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For every positive integer N � 2 we consider the linear differential center ẋ = Ax in
R

m with eigenvalues ±i, ±Ni and 0 with multiplicity m − 4. We perturb this linear
center inside the class of all polynomial differential systems of the form linear plus a
homogeneous nonlinearity of degree N , i.e. ẋ = Ax + εF (x) where every component of
F (x) is a linear polynomial plus a homogeneous polynomial of degree N . When the
displacement function of order ε of the perturbed system is not identically zero, we study
the maximal number of limit cycles that can bifurcate from the periodic orbits of the linear
differential center. In particular, we give explicit upper bounds for the number of limit
cycles.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In the qualitative theory of polynomial differential systems the study of their limit cycles is one of the main topics. We
recall that for a differential system a limit cycle is a periodic orbit isolated in the set of all its periodic orbits. Two main
questions arise in this setting in dimension two: the study of the number of limit cycles depending on the degree of the
polynomial (see [10,11] for details in dimension two), and the study of how many limit cycles emerge from the periodic
orbits of a center when we perturb it inside a given class of differential equations (see [8] for details). These problems have
been studied intensively in dimension two. Our main aim is to bring this study to higher dimension.

In this paper we study how many limit cycles emerge from the periodic orbits of a center when we perturb it inside
a given class of differential equations in dimension higher than two. More precisely given m � 5 we consider the linear
differential center

dx

dt
= ẋ = Ax (1)

in R
m , where
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 · · · 0

1 0 0 0 0 · · · 0

0 0 0 −N 0 · · · 0

0 0 N 0 0 · · · 0

0 0 0 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for some positive integer N . We perturb system (1) as follows

ẋ = Ax + εF (x), (2)

where ε is a small parameter, and F : R
m → R

m is a polynomial of the form F = (F 1
1 + F 1

N , . . . , F m
1 + F m

N ) with F k
1 and F k

N
arbitrary homogeneous polynomials of degree 1 and N respectively in the variables x = (x1, . . . , xm), with the exception that
F k

1 = λkxk for k = 5, . . . ,m.
The main reason for considering only perturbations of system (2) of the form linear plus nonlinear homogeneous poly-

nomials of degree N is that the huge computations for studying the number of limit cycles which can bifurcate from the
periodic orbits of system (2) become intractable in other cases. These kind of perturbations have already been considered
by many authors for differential equations in the plane, see for instance [3–7,12,16,18].

For ε = 0 the differential system (2) in R
m has at the origin a singular point with eigenvalues ±i, ±Ni and 0 with

multiplicity m − 4. So in particular this singular point has a 4-dimensional center in resonance 1 : N . We want to study how
many limit cycles can bifurcate from the periodic orbits of this center when we perturb it in R

m with m > 4 inside the
class of polynomial vector fields of the form linear plus a homogeneous nonlinearity of degree N . This study is interesting
for the following two main reasons:

(i) These last years hundreds of papers studied the limit cycles of planar polynomial differential systems, see the book
[8] and the references quoted there. The main reason of these studies is the unsolved 16th Hilbert problem, see [9].
In particular many of theses papers studied the limit cycles bifurcating from the periodic orbits of a linear center. On
the other hand we note that very few papers have been dedicated to study the perturbation of the periodic orbits of a
linear differential systems in R

m with m > 2 inside the class of polynomial differential systems of a given degree in R
m .

This is one of mains objectives of this paper.
(ii) If the bifurcated periodic orbits tend to the origin, then these periodic orbits come in fact from a Hopf bifurcation of

the origin. In such a situation our study is interesting because we are given information about the periodic orbits that
can bifurcate by Hopf from a doubly degenerate singular point. First, it is degenerate because the eigenvalues ±i and
±Ni, with N � 2 a positive integer, are in resonant; and second, the remainder eigenvalues are zero.

