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The vascular and nervous systems display a high degree of cross-talk and depend on each other functionally.
In the vascularization of the central nervous system, astrocytes have been thought to sense tissue oxygen
levels in hypoxia-inducible factors (HIFs)-dependent manner and control the vascular growth into the hyp-
oxic area by secreting VEGF. However, recent genetic evidences demonstrate that not only astrocyte HIFs but
also astrocyte VEGF expression is dispensable for developmental angiogenesis of the retina. This study dem-
onstrates that hypoxia-inducible factor 1 alpha subunit (HIF-1α), a key transcription factor involved in cellu-
lar responses to hypoxia, is most abundantly expressed in the neuroretina, especially retinal progenitor cells
(RPCs). A neuroretina-specific knockout of HIF-1α (αCre+Hif1α flox/flox) showed impaired vascular develop-
ment characterized by decreased tip cell filopodia and reduced vessel branching. The astrocyte network
was hypoplastic in αCre+Hif1α flox/flox mice. Mechanistically, platelet-derived growth factor A (PDGF-A), a mi-
togen for astrocytes, was downregulated in the neuroretina of αCre+Hif1α flox/flox mice. Supplementing PDGF-
A restored reduced astrocytic and vascular density in αCre+Hif1α flox/flox mice. Our data demonstrates that the
neuroretina but not astrocytes acts as a primary oxygen sensor which ultimately controls the retinal vascular
development by regulating an angiogenic astrocyte template.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Accumulating evidence shows that neuronal lineage cells contrib-
ute significantly to the formation of the vascular network (Segura
et al., 2009). In the developing skin, for example, local signals such
as vascular endothelial growth factor (VEGF), provided by organized
sensory nerve fibers, define the pattern of blood vessel branching
and arterial differentiation (Mukouyama et al., 2002). In retinal vas-
cular development, specialized endothelial tip cells lead the out-
growth of blood vessels (Gerhardt et al., 2003). The retinal astrocyte
network in the hypoxic retina provides guidance cues such as VEGF
for endothelial tip cells (Dorrell et al., 2002; Ruhrberg et al., 2002;
Stone et al., 1995;West et al., 2005), thereby astrocytes have been be-
lieved to play a pivotal role in the oxygen sensing mechanism during
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retinal vascular development (Gariano and Gardner, 2005; West
et al., 2005). However, recent studies suggested that not only astro-
cyte hypoxic response but also astrocyte VEGF expression is dispens-
able for developmental angiogenesis of the retina (Scott et al., 2010;
Weidemann et al., 2010), which implies a modification in the current
understanding of oxygen-sensing mechanisms during the interaction
between astrocytes and endothelial cells.

Retinal progenitor/stem cells (RPCs), counterparts of neural stem/
progenitor cells in the brain, are multipotent and remain undifferen-
tiated (Tropepe et al., 2000). RPCs are found in the early embryonic ret-
ina and gradually disappear during retinal development (Marquardt
et al., 2001). Cell fate tracing experiments revealed that RPCs generate
multiple cell types in the neuroretina including ganglion cells, photore-
ceptor cells, and bipolar cells but not astrocytes (Marquardt et al.,
2001). In the mouse and xenopus retina, RPCs coexpress the transcrip-
tion factors Pax6, Rx1 (rax), and Six3, prior to the onset of retinogenesis
(Perron et al., 1999;Walther and Gruss, 1991). Transgenic mice expres-
sing Cre recombinase under the control of the Pax6 retina-specific
regulatory element, α-promoter (α-Cre) are used to delete genes in
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the cells of the peripheral neuroretina including RPCs (Marquardt et al.,
2001). Previously, we reported that α-Cre-specific conditional knock-
out mice for the von Hippel-Lindau tumor suppressor gene (vhl) exhib-
ited persistent hyaloid vessels due to the increased activity of hypoxia-
inducible factor 1 alpha subunit (HIF-1α), a key transcription factor in
cellular responses to hypoxia (Kurihara et al., 2010). Retinal vasculari-
zation starts from the optic nerve head, and the vasculature radially
grows towards the periphery along the retinal astrocyte scaffold. The
primary plexus in the ganglion cell layer covers almost the entire retinal
surface before P9. After P9, vascular growth subsequently occurs into
deeper layers where again branching and fusion lead to formation of
two additional plexuses: the intermediate plexus and the deep plexus
(Gerhardt et al., 2003). Recently, Caprara et al. (2011) reported that
HIF-1α knockout in the neuroretina resulted in impaired intermediate
plexus. Although these results suggest that the neuroretina contributes
to the retinal oxygen-sensing mechanism, the function of the neurore-
tina in the formation of primary vascular plexus and in the interaction
of astrocytes and endothelial cell is unclear.

