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Abstract - -Order  n de Bruijn sequences are the period 2 n binary sequences produced by an n 
stage feedback shift register. Theoretical results are summarized and data are presented for feedback 
functions, generator polynomials, linear spans, and autocorrelation properties of modified de Bruijn 
sequences. ~) 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Algebraically constructed binary sequences with randomness properties have applications in logic 
synthesis [1], coding theory [2], cryptography [3], and spread spectrum communications [4]. Re- 
search has identified many families such as G M W  sequences, bent sequences, no sequences, and 

de Bruijn sequences. Often these sequences are constructed using shift registers. Golomb provides 
a detailed t rea tment  of the general properties of shift register sequences [5]. 

W h a t  is a de Bruijn sequence? This question is easily answered using a shift register or a graph. 

The  order n deBruijn sequences are the 22' ' -1-n binary sequences with period length 2 n that  
are generated recursively using an n stage feedback shift register [6]. Equivalently, an order n 

de Bruijn sequence is the record of a Hamiltonian path  through the de Bruijn good graph. But  

what  can be said about  de Bruijn sequences? Answering this question remains the equivalent of 
opening a Chinese puzzle box! 

Traditionally, research on de Bruijn sequences has considered the sequences at their formal 
period of length 2 n. Since 1946, the total  number of sequences has been determined, some con- 

struction methods for small subsets of the sequences have been determined, and their linear spans 

have been partially characterized [7,8]. Most else remains a mystery. The doubly exponential 
number  of de Bruijn sequences has been a major  impediment to characterizing the entire sequence 

family. 

A few de Bruijn sequences are constructed by adding a zero to the unique run of n - 1 zeros 

in maximal  length linear feedback shift register sequences. M sequences have well researched 

properties whereas de Bruijn sequences do not. So instead, create a modified de Bruijn sequence 
of order n by removing a single zero from the unique run of n zeros in a de Bruijn sequence of 
order n. The  M sequences are now the linear subset of the modified de Bruijn sequences. This 
ongoing research is a t tempting to characterize the nonlinear modified de Bruijn sequences in the 
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same manner  tha t  M sequences have been characterized [9]. In particular, the feedback functions, 
generator polynomials, linear spans, and autocorrelation properties are examined. Da ta  for 

order 6 modified de Bruijn sequences illustrate these properties. The focus is on properties for 
orders n > 4. Orders n for 1 < n < 3 are trivial because every modified de Bruijn sequence is 

also an M sequence. 

2. W E I G H T  C L A S S  D I S T R I B U T I O N  

In his work, de Bruijn used multiplicative induction to count the number of full length shift 

register sequences but he did not provide any construction techniques. Most subsequent efforts 
regarding construction techniques have concentrated on creating subsets rather  than  all de Bruijn 

sequences. The most notable techniques find states which enable disjoint small cycles to be 
merged into one de Bruijn cycle [10,11]. Fredricksen found rules for 2 2n-5 complete sets. Etzion 

and Lempel found rules for 2 kg complete sets, where k < (n - 5)/2 and g < n - 2 log(k). Table 1 

compares the results of these methods. 

Table 1. Comparison of construction methods for several de Bruijn sequence orders. 

Number of 
de Bruijn 
Sequences 

4 16 

5 2,048 

6 67,108,864 

Fredricksen 
Method 

8 

32 

128 

Etzion and 
Lempel 
Method 

12 

100 

1,782 

Rather  than  examining cycle mergings further, examination of the feedback functions provides 

insight into a different construction method which has the potential  for creating significantly 

larger sets of modified de Bruijn sequences. 
The set of all order n de Bruijn sequences, DS(n), are produced by an n stage feedback shift 

register. The next content of the least significant stage Xl is computed as some feedback func- 
tion xn • g(xn-1,... , x l )  of the current values, where @ denotes addition over GF(2) .  The 
function g ( x ~ - l , . . . ,  x l )  is easily represented by a t ruth  table. The weight w(g) of the feedback 
function is the number of logical ones (Hamming weight) among the 2 n-1 entries in the t ru th  

table of the feedback function g(x,~-l,...,Xl). The weight classes for t ru th  tables which pro- 
duce DS(n) have specific values [7]. There exists S E DS(n) with t ru th  table weight w for every 
odd w between Z(n) - 1 and 2 n-1 - Z*(n) + 1, inclusive. 