In order to formulate our main result we need to consider a non-degeneracy condition formulated in terms of the so-
called displacement function of order ε (see (5)). This is a somewhat technical assumption and thus we shall leave its
description to Section 2. Generically the first-order part of the displacement function is not zero, but when this occurs we
must study the zeros of the n-th order part of the displacement function if n > 1 is the smallest n for which the n-th order
part of the displacement function is not identically zero, see for more details [1,13].

Theorem 1. Assume that N � 2, m � 5, and that for ε �= 0 sufficiently small the displacement function of order ε is not identically
zero. Then the maximum number of limit cycles of the differential system (2) bifurcating from the periodic orbits of the 4-dimensional
linear differential center (1) provided by the displacement function of first order in ε is at most

(a) 2m + 2m−132 + 2m−23m−45 if N = 2, and
(b) 2Nm−2(N + 1)2 + 2N(N + 3)(N + 4)m−4 if N > 2.

Theorem 1 is proved in Section 4 using the averaging theory described in Section 2. It improves and extends previous
results of system (2) restricted to R

4, see [2] and [14].
Strictly speaking the techniques of this paper are essentially not new because they where used previously in the papers

[2] and [14], but there were applied to differential systems in R
4 such that when ε = 0 the unperturbed linear differential

systems have nonzero eigenvalues. The fact that now we allow the existence of zero eigenvalues forces to adapt and modify
some previous technicalities, mainly in the changes of variables for writing the initial differential system in the normal form
for applying the averaging method.

More important than the result of Theorem 1 is the computation of the averaged system associated to the differential
system (2), because its singular points with Jacobian nonzero provide the limit cycles of the differential system (2) when
the displacement function of order ε is not identically zero. When N and m are relatively small all the computations for
arriving to the averaged system can be made explicitly, and consequently the upper bound for the number of limit cycles
given in Theorem 1 can be improved. Thus we have the following result.
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Theorem 2. Assume that for ε �= 0 sufficiently small the displacement function of order ε is not identically zero. Then the maximum
number of limit cycles of the differential system (2) bifurcating from the periodic orbits of the 4-dimensional linear differential center
(1) provided by the displacement function of first order in ε is at most

(a) 20 if N = 2 and m = 5, and
(b) 46 if N = 3 and m = 5.

Theorem 2 is proved in Section 5.
We note that in order to obtain the general (non-sharp) bounds in Theorem 1 we use the Bézout Theorem, while for

N = 2,3 and m = 5 one can make explicit calculations, thus allowing the improvement of the general bounds in these
particular cases. Indeed, in Theorem 1 the upper bounds are 296 and 1116, for N = 2 and m = 5, and for N = 3 and m = 5,
respectively.

2. First-order averaging theory

The aim of this section is to present the first-order averaging method obtained in [1]. We first briefly recall the basic
elements of averaging theory. Roughly speaking, the method gives a quantitative relation between the solutions of a nonau-
tonomous periodic system and the solutions of its averaged system, which is autonomous. The following theorem provides
a first-order approximation for periodic solutions of the original system.

We consider the differential system

ẋ(t) = εH(t, x) + ε2 R(t, x, ε), (3)

where H : R × D → R
n and R : R × D × (−ε0, ε0) → R

n are continuous functions, T -periodic in the first variable, and D is
an open subset of R

n . We define h : D → R
n by

h(z) =
T∫

0

H(s, z)ds, (4)

and denote by dB(h, V ,a) the Brouwer degree of h at some neighborhood V of a (see [15] for the definition).

Theorem 3. We assume that

(i) H and R are locally Lipschitz with respect to x;
(ii) for a ∈ D with h(a) = 0, there exists a neighborhood V of a such that h(z) �= 0 for all z ∈ V \ {a} and dB(h, V ,a) �= 0.

Then for ε �= 0 sufficiently small there exists an isolated T -periodic solution φ(·, ε) of system (3) such that φ(a,0) = a.

The system

ẋ = εh(x),

is called the averaged system associated to system (3).
Hypothesis (i) ensures the existence and uniqueness of the solution of each initial value problem on the interval [0, T ].