In this study, we show that the HIF-1α is most abundantly
expressed in RPCs in the developing retina. Conditional deletion
of Hif1α expression (αCre+Hif1α flox/flox) revealed impaired vessel
growth and a hypoplastic astrocyte network. Our data reveals a
novel oxygen-sensing mechanism required for proper vascular pat-
terning in the retina; the neuroretina acts as a primary oxygen sensor
which controls the vascular growth by forming an angiogenic astro-
cyte template in a HIF-1-dependent manner.
Materials and methods

Mice

Animal care was performed in accordance with the Guidelines
of Keio University for Animal and Recombinant DNA experiments.
α-Cre transgenic mice (Marquardt et al., 2001) were mated with
Hif1αflox/flox mice (Ryan et al., 2000), and generated α-Cre-specific
Hif1α knockout (αCre+Hif1α flox/flox) mice. As control littermates for
these knockout animals, Hif1αflox/flox without the α-Cre transgene
were used. Flox-CAT-EGFP mice (Kawamoto et al., 2000) were mated
with α-Cre mice to obtain α-Cre/Flox-CAT-EGFP mice.
Fig. 1. HIF-1α is most abundantly expressed in RPCs in the developing retina. (A–J) Immun
(GCL) and the inner nuclear layer (INL) (A). In the high magnification view (F–J), HIF-1α is
pression is detected in astrocytes (arrows) and the cells in the outer nuclear layer (ONL). S
Whole-mount immunostaining and in situ hybridization

Enucleated eyes were fixed for 20 min in 4% paraformaldehyde
(PFA) in phosphate buffered saline (PBS) and then dissected. Retinal
cups were post-fixed and stored in methanol at −20 °C. For the
BrdU incorporation assay, 100 μg BrdU (BD Pharmingen, Franklin
Lakes, NJ) per gram of body weight, dissolved in sterile PBS, was
injected intraperitoneally 2 h before sacrifice. Isolated retinas were
stained using a BrdU immunohistochemistry system (Calbiochem,
Darmstadt, Germany). For in situ hybridization (ISH), retinas were
briefly digested with proteinase K and hybridized with DIG-labeled
antisense RNA probes. When ISH was combined with immunohisto-
chemistry (IHC), IHC was performed after ISH procedures were com-
pleted. The following primary monoclonal antibodies were used:
PDGFRα (APA5; eBioscience; San Diego, CA), α-smooth muscle actin
(1A4; FITC- or Cy3-conjugated; Sigma-Aldrich, St. Louis, MO), neurofi-
lament (2H3; Developmental Studies Hybridoma Bank, Iowa, IA), F4/
80 (CI:A3-1; Serotech; Oxford, UK), GFAP (G-A-5; Cy3-conjugated;
Sigma-Aldrich, St. Louis, MO), and desmin (DAKO, Glostrup, Den-
mark). The following primary polyclonal antibodies were used: rabbit
anti-GFP (Molecular Probes; Alexa 488-conjugated; Eugene, OR), goat
anti-GFP (Rockland; Gilbertsville, PA), Pax-2 (Covance, Berkeley, CA),
collagen IV (Cosmo Bio, Tokyo, Japan), fibronectin (DAKO), Pax-6
(PAX6; Developmental Studies Hybridoma Bank), and HIF-1α (origi-
nally established by immunizing guinea pigs with a purified fusion
protein, encompassing amino acids 416 to 785 of mouse HIF-1α)
(Kurihara et al., 2010). The following secondary antibodies were
used: Alexa 488 fluorescence-conjugated IgGs (Molecular Probes) or
Cy3/Cy5-conjugated IgGs (Jackson ImmunoResearch, West Grove,
PA). For nuclear staining, specimens were treated with DAPI (Molecu-
lar Probes). In some experiments, blood vessels andmonocyte-lineage
cells were simultaneously visualized using biotinylated isolectin B4
(iB4; Sigma) followed by fluorescent streptavidin conjugates (Molec-
ular Probes).