These bounds use the number of cycles from the Pure Cycling Register Z(n) and the number  

of cycles from the Complementing Cycling Register Z*(n), 

_ 1 Z(n) = 1 ~ ¢(n)2,~/d Z*(n) = ~n y~  ¢(n)2n/d' 
n 

din din 
all d odd d 

where ¢(n) is the Euler totient function [12]. 
As a shorthand, let 0 represent the all zero state ( 0 , 0 , . . . , 0 ) .  For an order n de Bruijn se- 

quence, g(0) = 1. Removing a zero from the longest run of zeros means that  the all zero 
s tate  is now its own successor. Hence, g(0) = 0 for the set of all modified de Bruijn se- 
quences, mDS(n). Consequently, there exists S E mDS(n) with t ru th  table weight w for every 
even w between Z(n) - 2 and 2 n-1 - Z*(n), inclusive. Note that  M sequences are always found 
in weight class w -- 2 ~-2. The complete order 6 weight class distribution data  are presented 
in Table 2. The number of modified de Bruijn sequences in each weight class for orders larger 
than  six remains an unsolved problem. 

The known entries in the weight class distributions for orders 4-7 are all divisible by ' large'  
powers of 2. These data  items indicate the presence of large symmetry  groups which can serve 
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as a construction technique. The exponent indicates the number of construction operators.  Let 
~(w,n)  denote the number  of S c roDS(n) in weight class w. For order 6, 214 divides ~(w, 6) 

for all w, so 14 operators should exist for the order 6 sequences. Given one sequence in a weight 
class, another  214 - 1 sequences in that  weight class could be constructed by applying all possible 
combinations of these 14 operators to the given sequence. This process could be repeated for 

each weight class. 

Table 2. Weight class distribution for order 6 modified de Bruijn sequences. 

Weight Number of 
Class Sequences 

12 2,211,840 

14 11,059,200 

16 21,086,208 

18 19,841,024 

20 9,912,320 

22 2,637,824 

24 344,064 

26 16,384 

One of these operators  is already known from the properties of M sequences. An M sequence 
and its reverse sequence always exist as a pair. Complementation,  another natural  binary oper- 

ation, is also a symmetrical  construction operator. 

For sequence S = {s0, s r , . . . , s k - 1 } ,  the reverse sequence rS = { S k - l , . . . , s l , s 0 }  and the 
complement sequence cS = {1 ® so, 1 ® S l , . . . ,  1 ® sk-1}. Two sequences $1 and $2 are equiv- 
alent, $1 = $2, if one is a cyclic shift of the other. Note that  operators c and r commute.  

For n > 2, rS ~ S, and cS ~ S [13]. For even n > 2, rS ~ cS, but for odd n > 2, ','S = cS. 
In addition to being distinct, a modified de Bruijn sequence and its reverse are also in tile 

same weight class. Similarly, in addition to being distinct, a modified de Bruijn sequence and 

its complement  are also in the same weight class. Let Geven be the group generated by both 
operators  r and c. Then Geven = {e,r ,c,  rc} partitions the even order n modified de Bruijn 

sequences into sets of four pairwise inequivalent sequences (e is the identity operator).  Thus, 
for k > 2, 7j(w, 2k) = 0m od4 .  Let Gn denote the symmetry  group which operates on the order n 

de Bruijn sequence weight classes. Note that  Geven should be a subgroup of G6 once the other 12 

operators  of G6 are fully identified. Symmetry  operators in the weight classes for the order 5 
de Bruijn sequences have been identified, but these operators are based on cycle mergings and 

are different for each weight class [14]. This author believes that  the same set of operators for 

any given order should apply to every weight class within that  order. 

3. F E E D B A C K  F U N C T I O N  P O L Y N O M I A L  D I S T R I B U T I O N  

In the simplest of shift register implementations, the feedback is modulo two addition of the 
contents in those stages out of the n stages that  are selected. Picking a linear function at 

random, the chances are 1 in n that  the function will produce a full period sequence. For small 
orders, such a shift register can be simulated and the resulting period determined. However, this 

procedure rapidly becomes impractical as n increases. Very early, the connection between these 
potential  feedback functions and recurrence relations was made. The s tudy of linear functions 
which produce sequences with period length 2 n - 1 quickly became the s tudy of polynomials 
over a Galois field of two elements, GF(2) .  Reducible polynomials are factored using the rules of 
multiplication in a Galois field. Irreducibility and primitivity tests exist and can be applied to 
arbitrari ly large polynomials [4]. Much literature has been devoted to t r inomia ls - - the  minimal 
shift register implementat ion of a linear modified de Bruijn sequence (or M sequence) [2,5,15]. 
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The process for developing the corresponding factorization, irreducibility tests, and primitivity 
tests for nonlinear modified de Bruijn sequences begins by considering the feedback functions. 
Explicit feedback functions are obtained by applying a logic reduction technique to each t ru th  
table. The appropriate logic reduction technique is Reed Muller decoding which is based on 
Galois field arithmetic rather than Karnaugh maps which are based on Boolean algebra [16]. 
Obviously, each t ruth table producing a modified de Bruijn sequence corresponds to a unique 