Hence, for each z ∈ D , it is possible to denote by x(·, z, ε) the solution of system (3) with the initial value x(0, z, ε) = z. We
also consider the function ζ : D × (−ε0, ε0) → R

n defined by

ζ(z, ε) =
T∫

0

(
εH

(
t, x(t, z, ε)

) + ε2 R
(
t, x(t, z, ε), ε

))
dt. (5)

This is called the displacement function of order ε. It follows from the proof of Theorem 3 that for every z ∈ D the following
relations hold:

x(T , z, ε) − x(0, z, ε) = ζ(z, ε), and ζ(z, ε) = εh(z) + O
(
ε2),

where h is given by (4) and where the symbol O (ε2) denotes a function bounded on every compact subset of D × (−ε0, ε0)

multiplied by ε2.
We note that in order to see that dB(h, V ,a) �= 0 it is sufficient to check that the Jacobian of Dzh(z) at z = a is not zero,

see for more details [15].
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3. Averaged system

Writing

F1 = (
F 1

1 , F 2
1 , F 3

1 , F 4
1 ,0, . . . ,0

)
, F N = (

F 1
N , F 2

N , F 3
N , F 4

N , F 5
N , . . . , F m

N

)
,

system (2) becomes

ẋ1 = −x2 + ε
(

F 1
1(x) + F 1

N(x)
)
,

ẋ2 = x1 + ε
(

F 2
1(x) + F 2

N(x)
)
,

ẋ3 = −Nx4 + ε
(

F 3
1(x) + F 3

N(x)
)
,

ẋ4 = Nx3 + ε
(

F 4
1(x) + F 4

N(x)
)
,

ẋk = ε
(
λkxk + F k

N(x)
)
, k = 5, . . . ,m. (6)

Lemma 4. Doing the change of variables from (x1, x2, x3, x4, x5, . . . , xm) to the new variables (θ, r,ρ, s, y5, . . . , ym) given by

x1 = r cos θ, x2 = r sin θ, x3 = ρ cos
(
N(θ + s)

)
, x4 = ρ sin

(
N(θ + s)

)
, xk = yk,

for k = 5, . . . ,m, and taking θ as the new independent variable, system (6) is transformed into the system

dr

dθ
= εH1(θ, r,ρ, s, y5, . . . , ym) + O

(
ε2),

dρ

dθ
= εH2(θ, r,ρ, s, y5, . . . , ym) + O

(
ε2),

ds

dθ
= εH3(θ, r,ρ, s, y5, . . . , ym) + O

(
ε2),

dyk

dθ
= εHk(θ, r,ρ, s, y5, . . . , ym) + O

(
ε2), k = 5, . . . ,m, (7)

where

H1 = (
F 1

1 + F 1
N

)
cos θ + (

F 2
1 + F 2

N

)
sin θ,

H2 = (
F 3

1 + F 3
N

)
cos

(
N(θ + s)

) + (
F 4

1 + F 4
N

)
sin

(
N(θ + s)

)
,

H3 = 1

Nρ

((
F 4

1 + F 4
N

)
cos

(
N(θ + s)

) − (
F 3

1 + F 3
N

)
sin

(
N(θ + s)

)) − 1

r

((
F 2

1 + F 2
N

)
cos θ − (

F 1
1 + F 1

N

)
sin θ

)
,

Hk = λk yk + F k
N .