Genomic PCR and RT-PCR analysis

Quantitative RT-PCR assays were performed on an ABI 7500 Fast
Real-Time PCR System using TaqMan Fast Universal PCR master mix
(Applied Biosystems, Foster City, CA) and TaqMan® Gene Expression
ofluorescence for P6 retinas. HIF-1α is abundantly expressed in the ganglion cell layer
most abundantly detected in Pax6+ RPCs (arrowheads), whereas a weaker HIF-1α ex-
cale bar: 50 μm.
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Assay Mix of Vegf-a (Mm00437304_m1), Pdgfa (Mm01205760_m1),
Csfr1 (Mm00432689_m1), Ang-1 (Mm00456503_ml), Ang-2
(Mm00545822_m1), Flk-1 (Mm00440099_m1), Epo (Mm01202755_
m1), Edn2 (Mm00432983_m1), or Flt-1 (Mm00438980_ml). A
mouse β-actin (Mm00607939_s1) assay mix served as an endoge-
nous control. Data were analyzed by 7500 Fast System SDS Software
1.3.1. Each experiment was performed with four replicates from
each sample, and the results were averaged.

Intra-ocular injections

Injections into the vitreous body were performed using 33 gauge
needles, as described previously (Kubota et al., 2009). Approximately
0.2 μl of sterile PBS with or without 0.1 mg/ml of PDGF-A was injected
at P3 or P5 and mice were sacrificed at P6.

Confocal microscopy

Fluorescent images were obtained using a confocal laser scanning
microscope (FV1000; Olympus). Quantification of cells or substances
of interest was usually done on a 500 μm×500 μm field of view per
sample in scanned images. Specifically, we set the area in the vascular
Fig. 2. α-Cre-mediated excision of Hif-1α in neuroretinal cells. (A–L) Whole-mount immuno
retinas of α-Cre mice crossed with flox-CAT-EGFP mice. GFP was detected in Pax6+ RPCs (so
but not in astrocytes (open arrowheads in D–F, L) and Isolectin B4 (iB4)-positive endot
neuroretina (solid arrowheads in A–C) compared to proximal neuroretina. (M–P) Immuno
of αCre+Hif1α flox/flox mice (arrowheads in P), but was detected in astrocytes from αCre+Hi
front between arterial and venous area. Quantification of relative im-
munofluorescence was performed using the Scion image software
Version 4.0.3.2 (Scion Corporation).

Statistical analysis

All results are expressed as the mean±SD. The averaged variables
were compared using the 2-tailed Student's t-test. P-values of less
than 0.05 were considered statistically significant.

Results

HIF-1α is most abundantly expressed in RPCs in the developing retina

The initial step in our study was to examine the distribution of the
HIF-1α protein in the developing retina. Immunofluorescence of ret-
inal sections revealed that the nuclear translocation of HIF-1α was
abundantly detected in the cells of the neuroretina located in the
inner nuclear layer (INL), especially Pax6+ RPCs (Figs. 1A–J). A
weaker HIF-1α expression was detected in astrocytes (Figs. 1A–J).
Transgenic mice expressing Cre recombinase under the control of
the Pax6 retina-specific regulatory element, α-promoter (α-Cre) are
fluorescence (A–F), FACS study (G, H), and section immunofluorescence (I–L) for the P6
lid arrowheads in J), Neurofilament (NF)+ ganglion cell axons (solid arrowheads in K),
helial cells (arrows in D–F). GFP was more abundantly expressed in the peripheral
fluorescence of P6 retinas. HIF-1α expression was diminished in most of Pax6+ RPCs
f1α flox/flox mice (arrows in O and P). Scale bars: 500 μm in A–C; 50 μm in D–F, I–P.

