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ABSTRACT Manipulation of individual DNA molecules by optical tweezers has made it possible to tie these molecules into
knots. After stretching the DNA molecules the knots become highly localized. In their recent study, Quake and co-authors
investigated diffusion of such knots along stretched DNA molecules. We used these data to test the accuracy of a Brownian
dynamics simulation of DNA bending motion. We simulated stretched DNA molecules with knots 31, 41, and 71, and determined
their diffusion coefficients. Comparison of the simulated and experimental results shows that Brownian dynamics simulation is
capable of predicting the rates of large-scale DNA rearrangements within a factor of 2.

INTRODUCTION

Brownian dynamics (BD) is an efficient computational

method allowing the simulation of large-scale conforma-

tional dynamics of macromolecules (1). Over the last 20

years the method has been applied to study various dynamic

properties of linear and circular DNA molecules (2–10). It

has been shown that the method predicts equilibrium con-

formational properties of DNA (11) and its translational and

rotational diffusion coefficients (2,5,11). The diffusion co-

efficients, however, are not sensitive to the rate of the internal

dynamics of DNA bending, and can be equally well

calculated by averaging over the equilibrium conformational

ensemble (12,13). Until recently, there were very limited

quantitative experimental data on the dynamics of DNA

bending (14), and therefore it was difficult to test how well

the method describes this kind of motion. The situation

changed when Quake and co-authors performed a study of

knot diffusion along stretched DNA (15). To tie a knot on a

single DNA molecule one has to manipulate its contour. Arai

et al. (16) were the first authors we know of to solve this

problem by using optical tweezers and placing DNA into

a medium with high viscosity. A flow of the medium fa-

cilitated straightening DNA contour and tying knots on long

DNA molecules, which accept random coil conformation

under normal conditions (15). Stretching the knotted mol-

ecules resulted in highly localized knots (Fig. 1). Monitoring

the position of the knots versus time, the researchers mea-

sured the diffusion coefficients of different knots (15).

Clearly, knot diffusion is directly related to the bending dy-

namics of DNA molecules. Thus, the study by Bao et al.

provided experimental data that can be used to test the

accuracy of BD simulations of DNA internal motion. Here

we simulate the diffusion of knots along a stretched DNA

molecule, calculate the knot diffusion coefficients, and com-

pare the results with the experimental data. Such a com-

parison is a goal of the current study.

DNA MODEL AND METHODS OF CALCULATIONS

DNA model

Our DNA model is based on the discrete wormlike chain and is similar to

one developed by Allison et al. (2,17) and by Langowski and co-workers

(5,8). A careful adaptation, parameterization, and testing of the model for

linear DNA was described earlier (11).

A DNA molecule composed of n Kuhn statistical lengths is modeled as a

chain of kn straight elastic segments of equilibrium length l0. The chain

energy consists of the following four terms.

1. The stretching energy is computed as

Es ¼ h

2
+
nk

i¼1

ðli � l0Þ2; (1)

where li is the actual length of segment i, and h is the stretching rigidity

constant. The energy Es should be considered as a computational device

rather than an attempt to account for the actual stretching elasticity of the

double helix. Smaller values of h allow larger time steps in the BD

simulations, but also imply larger departures from l0 (11). We choose

h ¼ 100 kBT=l
2
0, where kBT is the Boltzmann temperature factor, so that

the variance of li is close to l20=100 for this value of h.

2. The bending energy, Eb, is specified by angular displacements ui of

each segment (i 1 1) relative to segment i:

Eb ¼ g

2
+
kn�1

i¼1

u
2

i : (2)

The bending rigidity constant g is defined such that a Kuhn statistical

length corresponds to k rigid segments (18). It was shown previously that

the majority of DNA equilibrium properties do not change, within the

accuracy of the simulations, if k $ 10 (19). The value k ¼ 10 used here

corresponds to g ¼ 4:81 kBT and lo ¼ 10 nm when using 100 nm for the

Kuhn length (20).

3. The energy of electrostatic intersegment interaction, Ee, is specified by

the Debye-Hückel potential as a sum over all pairs of point charges

located on the chain segments. The number of point charges placed on

each segment, l, is chosen to approximate well continuous charges with

the same linear density. The value of l should be increased as the
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Debye length, 1=k, decreases. The experimental data by Bao et al. (15),

modeled here, were obtained for [Na1] ¼ 0.01 M. For these conditions

we have found that l ¼ 2 is sufficient (11). The value of l used in the

current study was equal to 1 or 2, and the simulation results were

indistinguishable. The energy Ee is specified as

Ee ¼ n
2
l
2

o

l
2
D
+
N

i;j

expð�krijÞ
rij

; (3)

where n is the effective linear charge density of the double helix, D is

the dielectric constant of water, N ¼ knl is the total number of point

charges, and rij is the distance between point charges i and j. The value

of n is equal to 2.43 e/nm for [Na1] ¼ 0.01 M (21). This value of n

corresponds to the solution of the Poisson-Boltzmann equation for DNA

modeled as a charged cylinder. It was found by Stigter (21) that this

solution can be approximated well by the Debye-Hückel potential for the

charged line. This approximation requires only a suitable definition of n

to match the potential-distance curve in the overlap region far from the

cylindrical surface.