Proof. In the variables (θ, r,ρ, s, y5, . . . , ym) system (6) becomes

θ̇ = 1 + ε

r

(
cos θ

(
F 2

1 + F 2
N

) − sin θ
(

F 1
1 + F 1

N

))
,

ṙ = εH1(θ, r,ρ, s, y5, . . . , ym),

ρ̇ = εH2(θ, r,ρ, s, y5, . . . , ym),

ṡ = εH3(θ, r,ρ, s, y5, . . . , ym),

ẏk = εHk(θ, r,ρ, s, y5, . . . , ym), k = 5, . . . ,m. (8)

For ε sufficiently small, θ̇ (t) > 0 for each (t, (θ, r,ρ, s, y5, . . . , ym)) ∈ R × D . Now we eliminate the variable t in the above
system by considering θ as the new independent variable. It is clear that the right-hand side of the new system is well de-
fined and continuous in R× D ×(−ε0, ε0), 2π -periodic with respect to the independent variable θ , and locally Lipschitz with
respect to (r,ρ, s, y5, . . . , ym). From (8) Eq. (7) is obtained after an expansion with respect to the small parameter ε. �

We recall a technical result from [2] that we shall use later on.

Lemma 5. Let N be a nonnegative integer, and let α and β be real numbers. Given nonnegative integers i, j, k, l, there exist constants
cuv and duv such that

cosi α sin j α cosk β sinl β
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is equal to

[(i+ j)/2]∑
u=0

[(k+l)/2]∑
v=0

cuv cos
(
(i + j − 2u)α ± (k + l − 2v)β

)

if j + l is even, and is equal to

[(i+ j)/2]∑
u=0

[(k+l)/2]∑
v=0

duv sin
(
(i + j − 2u)α ± (k + l − 2v)β

)

if j + l is odd. Here [x] denotes the integer part function of x ∈ R.

Now we compute the functions h j(r,ρ, s, y5, . . . , ym) for j = 1, . . . ,m of system (7) given in (4). We write

F g
1 =

m∑
j=1

ag
j x j and F g

N =
∑

i1+i2+···+im=N

ag
i1···im

xi1
1 xi2

2 · · · xim
m ,

for g = 1, . . . ,m. We also write

h j(r,ρ, s, y5, . . . , ym) =
2π∫

0

H j(θ, r,ρ, s, y5, . . . , ym)dθ

for j = 1,2,3,5, . . . ,m.

Proposition 6. We have

h1(r,ρ, s, y5, . . . , ym) = a1r + rN−1ρ
(
b1 sin(Ns) + c1 cos(Ns)

)

+
N∑

2l+i5+···+im=0

d1
li5···im

rN−2l−i5−···−imρ2l yi5
5 · · · yim

m ,

for some constants a1 , b1 , c1 and d1
li5···im depending on the coefficients of the perturbation.

Proof. We write the function H1 as

H1 = H1
1 + H N

1 = (
F 1

1 cos θ + F 2
1 sin θ

) + (
F 1

N cos θ + F 2
N sin θ

)
.

Then

h1
1(r, s,ρ, y5, . . . , ym) =

2π∫

0

H1
1(θ, r, s,ρ, y5, . . . , ym)dθ =

m∑
j=1

2π∫

0

(
a1

j cos θ + a2
j sin θ

)
x j dθ = π

(
a1

1 + a2
2

)
r, (9)

and

hN
1 (r, s,ρ, y5, . . . , ym) =

2π∫

0

H N
1 (θ, r, s,ρ, y5, . . . , ym)dθ

=
∑

i1+···+im=N

2π∫

0

(
a1

i1···im
xi1

1 · · · xim
m cos θ + a2

i1···im
xi1

1 · · · xim
m sin θ

)
dθ

=
∑

i1+···+im=N

2π∫

0

a1
i1···im

ri1+i2ρ i3+i4 cosi1+1 θ sini2 θ

· cosi3
(
N(θ + s)

)
sini4

(
N(θ + s)

)
yi5

5 · · · yim
m dθ

+
∑

i1+···+im=N

2π∫

0

a2
i1···im

ri1+i2ρ i3+i4 cosi1 θ sini2+1 θ

· cosi3
(
N(θ + s)

)
sini4

(
N(θ + s)