feedback function. Reed Muller decoding produces a unique function because the t ru th  tables 
do not contain errors which must be corrected. An order n - 1 Reed Muller decoding is applied 

to g ( X n - 1 . . .  Xl). In order n - 1 Reed Muller decoding, the implicants are Xn-1 through xl  
and 1, which are linear, and all possible products of xn-1 through xl ,  which are nonlinear. 
Complemented variables are not present in any implicant. Note that  the subscript notation is 
preferred so that  cross products do not collapse into incorrect higher degree linear polynomial 
terms (i.e., x5x4x l  looks like xl°).  Data for the generator polynomials, x6 • g ( x s . . ,  xl)  • 1, of 
order 6 modified de Bruijn sequences are presented in Table 3. 

Let ~-(n) denote the number of terms or implicants in the feedback function characteristic 
polynomial producing an order n modified de Bruijn sequence. Let 5(n) denote the degree of 
nonlinearity of this characteristic polynomial (or recursion). For example, the order 6 linear 
recursion x6 @ x5 @ x2 @ xl @ 1 corresponding to the primitive pentanomial x 6 @ x 5 • x 2 @ x I @ 1 
has T(6) ---- 5 and 5(6) = 1. Similarly, the order 6 nonlinear recursion x6 • Xl • XsX4Xl @ 

x5x3x2x l  @ 1 has T(6) = 5 and 5(6) = 4. 

Table 3. Implicant class distribution for order 6 modified de Bruijn sequences. 

Number of Number of 
Implicants Sequences 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

2 

246 

11,238 

198,204 

1,562,562 

6,444,000 

14,773,700 

19,559,816 

15,288,166 

7,081,094 

1,893,854 

275,052 

20,294 

628 

8 

Consistent with polynomials producing M sequences, the number of terms in a nonlinear 
polynomial producing a modified de Bruijn sequence is always odd. At the all ones state, the 
feedback function Xn G g ( x n - 1 . . ,  x l )  must produce a zero when each implicant is evaluated at 1 
so the shift register does not get t rapped in this state, hence T(n) ---- 1 rood 2. 

Other results follow quickly. In the order n - 1 Reed Muller decoding, xn-1  • •. X2Xl is the only 
implicant with 5(n) = n - 1. If the feedback function does not make explicit use of all n - 1 
variables, the corresponding shift register produces an even number of cycles [5]. Hence, 5(n) < 
n - 2 and T(n) ~ 2 n - 1  -- 1. The implicants xn and 1 are always present and the Reed Muller 
decoding of any g(xn-1 . . .  Xl) with nonzero weight produces at least one implicant, so 3 < ~-(n). 

For M sequences, the characteristic polynomials of S and r S  are related by the linear re- 
ciprocal transformation. When f ( x )  is a polynomial of degree n over GF(2) ,  the reciprocal 
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polynomial f * ( x )  is given by f * ( x )  = x n f ( 1 / x ) .  This transformation maps variable x ~ - j  into 

variable xJ. The reciprocal t ransformation concept carries over directly from the linear shift 

register recursions to nonlinear shift register recursions. In developing the GF(2)  logic reduction, 
subscripts replaced superscripts so tha t  nonlinear implicants are clearly distinguishable. The 
nonlinear reciprocal t ransformation maps variable x n - j  into variable xj  for every variable in an 
implicant, where the variables x0 and 1 are equivalent. 

The  nonlinear reciprocal t ransformation preserves v(n) and 5(n). Let 7(j ,  n) denote the number 
of order n modified deBrui jn sequences with v(n) = j .  For n > 2, S and r S  exist as a distinct 

pair whose recursions have equal T(n) SO y(j ,  n) = 0 rood 2. Also, let A(j, n) denote the number 

of order n modified de Bruijn sequences with 5(n) = j .  Similarly, A(j, n) = 0 rood 2. 