image of Fig.�2
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used to delete genes in the cells of the neuroretina including RPCs. It
was also reported that Cre recombination does not occur in astrocytes
and endothelial cells of α-Cremice during embryogenesis and late de-
velopmental stages (Marquardt et al., 2001). We confirmed this ex-
pression pattern at P6, the developmental time at the focus of this
study, when the vascular plexus was expected not to reach the re-
combination zone previous to this stage. We crossed α-Cre mice
with a transgenic reporter line, flox-CAT-EGFP, and examined the
GFP expression (Figs. 2A–L). Whole-mount immunofluorescence
and FACS study revealed that GFP was not expressed in astrocytes
and endothelial cells (Figs. 2A–H). As reported, the GFP expression
pattern varied according to area and was more abundantly expressed
in the peripheral neuroretina compared to proximal neuroretina
(Fig. 2A). Section immunohistochemistry showed that GFP expression
was detected in all neuroretinal cells including Pax6+ RPCs and Neu-
rofilament (NF)+ ganglion cells (Figs. 2I–K). In contrast, GFP expres-
sion was not detected in astrocytes (Fig. 2L). Next, to delete HIF-1α in
the neuroretinal cells, we crossed α-CremicewithHif1αflox/floxmice and
generated an α-Cre-specific Hif1α knockout (αCre+Hif1α flox/flox). Con-
sistent with the expression pattern of α-Cre, HIF-1α expression was
mostly diminished in the neuroretinal cells including Pax6+

RPCs from αCre+Hif1α flox/flox mice, but was detected in astrocytes of
αCre+Hif1α flox/flox mice (Figs. 2M–P). The number of Pax6+ RPCs was
Fig. 3. αCre+Hif1α flox/flox mice show decreased vessel branching and tip cells. (A–F) iB4 stain
detected in αCre+Hif1α flox/flox mice (arrowheads). High magnification views of sprouting e
thelial tip cells and their filopodia (arrowheads) in αCre+Hif1α flox/flox mice. (G–J) Quantific
tification in G was performed in the images taken for the peripheral half of the retina. Scale
not affected in αCre+Hif1α flox/flox mice (Figs. 2M, N), suggesting that
the loss of HIF-1α does not impair the proliferation and survival of
these cells.

Decreased endothelial tip cell numbers and reduced vessel branching
in αCre+Hif1α flox/flox mice

Next, we examined retinal vascular structures inαCre+Hif1α flox/flox

mice. At P6, decreased vessel branching and irregular growing edges
were detected in the peripheral retina of αCre+Hif1α flox/flox mice
(Figs. 3A, C, G), although the proximal retina did not show significant
difference. A high magnification view of sprouting edges at P6
revealed a decrease in the number of endothelial tip cells and
their filopodia in αCre+Hif1α flox/flox mice (Figs. 3E, F, I, J). At P9,
irregularities were still detected in the peripheral vasculature of
αCre+Hif1α flox/floxmice (Figs. 3B, D). Vascularized area at P9 is slightly
but significantly decreased in αCre+Hif1α flox/flox mice at P9 (Fig. 3H).

αCre+Hif1α flox/flox mice show moderately decreased endothelial
proliferation and no alteration in perivascular cells

A short-term (2 h) BrdU incorporation assay showed a moderate
decrease in endothelial proliferation in αCre+Hif1α flox/flox mice
ing for P6 and P9 retinas. Decreased vessel branching and irregular growing edges were
dges (E, F), indicated by the boxes in A, C, revealed a decrease in the number of endo-
ation of isolectin-positive vascular structures at P6 in G, I, J and P9 in H (n=8). Quan-
bars: 500 μm in A–D; 50 μm in E, F; *pb0.05.

image of Fig.�3
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(Figs. 4A–D, G). These mice showed no significant changes in the
amount of empty basement membrane sleeves highlighting vessel re-
gression (Phng et al., 2009) (Figs. 4E, F, H). These features indicate the
vascular phenotypes in αCre+Hif1α flox/flox mice are different from
those seen in the condition of the VEGF inhibition or Notch gain-of-
function (Phng et al., 2009). The numbers of macrophages (Fantin
et al., 2010; Kubota et al., 2009), pericytes (Lindblom et al., 2003), ar-
terial smooth muscle cells, and ganglion cells which potentially affect
tip cell activity, were not affected in αCre+Hif1α flox/flox mice (Figs. 4I–
P, R). Colony stimulating factor 1 receptor (csf1r) expression, which
largely correlates with the number of macrophages (Kubota et al.,
2009) showed no significant reduction in αCre+Hif1α flox/flox mice
(Fig. 4Q).