)
yi5 · · · yim

m dθ.
5
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By Lemma 5 we obtain

hN
1 (r, s,ρ, y5, . . . , ym) =

∑
i1+···+im=N

ri1+i2ρ i3+i4 yi5
5 · · · yim

m

2π∫

0

[(i1+i2+1)/2]∑
u=0

[(i3+i4)/2]∑
v=0

C i1···im
uv (θ)dθ,

where

C i1···im
uv = ci1···im

uv cos
(
(i1 + i2 + 1 − 2u)θ ± (i3 + i4 − 2v)N(θ + s)

)
+ di1···im

uv sin
(
(i1 + i2 + 1 − 2u)θ ± (i3 + i4 − 2v)N(θ + s)

)
,

for some constants ci1···im
uv and di1···im

uv . Therefore all the integrals with respect to θ are zero except possibly when

i1 + i2 + 1 − 2u = N(i3 + i4 − 2v). (10)

We observe that 0 � i1 + i2 + 1 − 2u � N + 1. So there are only two possibilities: either i3 + i4 − 2v = 1 or i3 + i4 − 2v = 0.
If i3 + i4 − 2v = 1, then it follows from (10) that

i5 + · · · + im = N − (i1 + i2 + i3 + i4) = −2(u + v).

Therefore u = v = 0 = i5 = · · · = im = 0, and hence, i1 + i2 = N − 1 and i3 + i4 = 1. This yields the term

rN−1ρ
(
b1 sin(Ns) + c1(cos Ns)

)
. (11)

If i3 + i4 − 2v = 0, then 2v + i5 + · · · + im = N − i1 − i2, and 2v + i5 + · · · + im runs from 0 to N . This yields the terms

N∑
2v+i5+···+im=0

d1
vi5···im

rN−2v−i5−···−imρ2v yi5
5 · · · yim

m . (12)

The proposition follows adding the terms from (9), (11) and (12). �
Proposition 7. We have

h2(r,ρ, s, y5, . . . , ym) = a2ρ + rN(
b2 sin(Ns) + c2 cos(Ns)

)

+
N+1∑

2v+i5+···+im=1

d2
vi5···im

rN+1−2v−i5−···−imρ2v−1 yi5
5 · · · yim

m ,

for some constants a2 , b2 , c2 and d2
vi5···im depending on the coefficients of the perturbation.

Proof. As in Proposition 6 we write the function H2 as

H2 = H1
2 + H N

2 = (
F 3

1 cos
(
N(θ + s)

) + F 4
1 sin

(
N(θ + s)

)) + (
F 3

N cos
(
N(θ + s)

) + F 4
N sin

(
N(θ + s)

))
.

Then

h1
2(r, s,ρ, y5, . . . , ym) =

2π∫

0

H1
2(θ, r, s,ρ, y5, . . . , ym)dθ

=
m∑

j=1

2π∫

0

(
a3

j cos
(
N(θ + s)

) + a4
j sin

(
N(θ + s)

))
x j dθ

= π
(
a3

3 + a4
4

)
ρ, (13)

and using Lemma 5 we obtain

hN
2 (r, s,ρ, y5, . . . , ym) =

2π∫

0

H N
2 (θ, r, s,ρ, y5, . . . , ym)dθ

=
∑

i1+···+im=N

2π∫
a3

i1···im
ri1+i2ρ i3+i4 cosi1 θ sini2 θ
0
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· cosi3+1(N(θ + s)
)

sini4
(
N(θ + s)

)
yi5

5 · · · yim
m dθ

+
∑

i1+···+im=N

2π∫

0

a4
i1···im

ri1+i2ρ i3+i4 cosi1 θ sini2 θ

· cosi3
(
N(θ + s)

)
sini4+1(N(θ + s)

)
yi5

5 · · · yim
m dθ

=
∑

i1+···+im=N

ri1+i2ρ i3+i4 yi5
5 · · · yim

m

2π∫

0

[(i1+i2)/2]∑
u=0

[(i3+i4+1)/2]∑
v=0

Di1···im
uv (θ)dθ,

where

Di1···im
uv = ci1···im

uv cos
(
(i1 + i2 − 2u)θ ± (i3 + i4 + 1 − 2v)N(θ + s)

