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a b s t r a c t

A numerical study of laminar magnetohydrodynamic thermosolutal Marangoni convection along a
vertical surface in the presence of the Soret and Dufour effects has been performed. The diffusion-thermo
implies that the heat transfer is induced by concentration gradient, and thermo-diffusion implies that the
mass diffusion is induced by thermal gradient. In conformity to actuality, it is assumed that the surface
tension varies linearly with both the temperature and concentration and that both interface temperature
and concentration are quadratic functions of the interface arc length x. The general governing partial
differential equations are converted into nonlinear ordinary differential equations using unique simi-
larity transformations. The aim of this study is to investigate the effects of Hartmann number
(0 � M � 5), thermosolutal surface tension ratio (0 � R � 5), Soret parameter (0.1 � Sr � 2), Dufour
parameter (0.03 � Du � 0.6), Prandtl number (0.72 � Pr � 10) and Schmidt number (0.3 � Sc � 3) on the
fluid velocity heat and mass transfer. It is found that, both of temperature and concentration gradient at
the wall increases as the thermosolutal surface tension ratio increases. Also, the increase in Prandtl
number results in an enhancement in the heat transfer at the wall.
© 2014 Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The heat and mass transfer has been considered by theoretical
and experimental studies owing to their wide applications, such as
geothermal systems, energy-storage units, heat insulation, and
heat exchangers for the packed bed, drying technology, catalytic
reactors, and nuclear waste repository. In addition, an energy flux
can be generated not only by the temperature gradient but also by
the concentration gradient. The energy flux caused by a concen-
tration gradient is termed as the diffusion-thermo (Dufour) effect.
Furthermore, mass fluxes can also be created by temperature gra-
dients and it is termed as thermo-diffusion (Soret) effect and this
effect might become significant when large density differences
exist in the flow regime. Because of the importance of Soret
(thermal-diffusion) and Dufour (diffusion-thermo) effects for the
fluids with very light molecular weight as well as medium molec-
ular weight many investigators have studied and reported results
for these flows. Eckert and Drake [1] presented several cases when
the Dufour effect cannot be neglected. Adrian [2] investigated
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numerically the heat and mass transfer characteristics of natural
convection about a vertical surface embedded in a saturated porous
medium subjected to a magnetic field by taking into account the
diffusion-thermo (Dufour) and thermal-diffusion (Soret) effects.
Alam et al. [3] studied theoretically the problem of steady two-
dimensional free convection and mass transfer flow past a
continuously moving semi-infinite vertical porous plate in a porous
medium by including the Soret and Dufour effects. Weaver et al. [4]
have pointed out that when the differences of the temperature and
the concentration are large or when the difference of the molecular
mass of the two elements in a binary mixture is great, the coupled
interaction is significant. Anghel et al. [5] concluded that thermal-
diffusion (Soret) and diffusion-thermo (Dufour) effects appreciably
influence the flow field in free convection. Mahdy [6] examined the
combined effect of spatially stationary surface waves and the
presence of fluid inertia on the free convection along a heated
vertical wavy surface embedded in an electrically conducting fluid
saturated porous medium, subject to the diffusion-thermo
(Dufour), thermo-diffusion (Soret) and magnetic field effects.
Mahdy [7] investigated the effect of Soret and Dufour effects on
non-Newtonian mixed convection in porous media. The effect of
melting and/or thermo-diffusion on convective transport in a non-
Newtonian fluid saturated non-Darcy porous medium is presented
by Kairi and Murthy [8] and Srinivasacharya and RamReddy [9].
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Nomenclature

a, b positive constant
B applied magnetic field intensity
cp specific heat at constant pressure
cs specific heat at constant concentration
D solutal diffusivity
f dimensionless stream function
h heat transfer coefficient
C concentration
Du Dufour parameter
j mass transfer coefficient
k reaction rate of solute
M Hartmann number
Pr Prandtl number
qm surface mass transfer
qw surface heat transfer
Nu Nusselt number
R thermosolutal surface tension ratio
Sc Schmidt number
Sh Sherwood number
Sr Soret parameter
T dimensional temperature
Tm mean fluid temperature
(u, v) velocity components of the fluid

(x, y) coordinate axes

Greek symbols
a thermal diffusivity
ɸ dimensionless concentration
q dimensionless Temperature
y kinematic viscosity
h similarity variable
r density of the fluid
m dynamic viscosity
g surface tension on the first derivative of the

temperature
g
^ surface tension on the first derivative of the

concentration
d surface tension
d0 minimum value of the surface tension, a positive

constant
s electrical conductivity
j stream function

Subscripts
w conditions at the surface
∞ conditions in the free stream

Fig. 1. Physical model and coordinate system.
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Kundu et al. [10] discussed the problem of combined effects of
thermophoresis and chemical reaction magnetohydrodynamics
mixed convection flow. The influence of thermophoresis and
chemical reaction on MHDmicropolar fluid flowwith variable fluid
properties was investigated by Das [11]. Das [12] presented a nu-
merical solution for convective slip flow of rarefied fluids over a
permeable wedge plate embedded in a DarcyeForchheimer porous
medium. Also, Das [13] discussed the effects of thermophoresis and
thermal radiation on MHD mixed convective heat and mass
transfer flow.