The reciprocal t ransformation process enables a second modified deBrui jn sequence to be 

created from any known generator function. The linear recursion x6 ® x5 ® x4 G Xl • 1 is the 

reciprocal of the linear recursion x6 ®x5 Ox2 ®Xl • 1. The nonlinear recursion x6 ~)x5 ® x a x 2 x l  ® 

X5X4X3X 1 ~ 1 is the reciprocal of the nonlinear recursion x6 ~)Xl @ x5x4x l  • x5x3x2Xl  @ 1. Thus, 
the symmet ry  group G2 = {e, r} partitions the order n modified de Bruijn sequences into sets of 

two pairwise inequivalent sequences (e is the identity operator).  

The unique recursions provided by the GF(2)  logic reduction via Reed Muller decoding brings 

the nonlinear theory into alignment with the familiar linear theory. Specifically, the recursions 

have an odd number of terms between well defined limits and reverse sequences are related by 
recursions with equal degree of nonlinearity and equal number of terms. The nonlinear recur- 

sions are the nonlinear duals to primitive polynomials over GF(2) .  Nonlinear irreducibility and 

primitivity tests still need to be developed. 

4 .  L I N E A R  S P A N  D I S T R I B U T I O N  

Pseudo random (PN) sequences are more easily generated than truly random sequences but 

their resulting randomness properties must be checked. A variety of randomness properties are 
defined as design goals. For n _> 4, the de Bruijn sequences exhibit the balance, run, and span n 

randomness properties [17]. However, high complexity does not guarantee low predictability. 
Corresponding statistical tests check the global and local randomness properties of the resulting 

PN stream. The linear span L of a sequence is the least degree linear recursion with binary 

coefficients tha t  duplicates that  given sequence [18]. Linear span is an upper bound on sequence 
unpredictability. If  a sequence has linear span L, then after 2L successive elements of the sequence 
are known, the remainder of the sequence can be predicted exactly. 

Examining de Bruijn sequences at their formal length 2 ~ rather than their more natural  length 
2 n - 1 leads to an abberat ion when linear spans are considered. The absence or presence of one bit 

has a very radical effect. The de Bruijn sequences which are constructed from M sequences have 
the greatest  linear spans. The linear span of order n de Bruijn sequences are between 2 n -  1 + n 

and 2 n - -  1 ,  except for the linear span 2 n - 1  + n + 1 which cannot be attained [8]. Yet, the linear 

span of order n M  sequences is just n. On the other hand, when modified de Bruijn sequences are 
considered, the at tainable linear spans are closely related to cyclotomic polynomials. The da ta  
for the linear spans of order 6 modified deBruijn sequences are presented in Table 4 [19]. Note 

tha t  the number  of sequences with each linear span L is 0 mod 2 because S and r S  have the same 

linear span. 

The m i n i m u m  polynomial of  a sequence is the polynomial over GF(2)  with least degree whose 
corresponding shift register feedback function generates the sequence. The linear span is then the 
degree of this minimal polynomial of the sequence. The linear spans at tained by order n modified 
de Bruijn sequences are sums whose summands are constrained by the degrees of the irreducible 
polynomial over GF(2)  that  are factors of x p(n) + 1, where p(n) = 2 '~ - 1. These constraints 
can be expressed in terms of the Ni(d ) ,  the number of irreducible polynomials over GF(2)  of 
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Ni (d )=~  ~ #  2 m, 

where #( ) is the Mobius function [12]. For n > 4, the linear spans L attained by order n modified 
de Bruijn sequences satisfy 

L = E ad.d,  
din 
d¢1 

where aa can take on all possible values in the range 0 _< aa <_ Ni(d). The degree one minimum 

polynomial, x + 1, never contributes to the linear span because every sequence satisfies the 
balance property. When the order n is a prime the attainable linear spans is even more restrictive 
because the cyclotomic polynomial corresponding to the period length has a special factorization. 
For q _> 4, the linear spans L attained by order q modified deBruijn sequences, where q is prime, 
satisfies L = 0modq.  Thus, in general, fewer linear spans in the range 2 ~-1 + n and 2 n - 1 are 
attained by modified de Bruijn sequences than by de Bruijn sequences. 

Table 4. Linear spans distribution for order 6 modified de Bruijn sequences. 