αCre+Hif1α flox/flox mice show a hypoplastic astrocyte network

Next we examined the astrocyte network which provides guid-
ance cues for endothelial tip cells. αCre+Hif1α flox/flox mice showed a
sparse network of astrocytes and decreased proliferation of astrocytes
compared with control mice (Figs. 5A–F, I). Transcription factor, Pax2
is specifically expressed in astrocytes in the retina (Chu et al., 2001).
Fig. 4. αCre+Hif1α flox/flox mice show moderately decreased endothelial proliferation and no
retinas. The ratio of BrdU+ endothelial cells (solid arrowheads in C, D) to BrdU− endothelia c
F) Immunofluorescence of P6 retinas. αCre+Hif1α flox/flox mice showed no alteration in the am
ages taken for the vascular front of P6 retinas (n=8). (I–P) Immunofluorescence of P6 (I–L,
(I, J), pericytes (K, L), arterial smooth muscle cells (M, N), and ganglion cell axons (O, P). (Q
taken for the vascular front of P6 retinas (n=6). Scale bars: 50 μm; *pb0.05; NS, not signifi
αCre+Hif1α flox/flox showed a significant decrease in the number of
Pax2+ astrocytes (Figs. 5G, H, J). Immunostaining for cleaved cas-
pase3 only marked some ganglion cells, and the number of these
cells did not differ in control and αCre+;Hif1αflox/flox mice (data not
shown), suggesting that apoptosis in endothelial cells and astrocytes
is not the primary cause of their defects in αCre+;Hif1αflox/flox mice.
Consistent with the spatial diversity of α-Cre expression, hypoplasti-
city of astrocyte network was not detected in the proximal region of
αCre+Hif1α flox/flox mice (Figs. 5M–P). Accordingly, the vascular de-
fects in αCre+Hif1α flox/flox mice were not apparent at P3 when the
vascular plexus has not extended into the area where Cre recombina-
tion had occurred (Figs. 5K, L).

Decreased vegfa-expressing cells and a sparse meshwork of extracellular
matrix in αCre+Hif1α flox/flox mice

In accordance with a decrease in the number of astrocytes (Figs. 5G,
H, J), vegfa-expressing cells are reduced in αCre+Hif1α flox/flox mice, al-
though vegfa expression in each astrocyte was normal (Figs. 6A, B). In
quantitative RT-PCR analysis, αCre+Hif1α flox/flox mice showed a slight
but significant decrease in Vegfa expression (Fig. 6E), presumably
alteration in perivascular cells. (A–D) Short-term (2 h) BrdU incorporation assay for P6
ells (clear arrowheads in C, D) was moderately decreased in αCre+Hif1α flox/flox mice. (E,
ount of empty basement membrane sleeves (arrows). (G, H) Quantification in the im-

O, P) or P9 (M, N) retinas. αCre+Hif1α flox/flox mice showed no alteration in macrophages
) Quantitative RT-PCR analysis in the P6 retina (n=8). (R) Quantification in the images
cant.

