incident with either x or y, i.e. the graph G - xy is bipartite with bipartition ($\{x, y\}, V(G) \setminus \{x, y\}$). Let ϕ be any optimal colouring of G. We may think of ϕ as a tense colouring of $G \diamond xy$, where the uncoloured edge is the extra edge joining x and y in $G \diamond xy$. Let e be an edge joining x and y in G. Let $\epsilon = \phi(e)$. Since every edge of G is adjacent or coincident with e, there is no other edge in G coloured ϵ , and hence the colour ϵ is missing at every vertex other than x and y. Let α be a colour missing at x under the colouring ϕ and let β be a colour missing at y. If $\alpha = \beta$, then we can colour the uncoloured edge with colour α , thus contradicting the assumption that $\chi'(G \diamond xy) > \chi'(G)$. Thus $\alpha \neq \beta$. Moreover there must be a bicoloured $\alpha - \beta$ path joining x and y, otherwise a colour exchange along a bicoloured $\alpha - \beta$ path starting at x would result in a colouring ϕ' such that x and y are missing the same colour under ϕ' , and this would contradict what was proved before. The bicoloured $\alpha - \beta$ path joining x and y necessarily has length 2 because every edge of G is incident with x or y, and hence such a path is of the form xzy, for some vertex $z \neq x, y$. If all the $\chi'(G)$ colours used by ϕ appeared on some of the edges of the multitriangle xyz, then G would have a subgraph on 3 vertices with the same chromatic index as G, contradicting the fact that G is critical and |V(G)| > 4. Hence there exists a colour λ which is not present on the edges of the multitriangle *xyz.* By symmetry, we may assume that λ is present at the vertex x, say on the edge xw, where $w \neq y, z$. The vertex z is a fan vertex at x with respect to ϕ , and is missing colour ϵ . Since w is also missing the colour ϵ under the colouring ϕ , by Lemma 1 it cannot be a fan vertex at x, and hence the colour λ must be present at y. Therefore there exists an edge $f \in yt$, where $t \neq x, w, z$, such that $\phi(f) = \lambda$. Now, the colour β is present at most one of w, t (since it is present at z and there can be at most two edges coloured β). Suppose β is missing at w. Then, by interchanging the colours of the bicoloured $\lambda - \beta$ path wxz, we may guarantee that β is missing at z. But now both z and w become fan vertices at x under the current colouring ϕ' , because $[e_0, e_1, e_2]$ is a fan at x, where e_0 is the uncoloured edge, e_1 is the λ -edge joining x to z, and e_2 is the β -edge joining x to w. Since z and w are both missing the colour ϵ under ϕ' , and they are both fan vertices at x with respect to ϕ' , we have, by Lemma 1, a contradiction. Therefore we may assume that β is missing at the vertex t under the colouring ϕ . However, interchanging the colours of the edges of the $\alpha - \beta$ path joining x and y yields a colouring ϕ'' such that β is missing at x and α is missing at y, and hence creates a situation symmetrical to the one of the other case, which also results in a contradiction. This contradiction proves the theorem.

We believe that this theorem may prove to be useful in the study of classical edge colouring problems and conjectures such as the Goldberg–Seymour Conjecture [7,8] and the Overfull Conjecture [3].

References

- L.D. Andersen, On edge-colourings of graphs, Math. Scand. 40 (1977) 161-175.
- D. Cariolaro, On fans in multigraphs, J. Graph Theory 51 (2006) 301–318. A.G. Chetwynd, A.J.W. Hilton, Star multigraphs with three vertices of maximum degree, Math. Proc. Cambridge Philos. Soc. 100 (1986) 303–317.
- S. Fiorini, R.J. Wilson, Edge-colourings of graphs, in: Research Notes in Mathematics, Pitman, 1977.
- Ì5 M.K. Goldberg, Remark on the chromatic class of a multigraph, Vycisl. Mat. i Vycisl. Tech. (Kharkov) 5 (1975) 128-130 (in Russian).
- M.K. Goldberg, Edge-coloring of multigraphs: Recoloring technique, J. Graph Theory 8 (1984) 123–137. M.K. Goldberg, On multigraphs of almost maximal chromatic class, Diskret. Anal. 23 (1973) 3–7 (in Russian) [6]
- P.D. Seymour, On multicolorings of cubic graphs and conjectures of Fulkerson and Tutte, Proc. London Math. Soc. 33 (1979) 423-460.
- [9] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Anal. 3 (1964) 25-30 (in Russian).