Linear Span 
L 

6 

27 

30 

32 

33 

35 

36 

38 

39 

41 

42 

44 

45 

47 

48 

50 

51 

53 

54 

56 

57 

59 

6O 

62 

Number of 
Sequences 

6 

10 

8 

12 

8 

62 

152 

478 

1,036 

3,572 

6,100 

17,240 

28,702 

86,056 

134,290 

401,102 

453,734 

1,364,978 

1,819,148 

5,453,680 

3,190,982 

9,557,084 

11,148,860 

33,441,564 
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5. A U T O C O R R E L A T I O N  B O U N D S  

Sequences with sharp autocorrelation properties facilitate radar and communication system 
synchronization. The M sequences have a well known two level full-period autocorrelation func- 
tion. This two level full-period autocorrelation function represents the theoretical limit for opti- 
mal autocorrelation performance. A question which has remained unanswered for over 30 years 
is whether or not any of the nonlinear modified de Bruijn sequences can achieve the two level 
full-period autocorrelation of the M sequences. The overwhelming number of modified de Bruijn 
sequences in comparison to other sequence categories makes investigating their autocorrelation 
properties very difficult. As such, the two level full-period autocorrelation "property" of nonlin- 
ear sequences has been approached using sequences which are constant on cyclotomic cosets but 
which are generally not modified de Bruijn sequences [20]. 

Let {b~} be the sequence which results from {an} by bn = 1 - 2an; that  is, in the modi- 
fied deBrui jn  sequence the Os are replaced by ls and the is are replaced by - l s .  Then the 

unnormalized discrete periodic autoeorrelation function C('r) is defined as 

T-1  

n=O 

where T is the period [5]. Let A(T) denote the number of agreements and D(T) denote the number 

of disagreements between the sequence and itself shifted by 7 places. Then the unnormalized 
periodic autocorrelation function essentially determines the difference between the number of 
agreements and disagreements for the original and shifted version of the sequence. 

C(T) = A(T) -- D( r )  = (2 ~ - 1) - 2D(T). 

At the zero shift, the unnormalized autocorrelation value of any order n modified de Bruijn 
sequence is obviously the sequence period length, C(0) = 2 ~ - 1. 

Four facts about the autocorrelation function of modified de Bruijn sequences are known [5,20]. 
First, the autocorrelation function is symmetric, i.e., 

C(kT) = C ( - k 7 )  = C ([2 '~ - 1 - k] v) .  

Second, the autocorrelation function takes on discrete values given by C(7) = - 1  mod4  when 
n > 2. Third, a t ru th  table g ( X n - l . . . x l )  with weight 2 n-2 is a necessary but not sufficient 
condition for an order n modified de Bruijn sequence to have a two level autocorrelation function. 
Thus, all M sequences belong to the same t ruth table weight class. Finally, extensive computer 
searches using cyclotomic cosets have shown that  for n < 8, there does not exist any nonlinear 
modified de Bruijn sequences having the two level autocorrelation of M sequences. 

The autocorrelation functions of all order 6 modified de Bruijn sequences are catalogued in 
Table 5. This table agrees with the previous results in that  only the M sequences have a two 
level autocorrelation function. However, this table also shows that  there exist rather large sets 
of nonlinear modified de Bruijn sequences which approach the two level autocorrelation function 
(i.e., have small sidelobes). 

For example, in weight class 16 there are 160,974 order 6 sequences whose autocorrelation value 
between (n + 1) < T _< (2 n - - n -  2) is within 4-8 of the optimal autocorrelation value of - 1 .  Thus, 
whereas the order 6M sequences have 18.1 dB dynamic range between the in-phase (T = 0) and 
out-of-phase ( r  ~ 0) autocorrelation values, these particular modified deBruijn sequences have 
17.5 dB dynamic range between the in-phase (T = 0) and out-of-phase (~- ~ 0) autocorrelation 
values. Yet the 0.6 dB decrease in dynamic range has yielded a 26,829 fold increase in the number 
of available sequences in this weight class alone. 

Notice that  the entries in the autocorrelation distributions are 0 mod 2 because S and rS  are 
in the same weight class and the autocorrelation function is symmetric. The peak out-of-phase 
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Table  5a. Dis t r ibu t ion  of order  6 modif ied d e B r u i j n  sequences  wi th in  specified au-  
tocorre la t ion  C(T) b o u n d  for (n  + 1) ~ T < (2 n -- n -- 2). 