image of Fig.�4


Fig. 5. αCre+Hif1α flox/flox mice show a hypoplastic astrocyte network. (A–H) Immunofluorescence of P6 retinas. Panels A, C and B, D show the same field, respectively.
αCre+Hif1αflox/flox mice show a sparse network of PDGFRα+ astrocytes (asterisk in B), decreased proliferation of astrocytes (arrowheads in C, D) and a decrease in the number
of Pax2+ astrocytes (asterisk in H). The ratio of BrdU+ astrocytes (dots in E, F) to BrdU− astrocytes (circles in E, F) was decreased in αCre+Hif1α flox/flox mice. (I, J)
Quantification in the vascular front of P6 retinas (n=6). (K–P) Immunofluorescence of P3 retinas. Hypoplasticity of astrocyte network was not detected in the proximal region
of αCre+Hif1α flox/flox mice (asterisk in N, P). The vascular defects in αCre+Hif1α flox/flox mice were not apparent at P3. Scale bars: 50 μm; *pb0.05.
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reflecting a decrease in the number of astrocytes rather than altered
vegfa expression in the neuroretina. αCre+Hif1α flox/flox showed
unchanged levels of Flk-1 and Flt-1, receptors for the VEGF protein
(Figs. 6F, G). RT-PCR analysis showed unchanged VEGF isoform
(Ruhrberg et al., 2002) ratios in control and αCre+Hif1α flox/flox mice
(data not shown). As another guidance cue provided by astrocytes, ex-
tracellular matrices (ECM) such as fibronectin and heparan-sulfate are
known to be important for retinal vascular growth (Stenzel et al.,
2011). αCre+Hif1α flox/flox mice showed a sparse proangiogenic fibro-
nectin scaffold (Figs. 6C, D), which is sufficient to cause their vascular
defects independently of VEGF. Expression of angiogenic factors
such as Ang-1, Ang-2, and Lif, which are secreted from endothelial cells
or pericytes (Gale et al., 2002; Kubota et al., 2008; Uemura et al.,
2002),was not affected inαCre+Hif1α flox/floxmice (Figs. 6H–J). Interest-
ingly, the expressions of erythropoietin (Epo) and endothelin2 (Edn2),
recently reported to be upregulated in αCre+Hif1α flox/flox mice at later
stages (after P15) (Caprara et al., 2011), were not significantly altered
at P6 (Figs. 6K, L). As increased expressions of Epo and Edn2 may be a
potential mechanism for defects in the intermediate plexus for-
mation of αCre+Hif1α flox/flox mice, the impact of neuroretinal HIF-1α-
deficiency on the primary plexus and intermediate plexus may differ
mechanistically.
Reduced PDGF-A expression underlies the hypoplastic astrocyte
meshwork in αCre+Hif1α flox/flox mice

Retinal astrocytes are immigrants from the optic nerve but are not
derived from RPCs (Marquardt et al., 2001; Watanabe and Raff, 1988).
As α-Cre is not expressed in astrocytes, and HIF-1α expression in astro-
cytes is normal in αCre+Hif1α flox/flox mice (Figs. 2O, P), we suspected
that a paracrine factor secreted byα-Cre+ cells, responsible for the pro-
liferation of astrocytes, is altered in αCre+Hif1α flox/flox mice. The
promoter of Pdgfa, the gene for the PDGF-A chain, is known to be acti-
vated in hypoxic liver cells (Moon et al., 2009). PDGF-A is well known
as a potent mitogen for astrocytes (Fruttiger et al., 1996; Selmaj et al.,
1990). Using flow cytometry, we isolated GFP+ cells from α-Cre; flox-
CAT-EGFP; Hif1α+/flox mice (Hif1α+/− cells) or α-Cre; flox-CAT-EGFP;
Hif1αflox/flox mice (Hif1α−/− cells) and examined Pdgfa expression.
Quantitative RT-PCR analysis showed a significant decrease in Pdgfa ex-
pression inHif1α−/− cells (Fig. 7A). Consistentwith the spatial diversity
of astrocyte hypoplasticity, decrease in Pdgfa expression was limited to
the distal retina of αCre+Hif1α flox/flox mice (Fig. 7B). Immunoreactivity
for PDGF-A was decreased in the distal retina of αCre+Hif1α flox/flox

mice (Figs. 7C, D). Next, we tested whether supplementation of PDGF-
A by intra-ocular injection restores the astrocytic and vascular defects

image of Fig.�5


Fig. 6. Decreased vegfa-expressing cells and a sparse meshwork of extracellular matrix in αCre+Hif1α flox/flox mice. (A, B) Images for in situ hybridization of Vegfa. αCre+Hif1α flox/flox