)
+ di1···im

uv sin
(
(i1 + i2 − 2u)θ ± (i3 + i4 + 1 − 2v)N(θ + s)

)
,

for some constants ci1···im
uv and di1···im

uv . All the integrals with respect to θ are zero except possibly when

i1 + i2 − 2u = N(i3 + i4 + 1 − 2v). (14)

We observe that 0 � i1 + i2 − 2u � N . So there are only two possibilities: either i3 + i4 + 1 − 2v = 1 or i3 + i4 + 1 − 2v = 0.
If i3 + i4 + 1 − 2v = 1, then by (14) we obtain that

N − i3 − i4 − i5 − · · · − im − 2u = N,

and hence i3 + i4 + i5 + · · · + im + 2u = 0. This implies that i3 = i4 = · · · = im = 0 and u = 0. Then i1 + i2 = N , which yields
the term

rN(
b2 sin(Ns) + c2 cos(Ns)

)
. (15)

If i3 + i4 + 1 − 2v = 0, then

2v + i5 + · · · + im − 1 = N − i1 − i2.

Thus 2v + i5 + · · · + im runs from 1 to N + 1, yielding the terms

N+1∑
2v+i5+···+im=1

d2
vi5···im

rN+1−2v−i5−···−imρ2v−1 yi5
5 · · · yim

m . (16)

The proposition follows adding the terms of (13), (15) and (16). �
Proposition 8. We have

h3(r,ρ, s, y5, . . . , ym) = a3 + rN−2ρ
(
b3 sin(Ns) + c3 cos(Ns)

) + rNρ−1(d3 sin(Ns) + e3 cos(Ns)
)

+
N∑

2v+i5+···+im=0

d3
vi5···im

rN−1−2v−i5−···−imρ2v yi5
5 · · · yim

m

+
N+1∑

2v+i5+···+im=1

d4
vi5···im

rN+1−2v−i5−···−imρ2v−2 yi5
5 · · · yim

m ,

for some constants a3 , b3 , c3 , d3 , e3 , d3
vi5···im and d4

vi5···im depending on the coefficients of the perturbation.

Proof. We have H3 = H1
3 + H N

3 where

H1
3 = 1

Nρ

(
F 4

1 cos
(
N(θ + s)

) − F 3
1 sin

(
N(θ + s)

)) − 1

r

(
F 2

1 cos θ − F 1
1 sin θ

)
,

H N
3 = 1

Nρ

(
F 4

N cos
(
N(θ + s)

) − F 3
N sin

(
N(θ + s)

)) − 1

r

(
F 2

N cos θ − F 1
N sin θ

)
.
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Proceeding in a similar manner to the proofs of Propositions 6 and 7 we get

h1
3(r,ρ, s, y5, . . . , ym) =

2π∫

0

H1
3(θ, r,ρ, s, y5, . . . , ym)dθ = π(a4

3 − a3
4)

N
− π

(
a2

1 − a1
1

)
. (17)

Now we calculate

hN
3 (r,ρ, s, y5, . . . , ym) =

2π∫

0

H N
3 (θ, r,ρ, s, y5, . . . , ym)dθ.

In a similar manner to the proofs of Propositions 6 and 7 we get

hN
3 (r,ρ, s, y5, . . . , ym) = 1

N

∑
i1+···+im=N

ri1+i2ρ i3+i4−1 yi5
5 · · · yim

m

2π∫

0

[(i1+i2)/2]∑
u=0

[(i3+i4+1)/2]∑
v=0

Ei1···im
uv (θ)dθ

−
∑

i1+···+im=N

ri1+i2−1ρ i3+i4 yi5
5 · · · yim

m

2π∫

0

[(i1+i2+1)/2]∑
u=0

[(i3+i4)/2]∑
v=0

F i1···im
uv (θ)dθ (18)

where

Ei1···im
uv = ci1···im

uv cos
(
(i1 + i2 − 2u)θ ± (i3 + i4 + 1 − 2v)N(θ + s)