I C ( T ) + I  I W ( g ) = 1 2  W ( g ) = 1 4  W ( g ) = 1 6  W ( g ) =  18 

= 0  

<4 

_<8 
< 12 

( 16 

_< 20 

24 

_< 28 

_< 32 

36 

_< 40 

44 

0 

4 

17890 

525286 

1053822 

0 

4 

89674 

2773774 

5288918 

6 

12 

160974 

5259832 

10123094 

492454 2340048 

104842 489786 

15682 68796 

1696 7584 

164 590 

0 26 

0 0 

4463288 

930078 

133034 

14400 

1386 

102 

2 

0 

8 

154084 

4809678 

9487952 

4331108 

913766 

129006 

14016 

1338 

68 

0 

IC(~) + 11 W ( g ) = 2 0  W(g) = 22 W(g) = 24 W(g) = 26 

- - 0  

< 4  

_<8 

_ 12 

_< 16 

_ 20 

_< 24 

_ 28 

_ 32 

< 36 

40 

_< 44 

0 

6 

79758 

2206202 

4633874 

0 

2 

18188 

472852 

1165896 

0 

0 

796 

29608 

122826 

2358076 

542902 

80936 

9578 

924 

64 

0 

739014 130290 

203572 50032 

33644 9338 

4226 1058 

414 104 

16 12 

0 0 

0 

0 

0 

0 

0 

5432 

7950 

2780 

212 

10 

0 

0 

autocorrelation values in Table 5 are only listed between (n + 1) < T _< (2 n -- n -- 2) because 

C(T) at the remaining values of T are predetermined. Due to the span n property, C(T) = --1 

for 1 < T < n - -  1 and - n  + 1 < v < -1 .  Comparing positions 1 and n + 1 when T = n while 

considering t ruth table state values yields that  sequences produced by a t ruth table with weight 

W have C(n)  = C ( - n )  -- (2 n - 1) - 4 W .  Hence, because all modified deBruijn t ruth tables have 

even weight, C( r )  = - 1  mod8 for T = i n  when n > 2. 

As examples, for order 6 modified de Bruijn sequences, C(n) = C ( - n )  = -41  in weight class 26, 

C(n)  = C ( - n )  = - 1  in weight class 16, and C(n)  = C ( - n )  = +15 in weight class 12. Further- 

more, among weight classes 14, 16, and 18, there are 404,762 sequences whose out-of-phase auto- 

correlation value is never more that i 8  from the - 1  limiting value. Thus, the nonlinear sequences 
which approach the two level autocorrelation function not only appear in weight class 2 n - 2  but 

also appear in the adjacent weight classes. 

Ongoing research is attempting to determine if particular types of nonlinear generator poly- 

nomials are more likely to produce sequences which have minimal autocorrelation sidelobes or 
potentially even a two level autocorrelation function. 

6. S U M M A R Y  

By considering period 2 n - 1 instead of period 2 n ,  modified de Bruijn sequences begin to show 

properties that  are consistent with known properties of M sequences. Linear modified de Bruijn 
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sequences  all be long  in t he  same t r u t h  t ab le  weight class whereas  nonl inear  modif ied  de Bru i jn  

sequences  be long in several  t r u t h  t ab le  weight classes. Large s y m m e t r y  groups  under l ie  t h e  weight  

classes and  suggests  ope ra to r s  for cons t ruc t ion  a lgor i thms.  A p p l y i n g  logic r educ t ion  over G F ( 2 )  

to  these  t r u t h  t ab les  y ie lds  a unique po lynomia l  for each funct ion.  These  nonl inear  po lynomia l s  

share  m a n y  of t he  same  charac te r i s t i cs  of the  l inear  po lynomia ls .  However,  mu l t i p ly ing  and  

d iv id ing  l inear  po lynomia l s  is obvious bu t  nonl inear  is not.  S imi la r ly  i r reduc ib i l i ty  and  p r i m i t i v i t y  

t es t s  exis t  for l inear  po lynomia l s  bu t  not  for these  nonl inear  po lynomia ls .  Sequences gene ra t ed  

by  these  l inear  and  nonl inear  po lynomia l s  share  the  same r andomness  p r o p e r t i e s - - b a l a n c e ,  run,  

s p a n - n - - b u t  the  l inear  sequences are c ryp tog raph ica l ly  weak while the  nonl inear  sequences  are  

all c r y p t o g r a p h i c a l l y  s t rong.  Final ly ,  the  op t ima l  two level au toco r re l a t i on  p r o p e r t y  of the  l inear  

sequences  is well known, but ,  surpris ingly,  many  nonl inear  sequences have au toco r r e l a t i ons  whose 

s ide lobes  a p p r o a c h  the  two level au tocor re l a t ion  l imit .  D a t a  for the  order  6 modif ied  de Bru i jn  

sequences  was used to  i l lus t ra te  the  dua l i ty  of l inear and  nonl inear  modif ied  de Bru i jn  sequences.  
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