On the other hand, the dissipative layers which may occur along
the liquidegas or liquideliquid interfaces were called as Marangoni
boundary layers. Marangoni convection is induced by variations of
surface tension along a liquid surface and appears in many nature
and engineering. Marangoni effects can be divided into the thermal
Marangoni effect (EMT) and the solute Marangoni effect (EMS).
EMT is caused by the thermal imbalance of the interfacial region,
and this imbalance is mainly caused by the heat source and the
temperature gradient. EMS is caused by the imbalance of the
interfacial adsorption, and this imbalance is mainly caused by the
chemical reaction and the concentration gradient. The importance
of Marangoni convection, carrying out single crystal growth under
the microgravity environment is recognized. The surface tension
gradients that are responsible for Marangoni convection can be
both temperature and/or concentration gradients (Magyari and
Chamkha [14]). It seems that the basic research work in this field
was first promoted by Napolitano [15,16]. Marangoni flow induced
by surface tension variations along the liquidefluid interface causes
undesirable effects in crystal growth melts in the same manner as
buoyancy induced natural convection [17,18]. As pointed out by
Napolitano [19], the field equations in the bulk fluids do not depend
explicitly on the geometry of the interface when using as co-
ordinates the arc length (x). This, together with the other surface
balance equations, introduces kinematic, thermal and pressure
couplings for the flow fields in the two fluids. Napolitano and Golia
[20] have shown that the fields are uncoupled when the
momentum and energy resistivity ratios of the two layers and the
viscosity ratio of the two fluids are much less than one. Further-
more, as shown by Napolitano and Russo [21], similarity solutions
for Marangoni boundary layers exist when the interface tempera-
ture gradient varies as a power of the interface arc length (x). The
power laws for all other variables, including the mean curvature,
were determined. Numerical solutions were found, analyzed and
discussed on Marangoni boundary layers in subsequent papers by
Golia and Viviani [22,23], Pop et al. [24], Chamkha et al. [25], and
Magyari and Chamkha [14], Yan and Liancun [26]. An excellent
review paper on Marangoni effects has been recently published by
Tadmor [27]. The aim of this paper is to study the effect of Soret and
Dufour on thermosolutal Marangoni boundary layer in the pres-
ence of uniform magnetic field of an electrically conducting fluid.

2. Flow analysis

A two-dimensional steady laminar, boundary layer flow of an
incompressible, viscous, electrically conducting fluid over a plate



Fig. 3. Effect of Hartmann number on temperature distribution.

Table 1
Comparison values of f

0
(0) for various values of M.

M ¼ 0 M ¼ 1 M ¼ 2

[26] Present [26] Present [26] Present

2.4569 2.519945 2.1572 2.226772 1.624 1.6785735

Table 2
Comparison of �q

0
(1) with Wang [29] and Ishak et al. [30] for g ¼ 0 and Re ¼ 10.

Pr Wang [29] Ishak et al. [30] Present

0.7 1.568 1.5683 1.58679
2 3.035 3.0360 3.03553
7 6.160 6.1592 6.15776
10 10.77 7.4668 7.46419
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surface in the presence of surface tension due to temperature and
concentration gradients at the wall is investigated. A uniform
magnetic field is applied in the horizontal direction normal to the
plane, we consider a Cartesian coordinate system (x, y), where x and
y are the coordinates measured along the interface and normal to it
as it is shown in Fig. 1. The Soret effect, for instance, has been uti-
lized for isotope separation and in a mixture between gases and
with very light molecular weight (H2, He), and of medium molec-
ular weight (H2, air) the Dufour effect was found to be of consid-
erable magnitude such that it cannot be neglected. The fluid
properties are assumed to be constant in a limited temperature
range. It is assumed that the induced magnetic field, the external
electric field and the electric field due to the polarization of charges
are negligible. Unlike the Boussineq effect in buoyancy-induced
flow, Marangoni effect acts as a boundary condition on the gov-
erning equations for the flow. Taking the above assumptions into
consideration, the laminar boundary layer equations of a viscous
and incompressible fluid describing mass, linear momentum, en-
ergy and concentration can be written in the usual dimensional
form as

vu
vx

þ vv

vy
¼ 0; (1)

u
vu
vx

þ v
vu
vy

¼ y
v2u
vy2

� sB2

r
u; (2)
Fig. 2. Effect of Hartmann number on velocity distribution.
u
vT
vx

þ v
vT
vy

¼ a
v2T
vy2

þ Dk
cscp

v2C
vy2

; (3)

u
vC
vx

þ v
vC
vy

¼ D
v2C
vy2

þ Dk
Tm

v2T
vy2

; (4)