)
+ di1···im

uv sin
(
(i1 + i2 − 2u)θ ± (i3 + i4 + 1 − 2v)N(θ + s)

)
, (19)

and

F i1···im
uv = f i1···im

uv cos
(
(i1 + i2 + 1 − 2u)θ ± (i3 + i4 − 2v)N(θ + s)

)
+ gi1···im

uv sin
(
(i1 + i2 + 1 − 2u)θ ± (i3 + i4 − 2v)N(θ + s)

)
. (20)

The terms whose integrals need not be zero satisfy

i1 + i2 − 2u = N(i3 + i4 + 1 − 2v)

in Eq. (19), and

i1 + i2 + 1 − 2u = N(i3 + i4 − 2v)

in Eq. (20).
The arguments in the proof of Proposition 7 show that in (18) the terms that may remain in the first sum are

rNρ−1(d3 sin(Ns) + e3 cos(Ns)
) +

N+1∑
2v+i5+···+im=1

d4
vi5···im

rN+1−2v−i5−···−imρ2v−2 yi5
5 · · · yim

m , (21)

and the arguments in the proof of Proposition 6 show that the terms that may remain in the second sum are

rN−2ρ
(
b3 sin(Ns) + c3 cos(Ns)

) +
N∑

2v+i5+···+im=0

d3
vi5···im

rN−1−2v−i5−···−imρ2v yi5
5 · · · yim

m . (22)

The proposition follows adding the terms in (17), (21) and (22). �
Proposition 9. For k = 5, . . . ,m, we have

hk(r,ρ, s, y5, . . . , ym) = λk yk +
N∑

2v+i5+···+im=0

d5
vi5···im

rN−2v−i5−···−imρ2v yi5
5 · · · yim

m ,

for some constants d5 depending on the coefficients of the perturbation.
vi5···im
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Proof. As in the former proofs, we write Hk = H1
k + H N

k where H1
k = λk yk and H N

k = F k
N , and we compute the function

hN
k (r, s,ρ, y5, . . . , ym) =

2π∫

0

H N
k (θ, r, s,ρ, y5, . . . , ym)dθ.

Proceeding as in the proofs of Propositions 6 or 7 we obtain

hN
k (r,ρ, s, y5, . . . , ym) =

∑
i1+···+im=N

2π∫

0

ak
i1···im

ri1+i2ρ i3+i4 cosi1 θ sini2 θ cosi3
(
N(θ + s)

)
sini4

(
N(θ + s)

)
yi5

5 · · · yim
m dθ

=
∑

i1+···+im=N

ri1+i2ρ i3+i4 yi5
5 · · · yim

m

2π∫

0

[(i1+i2)/2]∑
u=0

[(i3+i4)/2]∑
v=0

Gi1···im
uv (θ)dθ,

where

Gi1···im
uv = gi1···im

uv cos
(
(i1 + i2 − 2u)θ ± (i3 + i4 − 2v)N(θ + s)

)
+ hi1···im

uv sin
(
(i1 + i2 − 2u)θ ± (i3 + i4 − 2v)N(θ + s)

)
.

All the integrals with respect to θ are zero except possibly when

i1 + i2 − 2u = N(i3 + i4 − 2v). (23)

Again we observe that 0 � i1 + i2 − 2u � N . So there are only two possibilities: either i3 + i4 − 2v = 1 or i3 + i4 − 2v = 0.
If i3 + i4 − 2v = 1, then by (23) we obtain

N − i3 − i4 − i5 − · · · − im − 2u = N,

and thus i3 = i4 = · · · = im = 0, which contradicts to the fact that i3 + i4 − 2v = 1. Therefore, this case does not occur.
If i3 + i4 − 2v = 0, then

2v + i5 + · · · + im = N − i1 − i2.

Hence 2v + i5 + · · · + im runs from 0 to N , and we obtain the terms

N∑
2v+i5+···+im=0

d5
vi5···im

rN−2v−i5−···−imρ2v yi5
5 · · · yim

m .