showed a decrease in the number of Vegfa-expressing astrocytes (purple cells in A, B), although Vegfa expression in each astrocyte was normal. (C, D) Immunofluorescence of P6
retinas. αCre+Hif1α flox/flox showed a sparse meshwork of fibronectin (asterisk in D). (E–L) Quantitative RT-PCR analysis in the P6 retina (n=8). Scale bars: 50 μm; *pb0.05; NS, not
significant.
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in αCre+Hif1α flox/flox mice (Figs. 7E–T). Consistent with the reported
phenotypes in GFAP-PDGFA transgenic mice (Fruttiger et al., 1996;
Gerhardt et al., 2003), PDGF-A injection into control retinas leads to a
dense astrocytic meshwork and multilayered blood vessels 3 days
after injection (Figs. 7G, K, O). αCre+Hif1α flox/floxmice showed a similar
astrocytic and vascular response to PDGF-A injection (Figs. 7H, L, P),
suggesting that reduced PDGF-A expression is associated with the
formation of the hypoplastic astrocytic and vascular network in
αCre+Hif1α flox/flox mice. As an acute response (24 h) to PDGF-A in-
jection, reduced proliferation in astrocytes but not endothelial cells
in αCre+Hif1α flox/flox mice was restored (Figs. 7Q–T), suggesting
that mitogenic activity of PDGF-A in astrocytes primarily contributes
to the rescue effects and thus secondarily affects the endothelial
hyperplasia.

Discussion

In this study, we have shown that HIF-1α, a key transcription fac-
tor involved in cellular responses to hypoxia, is abundantly expressed
in the neuroretina, especially RPCs, rather than astrocytes. Condition-
al knockout of Hif1α in the neuroretina showed impaired vessel
growth and a hypoplastic astrocyte network. In addition, we observed
that PDGF-A, a potent mitogen for astrocytes, showed decreased ex-
pression in αCre+Hif1α flox/flox mice, which could be an explanation
for this defect. Supplementation of PDGF-A, a potent mitogen
for astrocytes, restored reduced astrocytic and vascular density in
αCre+Hif1α flox/flox mice. Our data suggest that the neuroretina,
which acts as a key player in the oxygen-sensing mechanisms, regu-
lates the formation of the angiogenic astrocyte template by secreting
PDGF-A.

It has been believed that retinal astrocytes sense hypoxia and
drive the HIFs/VEGF cascade to promote angiogenesis into the avas-
cular retina (Gariano and Gardner, 2005; Gerhardt et al., 2003; West
et al., 2005). However, two recent papers (Scott et al., 2010;
Weidemann et al., 2010) presented quite unexpected results. The pa-
pers show that not only GFAP-Cre mediated hif1α but also vegfa
knockouts have a trivial impact on retinal vascular development. Al-
though it is unclear whether all of VEGF-A is depleted in neonatal ret-
inas of GFAP-Cre-specific Vegf-a knockout mice, a small amount of
residual VEGF-A proteins, if at all, is sufficient to complete proper vas-
cular development. Apart from the issue regarding the requirement of
astrocyte-derived VEGF-A, recent genetic evidences demonstrated
that deposition of ECM is fundamentally important as an angiogenic
function of retinal astrocytes (Stenzel et al., 2011). Our data support
this notion; astrocytes, independently of VEGF secretion, are essential
for retinal vascular development. In retinas of αCre+Hif1α flox/flox

mice, the vascular plexus is sparse regardless of normal vegfa expres-
sion in each astrocyte.

Although astrocytes display the strongest VEGF expression, with
particularly high levels distally to the growing vascular plexus
(Ruhrberg et al., 2002; Gerhardt et al., 2003), VEGF is also expressed
in retinal ganglion cells and cells in INL, suggesting that the minor
effects of astrocyte VEGF deletion on retinal angiogenesis (Scott
et al., 2010) are compensation of VEGF production by these cells.
αCre+Hif1α flox/flox mice exhibited vascular defects characterized by
a decrease in the number of endothelial tip cells and branching
points. Theoretically, it is possible that reduced HIF-1α-dependent
VEGF expression in the neuroretina caused these vascular defects
in αCre+Hif1α flox/flox mice. However, BrdU incorporation assay
showed only moderate decrease in endothelial proliferation and no
significant changes in the vessel regression, both of which are highly
dependent on the VEGF-Notch signaling (Phng et al., 2009). These
features indicate that the vascular phenotypes in αCre+Hif1α flox/flox