In the above equations x and y represent the Cartesian co-
ordinates measured along the plate and normal to it, respectively, u
and v are the velocity components along the x and y axes, y is the
kinematic viscosity, a is the thermal diffusivity, r is the density of
the fluid, T∞, C∞ are the constant, denote the temperature and
concentration of species far from the wall, respectively, D is the
diffusion coefficient, cs, cp are the specific heat at constant pressure
and concentration susceptibility, k is the thermal-diffusion ratio, T,
C are the temperature of the fluid and concentration. Tm is themean
fluid temperature. s, B are the electrical conductivity and the
Fig. 4. Effect of Hartmann number on concentration distribution.



Fig. 7. Effect of thermosolutal surface tension ratio on concentration distribution.
Fig. 5. Effect of thermosolutal surface tension ratio on velocity distribution.
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applied magnetic flux density. The dependence of surface tension
on temperature and concentration can be expressed as

d ¼ d0 � gðT � T∞Þ � g
�
�
C � C∞

�
(5)

with g ¼ �vd=vT jC ; g^ ¼ �vd=vCjT .
Considering the following dimensional boundary conditions for

the governing equations

m
vu
vy

����
y¼0

¼ �vd

vT

����
C

vT
vy

����
y¼0

� vd

vC

����
T

vC
vy

����
y¼0

vðx;0Þ ¼ 0; Tðx;0Þ ¼ T∞ þ ax2; Cðx;0Þ ¼ C∞ þ bx2

uðx;∞Þ/0; Tðx;∞Þ/T∞; Cðx;∞Þ/C∞ (6)
Fig. 6. Effect of thermosolutal surface tension ratio on temperature distribution.
A majority of the existing exact solutions in fluid mechanics are
similarity solutions which reduce the number of independent
variables by one or more. The methods for generating similarity
transformations for equations of physical interest are discussed by
Ames [28]. Similarity solutions are often asymptotic solutions to a
given problem and may have utility in this area of limiting solu-
tions. Similarity solutions may be used to gain physical insight into
these details of complex fluid flows and these solutions exhibit
most of the characteristic as well as the influence of the physical
and thermal parameters of the actual problem. In order to get a
similarity solution of the problem we define the following
transformations:

h ¼
�
ag
my

�1=3
y; j ¼

�
agn
r

�1
3

xf ðhÞ; qðhÞ ¼ T � T∞
ax2

;

fðhÞ ¼ C � C∞
bx2

(7)
Fig. 8. Effect of Soret and Dufour parameters on temperature distribution.



Fig. 9. Effect of Soret and Dufour parameters on concentration distribution. Fig. 11. Effect of Schmidt number on concentration distribution.
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Substituting Eq. (7) into Eqs. (2)e(4) we obtain the following
non-linear ordinary governing differential equations

f
000 þ ff

00 � f 02 �M2f 0 ¼ 0 (8)

1
Pr
q
00 þ f q0 � 2f 0qþ Duf

00 ¼ 0 (9)

1
Sc
f

00 þ ff0 � 2f 0fþ Srq
00 ¼ 0 (10)

The boundary conditions (6) then turn into

f ð0Þ ¼ 0; f
00 ð0Þ ¼ �2ð1þ RÞ; qð0Þ ¼ 1;fð0Þ ¼ 1

f ð∞Þ/0; qð∞Þ/0;fð∞Þ/0 (11)

here, the prime denotes ordinary differentiationwith respect to the
similarity variable h. Furthermore, M ¼ ffiffiffi

s
p

B
ffiffiffi
m6

p
=

ffiffiffiffiffiffiffiffi
rag3

p
represents
Fig. 10. Effect of Prandtl number on temperature distribution.
the Hartmann number, Sr ¼ Dka=yTmb denotes Soret parameter,
Du ¼ Dka=ycscpb is the Dufour parameter, Pr ¼ y=a is the Prandtl
number, Sc ¼ y=D is the Schmidt number and R ¼ bg^=ag is the ratio
of the solutal and thermal Marangoni numbers.