The electrostatic interaction contributes both to the bending rigidity

of the double helix and to the volume interaction between chain

segments separated along the chain contour. Since the first effect is

already taken into account for the experimentally measured value of the

bending rigidity constant, the interaction between charges located at

adjacent segments was not included in Eq. 3.

4. The energy of the short-range repulsion between DNA segments, Ev, is

added to the energy function to prevent passing one segment through

another, since the electrostatic repulsion, specified above, does not ex-

clude this. Ev can be introduced as

Ev ¼ �+
N

i;j

mrij if rij , 2 nm

Ev ¼ 0 if rij . 2 nm; (4)

where summation is performed over the same pairs of points as in Eq. 3.

It was found that for m¼ 35 pN the frequency of segment passing events

is, 10�7per simulation step (10). Since the simulation runs of up to 108

steps were used in this study, we determined the chain topology after

each 105 steps and recorded the current conformation if the topology was

unchanged. To determine topology of a particular chain conformation we

calculated the Alexander polynomial for this conformation (see below).

If the topology was changed since the last recording, we returned to the

recorded conformation and repeated the simulation from the time of

recording with a different seed number.

It should be noted that the shape of this additional potential, specified by

Eq. 4, has an absolutely negligible effect on the dynamic properties of the

model chain. It was added only to reduce the probability of passing one

segment through another during the simulation. We chose the potential to be

as smooth as possible, so it would not require decreasing the integration time

step (10). There is very strong electrostatic repulsion between the chain

segments (Eq. 3), so it is extremely rare that the distance between two

segments becomes smaller than the geometrical diameter of the double helix

and the additional potential acts.

To account for hydrodynamic interactions of the DNA with solvent we

positioned beads of radius a at each vertex of the chain. These beads are only
used to define the hydrodynamic interaction and thus do not affect

equilibrium properties of the model chain. We used the Rotne-Prager

diffusion tensor to specify the hydrodynamic interaction (22). The value of a

was equal to 2.24 nm. This value was chosen to provide the experimentally

measured values of the translational diffusion (sedimentation) coefficients

of circular DNA (13,23,24).

Brownian dynamics simulations

We use the second-order BD algorithm (25) with modifications to improve

efficiency (7,11), involving less frequent updating of the diffusion tensor

than the systematic forces (e.g., every 10 time steps). This does not com-

promise the numerical accuracy, whereas the CPU time is reduced on average

by a factor of four (7,8,11).

Initial conformation of the chain with a knot located near the chain

middle (Fig. 1) was equilibrated by a preliminary simulation run. Chain

topology was monitored by calculating the Alexander polynomial D(t) for

t ¼ �1 and t ¼ �2 (26). Although topological invariants for knots are

defined for closed contours only, it is easy to extend the polynomial

calculation for stretched linear chains considered here.

The time step Dt of 500 ps was used throughout these computations;

;2 h of computing are required on Power Mac G5, 2.5 GHz processor to

simulate 1 ms of 3000 bp DNA. The simulation time grows rapidly,

however, as the chain length increases (11). Therefore, to perform reliable

estimation of the knot diffusion coefficients we used the following

technique. The simulations were performed for chains of 80–120 segments

(2400–3600 bp), but each time a knot approached one end of the chain, we

cut a subchain at the other end of the molecule and attached it to the short

end. Since there is a limited correlation between the motion of different parts

of the chain, this procedure did not affect the diffusion process. Thus, we

virtually simulated the diffusion along the infinite chain, keeping the

simulation speed high. The total length of the simulated trajectories was

;100 ms for each of three knots studied here.

To calculate a knot position, Sk, along the chain we first determined all

segments of the chain that intersect other segments when projected on a

plane parallel to the direction of the force. Since the chain was strongly

extended by the force, only segments of the knot intersect one another. The

value of Sk was calculated as

Sk ¼ 1

2M
+
M

i

ðn1

i 1 n
2

i Þ; (5)

where the sum is taken over all intersections,M is the number of intersections,

and n1i and n
2
i are the segments participating in the intersection i.