mice are different from those seen in the condition of the VEGF inhi-
bition or Notch gain-of-function. Instead, they fit into the abnormal-
ities caused by a sparse ECM scaffold. Although our data suggest that
decreased PDGF-A expression is significantly involved, alteration in
the other paracrine factors may contribute to the astrocyte defects
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Fig. 7. Reduced PDGF-A expression underlies the hypoplastic astrocyte meshwork in αCre+Hif1α flox/flox mice. (A) Quantitative RT-PCR analysis in GFP+ cells in α-Cre; flox-CAT-EGFP;
Hif1α+/flox or α-Cre; flox-CAT-EGFP; Hif1αflox/flox mice (n=6). (B) Quantitative RT-PCR analysis in retinal tissues harvested from central or peripheral area (n=4). (C, D) Immuno-
fluorescence of P6 retinas. Immunoreactivity for PDGF-A was decreased in the distal neuroretina of αCre+Hif1α flox/flox mice (arrows in D). (E–P) Immunofluorescence on P6 retinas
injected with PDGF-A or vehicle only at P3. αCre+Hif1α flox/flox mice showed astrocytic and vascular response (H, L, P) to injected PDGF-A similar to control mice (G, K, O). (Q–T)
Immunofluorescence on P6 retinas injected with PDGF-A or vehicle at P5, and quantification (n=5). As an acute response (24 h) to PDGF-A injection, reduced proliferation in as-
trocytes (solid arrowheads) but not endothelial cells (clear arrowheads) in αCre+Hif1αflox/flox mice was restored. Scale bars: 200 μm in C, D; 50 μm in E–R; *pb0.05; **pb0.01; NS,
not significant.
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in αCre+Hif1α flox/flox mice. For example, TNFα and IL-6 are known to
promote astrocyte proliferation in vitro or in vivo (Burrows et al.,
1997; Selmaj et al., 1990); however, to our knowledge, the genes
for these cytokines are not targets of HIF-1α, and are unlikely, there-
fore, to be affected directly by HIF-1α deletion.

Retinal ganglion cells (RGCs) is one of the major population of
neuroretinal cells in close proximity to retinal vasculature. RGC-
deficient (Brn3bZ-dta/+; Six3-Cre) mice show complete absence of ret-
inal vasculature, suggesting a key role of RGCs in retinal vasculariza-
tion (Sapieha et al., 2008). Sema3A and GPR91 (G protein-coupled
receptor binding succinate) expressed in RGCs govern both develop-
mental and pathological angiogenesis in retina (Joyal et al., 2011;
Sapieha et al., 2008). As α-Cre is also expressed in RGCs, HIF-1α dele-
tion in RGCs as well as RPCs may also contribute to our observed
phenotypes.

The importance of neuroendothelial interactions is not limited to
development. Malfunctioning of this cross-talk can cause, or influ-
ence, several vascular and neuronal disorders such as Alzheimer's dis-
ease (Zlokovic, 2005) and amyotrophic lateral sclerosis (Lambrechts
et al., 2003). In the regenerating brain tissue after stroke, neural
progenitor cells migrate along blood vessels towards the post-stroke
striatum (Kojima et al., 2010; Yamashita et al., 2006). Interestingly,
VEGF has direct effects on neural stem cells and motor neurons, as
well as acting indirectly through its effects on endothelial cells
(Segura et al., 2009; Storkebaum et al., 2005).

Finally, our data provide a novel mechanism for retinal hypoxic re-
sponse required for proper vascular development. Our data suggest
that the neuroretina, especially RPCs, which act as key players in the
oxygen-sensing mechanisms, regulates the formation of the astrocyte
template by secreting PDGF-A in a HIF-1 dependent manner.

Conclusion

We show that HIF-1α is most abundantly expressed in the neurore-
tina, especially RPCs. A neuroretina-specific knockout of HIF-1α
(αCre+Hif1α flox/flox) showed impaired vascular development character-
ized by decreased tip cell filopodia and reduced vessel branching. The
astrocyte network was hypoplastic in αCre+Hif1α flox/flox mice. Mecha-
nistically, PDGF-A, a mitogen for astrocytes, was downregulated in the
neuroretina of αCre+Hif1α flox/flox mice. Supplementing PDGF-A
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restored reduced astrocytic and vascular density in αCre+Hif1α flox/flox

mice.
These data demonstrates that the neuroretina, especially RPCs, but

not astrocytes acts as a primary oxygen sensor which ultimately con-
trols the retinal vascular development by regulating an angiogenic as-
trocyte template.
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