The local heat and mass flux may be written by as

qw ¼ �k
vT
vy

����
y¼0

¼ �kax2
ffiffiffiffiffiffi
ag
mn

3

r
q0ð0Þ; qm ¼ �k

vC
vy

����
y¼0

¼ �Dbx2
ffiffiffiffiffiffi
ag
mn

3

r
f0ð0Þ

The local heat and mass transfer coefficients are given by

h ¼ qw
ax2

; j ¼ qm
bx2
Fig. 12. Effect of thermosolutal surface tension ratio on temperature gradient vs.
Hartmann number.



Fig. 13. Effect of thermosolutal surface tension ratio on concentration gradient vs.
Hartmann number.

Fig. 14. Effect of Soret and Dufour parameters on temperature gradient vs. Hartmann
number.
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In practical applications, the quantity of physical interest in our
case are the local Nusselt Nu and Sherwood numbers Sh, whichmay
be written in non-dimensional form as:

Nu ¼ hx
k

¼ �
ffiffiffiffiffiffi
ag
mn

3

r
xq0ð0Þ; Sh ¼ jx

D
¼ �

ffiffiffiffiffiffi
ag
mn

3

r
xf0ð0Þ (12)

3. Numerical method

In order to obtain numerical solutions for Eqs. (8)e(11), we
transfer the problem Eqs. (8)e(11) to a system of first-order
equations by denoting the f, f0 and f00 using variables f, P and g
respectively.

f 0 ¼ P; P0 ¼ g; g0 ¼ P2 þM2P � fg

with f ð0Þ ¼ 0; Pð∞Þ ¼ 0; gð0Þ � 2ð1þ RÞ (13)

In order to obtain numerical solutions for the Eq. (13), we
introduced the shooting parameter t as

PðtÞ ¼ 0 (14)

According to the assumption of the stream function, we transfer
the Eq. (13) to the following form

�
vf
vt

	0
¼ vðf 0Þ

vt
¼ vP

vt

�
vP
vt

	0
¼ vðP0Þ

vt
¼ vg

vt

�
vg
vt

	0
¼ vðg0Þ

vt
¼

�
2P þM2

� vP
vt

� g
vf
vt

� f
vg
vt

vf
vt

����
h

¼ 0;
vP
vt

����
h

¼ 1;
vg
vt

����
h

¼ 0

In the process, an initial value is given to the shooting param-
eters, and then the classical fourth-order RungeeKutta method is
used to get the results. The iteration condition is jPð∞Þ � bj>10�5.
Iteration accuracy is 10�5. Then, the Newton method is used to fix
the shooting parameter

tiþ1 ¼ ti �
PðtiÞ � b

vPðtiÞ=vti
(15)

where, b is the shooting target (b¼ P(∞)¼ 0). Eqs. (13) and (14) are
used to obtain the item vP(ti)/vti in the fixed Eq. (15).

4. Results and discussion

To obtain a clear insight of the behavior of velocity temperature
and concentration fields, a comprehensive numerical computation
is carried out using the method described in the previous section
for various values of governing parameters. Here, Soret number
ranging from 0.1 to 2.0, Dufour number ranging from 0.03 to 0.6,
the Hartmann number ranging from 0.0 to 5.0, Schmidt number
ranging from 0.3 to 3.0, Prandtl number ranging from 0.72 to 10.0
and the ratio of the solutal and thermal Marangoni numbers
ranging from 0.0 to 5.0. In addition, to validate the method used in
this study and to judge the accuracy of the present analysis, com-
parison with available results of Yan and Liancun [26] corre-
sponding to the f0(0) is made, Table 1, and found in a very good
agreement. Other comparison was performed with Wang [29] and
Ishak et al. [30] to check the accuracy of our method. From Table 2,
it is found that, the present method compare very well with the
results obtained by Wang [29] and Ishak et al. [30].

Figs. 2e4, respectively, depict the effects of the Hartmann
number on the fluid velocity, temperature and concentration dis-
tributions. Application of a magnetic field normal to an electrically-
conducting fluid has the tendency to produce a drag-like force
called the Lorentz force which acts in the direction opposite to that
of the flow, causing a flow retardation effect. This causes the fluid
velocity to decrease. However, this decrease in flow speed is
accompanied by corresponding increases in the fluid thermal state
level. These behaviors are clearly depicted in the decrease in the
fluid velocity and increase in the fluid temperature and concen-
tration distributions as observed in Figs. 2e4. Furthermore, the
magnetic parameter tends to decrease temperature gradient and
concentration gradient (in absolute sense) as seen in Figs. 12e17.