RESULTS AND DISCUSSION

We studied, by BD simulation, the diffusion of knots 31, 41,

and 71 along a stretched DNA molecule (Fig. 2). The force,

applied to both ends of the model chain, was equal to 0.5 pN

over all the simulations performed in this work, which is in the

middle of the force range used byBao et al. (15). First, we com-

pared computed lengths of the knots, Lk, with the correspond-
ing values determined experimentally. We calculated Lk as

Lk ¼ Æxæ0 � Æxæk; (6)

where Æxæk is the average extension of the chain with a

particular knot and Æxæ0 is the extension of the unknotted

FIGURE 1 Diffusion of a tight knot along a stretched DNA molecule.

The diagram illustrates the experimental design of the system (15). DNA

is attached to the beads, which are manipulated by optical tweezers. The

stretching force, F, is applied to the beads. The simulated conformation

of a DNA molecule 3000 bp in length was used for the illustration. DNA

molecules 16 times longer were used in the experiments.
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chain of the same contour length. The results of this de-

termination are shown in Table 1 together with the exper-

imental values obtained by Bao et al. (15). The simulated

values of Lk are 25–30% shorter than the experimental ones.

This difference exceeds statistical experimental error by a

factor of ;2 (15). It is not clear, however, if the discrepancy

is meaningful or results from some systematic experimental

error.

To estimate the knot diffusion coefficient, Dk; we

recorded, each 50 ms, the position of the knot along the

contour of the model chain over the long simulation runs. At

the end, all trajectories for a particular knot were combined;

their total lengths are shown in Table 1. The value of Dk was

calculated by applying the equation

ÆDx2æ ¼ 2DkðDtÞ; (7)

where Dx is the knot displacement over the time interval Dt.
For a particular value of Dt; the sliding average of Dx2 was
calculated over all recorded positions of the knot. Fig. 3

shows that different values of Dt used in the analysis give

close estimations for Dk. One can see from the figure that the

simulated values of Dk decrease with growing complexity of

the knots, as was observed by Bao et al. (15).

The values ofDk found by this method turned out to be 1.3

to 1.9 times lower than the corresponding values obtained

experimentally (Table 1). The data obtained by Bao et al.

(15) suggest one possible explanation for this discrepancy.

Bao et al. found that the measured values of ÆDx2æ as a

function of Dt slightly deviate from Eq. 7. The data are better

described by a nonlinear dependence of ÆDx2æ vs. Dt,

ÆDx2æ} ðDtÞa; (8)

with a ¼ 1:066 0:02. Naturally, Bao et al. assumed that this

result is in agreement with Eq. 7, which must be held for a

one-dimensional diffusion process. To calculate Dk they

plotted ÆDx2æ vs. Dt on linear axes and fitted by a straight

line, leaving the offset term free to compensate for short-time

artifacts from both observation and analysis (15). Slopes

obtained from these fits were considered to be equal to 2Dk.

This procedure of estimating Dk and the deviation of a from

1 can explain, however, the large part of the difference be-

tween the simulated and experimental results, since the values

of Dt used in our analysis are three orders of magnitude

smaller than the values used by Bao et al. (15). Thus, the ac-

curacy of the BD simulation of DNA bending could be better

than the current comparison shows.

We consider, however, that the ability of the BD sim-

ulations to predict rates of different rearrangements in large

DNA molecules within a factor of 2 is really remarkable

if we take into account that there were no adjustable

FIGURE 3 Determination of the knot diffusion coefficients,Dk. Equation 7

was used to calculate the values of Dk by averaging the displacement over

the time interval Dt along the entire simulation runs. The calculated values of

Dk are plotted for knots 31, 41, and 71 as a function of Dt.

FIGURE 2 Knots 31, 41, and 71. Typical simulated conformations of the

knots are shown.

TABLE 1 Comparison of the simulated and experimental knot lengths and diffusion coefficients

Knot type

Total length of simulated

trajectories (ms)

Knot length,

simulated (mm)

Knot length,

experimental (mm)

Computed diffusion

coefficient (mm2/s)

Measured diffusion

coefficient (mm2/s)

31 222 0.20 6 0.01 0.25 6 0.02 8.6 6 1 12.5 6 0.5

41 237 0.26 6 0.01 0.38 6 0.03 6.0 6 1 7.9 6 0.3

71 165 0.46 6 0.01 0.56 6 0.03 2.5 6 0.3 4.8 6 0.2

The experimentally measured values were taken from Fig. 2a of Bao et al. (15) and adjusted to the water viscosity according to a personal communication

with S. R. Quake (Stanford University, 2005).
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parameters in the simulations. Clearly, the BD simulation of

DNA large-scale dynamics can be used as a valuable tool to

address different biologically related problems.

The author thanks K. Klenin for helpful discussions.

This work was supported by grant GM54215 to the author from the

National Institutes of Health.
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