The influence of the thermosolutal surface tension ratio R on the
fluid velocity, temperature and concentration distributions are



Fig. 16. Effect of Schmidt number on concentration gradient vs. Hartmann number.
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illustrated in Figs. 5e7. It is clear that as thermosolutal surface
tension ratio increases, the velocity distribution increases whereas
the fluid temperature and concentration decrease. This can be
explained from Equation (11). This equation shows that the in-
crease in R leads to increase the velocity gradients which in turn
decrease the velocity distributions. In addition, the effect of Soret
and Dufour parameters on temperature and concentration are
presented in Figs. 8 and 9. It is observed from these figures that as
the Soret number decreases (and the Dufour number increases) the
fluid temperature profile increases. This behavior can be explained
as follows: It is well known that, if two chemically different non-
reacting gases or liquids, which were initially at the same tem-
perature, are allowed to diffuse into each other, and then there
arises a difference of temperatures in the system. In fact, this is,
exactly, the definition of the inverse phenomenon of thermal
diffusion (Dufour effects). The increase in this temperature differ-
ence leads to increase the buoyancy force which brings strong
natural convection. Fig. 10 shows the behavior of the temperature
distributions for the variation of Prandtl number Pr, Prandtl number
signifies the ratio of momentum diffusivity to thermal diffusivity. It
is seen that the temperature decreases with increasing Pr. More-
over, the thermal boundary layer thickness decreases by increasing
Prandtl numbers. Wall temperature gradient q

0
(0) is negative for all

values of Prandtl number as seen from Fig. 17 which means that the
heat is always transferred from the surface to the ambient fluid. An
increase in Prandtl number reduces the thermal boundary layer
thickness. Fluids with lower Prandtl number will possess higher
thermal conductivities (and thicker thermal boundary layer struc-
tures), so that heat can diffuse from the sheet faster than for higher
Pr fluids (thinner boundary layers). Fig. 11 displays the effects of the
Schmidt number Sc on the concentration profiles. As the Schmidt
number increases, first the peak increases then at a point the
concentration decreases. The reductions in concentration profiles
are accompanied by simultaneous reductions in the concentration
boundary layers thicken.

The variation of temperature gradient and concentration
gradient vs. Hartmann number for various values of other param-
eters are plotted in Figs. 12e17. As it is clear from Figs. 12 and 13, as
the thermosolutal surface tension ratio R increases, both of tem-
perature and concentration gradients at the wall increase (in ab-
solute sense), the same effect occurs for Schmidt number on
Fig. 15. Effect of Soret and Dufour parameters on concentration gradient vs. Hartmann
number.
concentration gradient Fig. 16 and Prandtl number on temperature
gradient Fig. 17. The effect of Soret and Dufour parameters on
temperature and concentration gradient at the wall are depicted in
Figs. 14 and 15. Increasing Dufour parameter (and decreasing Soret
parameter) tends to decrease both of temperature and concentra-
tion gradients at the wall (in absolute sense).

5. Conclusions

In this contribution, the mechanical and thermal properties of
steady MHD thermosolutal Marangoni boundary layer past a ver-
tical flat plate taking into account the Soret and Dufour effect have
been investigated systemically. With the help of appropriate simi-
larity transformation, the governing boundary layer equations for
momentum thermal energy and concentration are reduced to
coupled non-linear ordinary differential equations which are then
solved numerically. Results for the velocity, temperature and con-
centration distributions as well as temperature and concentration
Fig. 17. Effect of Prandtl number on temperature gradient vs. Hartmann number.
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gradient are presented for representative governing parameters.
From this investigation, it can be concluded that,

1. An increase in the Hartmann number leads to increase both of
the temperature and concentration distributions, whereas, it
decreases the velocity features.

2. An increases in thermosolutal surface tension ratio results in a
reduction in the distributions of the temperature and concen-
tration, however, it supports the fluid flow.

3. The increase in the Dufour number with the decrease in the
Soret number leads to an increase in the temperature profiles
and a decrease in the concentration profiles.

4. The rate of heat transfer increases by increase the thermosolutal
surface tension ratio however the opposite behavior was
observed for mass transfer.

5. The local Nusselt number can be enhanced by increases the
Prandtl number whearas it decreases by increase the Hartmann
number.

6. The concentration gradient can be reduced by increase the
Schmidt number but the increase in the Hartmann number
leads to the inverse behavior.

7. The specific application for these kinds of problems can be
found in many practical projects, such as aerospace, materials
science and crystal growth.

8. This problem can be generalized by including a porous medium.
Also, it can be studied using internal flow model.
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