This yields the desired statement. �
4. Proof of Theorem 1

We recall a technical result proved in [2].

Lemma 10. If N, α and β are nonnegative integers with α + β = N, then

2π∫

0

cosα θ sinβ θ cos
(
N(θ + s)

)
dθ =

⎧⎨
⎩

(−1)β/2π
2N−1 cos(Ns) if β is even,

(−1)(β+1)/2π
2N−1 sin(Ns) if β is odd,

and

2π∫

0

cosα θ sinβ θ sin
(
N(θ + s)

)
dθ =

⎧⎨
⎩

(−1)β/2π
2N−1 sin(Ns) if β is even,

− (−1)(β+1)/2π
2N−1 cos(Ns) if β is odd.

We will use the following proposition.
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Proposition 11. The function h3(r,ρ, s, y5, . . . , ym) is given by

h3(r,ρ, s, y5, . . . , ym) = a3 + rN−2ρ
(−c1 sin(Ns) + b1 cos(Ns)

) + 1

N
rNρ−1(−c2 sin(Ns) + b2 cos(Ns)

)

+
N∑

2v+i5+···+im=0

d3
vi5···im

rN−1−2v−i5−···−imρ2v yi5
5 · · · yim

m

+
N+1∑

2v+i5+···+im=1

d4
vi5···im

rN+1−2v−i5−···−imρ2v−2 yi5
5 · · · yim

m ,

where b1 , c1 are the constants in Proposition 6, and b2 , c2 are the constants in Proposition 7.

Proof. Using the notation of Proposition 8 we shall prove that b3 = −c1, c3 = b1, d3 = −c2/N and e3 = b2/N . In order to
simplify the proof, let a1

i1 i2···im xi1
1 xi2

2 · · · xim
m be a monomial in F 1

N such that i1 + i2 = N −1, i3 = 0, i4 = 1 and i5 = · · · = im = 0.
When we compute h1 and h3, this monomial appears in h1 as

2π∫

0

a1
i1···im

cosi1+1 θ sini2 θ sin
(
N(θ + s)

)
dθ, (24)

and in h3 as

2π∫

0

a1
i1···im

cosi1 θ sini2+1 θ sin
(
N(θ + s)

)
dθ. (25)

By Lemma 10, the term in (24) is equal to
⎧⎪⎪⎨
⎪⎪⎩

(−1)i2/2

2N−1
a1

i1···im
sin(Ns), if i2 is even,

− (−1)(i2+1)/2

2N−1
a1

i1···im
cos(Ns), if i2 is odd,

and the term in (25) is equal to
⎧⎪⎪⎨
⎪⎪⎩

(−1)(i2+1)/2

2N−1
a1

i1···im
sin(Ns), if i2 + 1 is even,

(−1)i2/2

2N−1
a1

i1···im
cos(Ns), if i2 + 1 is odd.

For i2 odd the coefficient of the monomial appears in a sum determining the coefficient of rN−1ρ cos(Ns) in h1, and also
appears in a sum determining the coefficient of rN−2ρ sin(Ns) in h3 with the opposite sign. In a similar way for i2 even
the coefficient of the monomial appears in a sum determining the coefficient of rN−1ρ sin(Ns) in h1, and appears in a sum
determining the coefficient of rN−2ρ cos(Ns) in h3 with the same sign.

We can do the same for all monomials in F 2
N , F 3

N and F 4
N , and thus we conclude that b3 = −c1, c3 = b1, d3 = −c2/N and

e3 = b2/N . �
Now we have all the ingredients to prove Theorem 1.

Proof of Theorem 1. It follows from Propositions 6, 7, 8, 9 and 11 that

h1 = a1r + rN−1ρ
(
b1 sin(Ns) + c1 cos(Ns)

) +
N∑

2v+i5+···+im=0

d1
vi5···im

rN−2v−i5−···−imρ2v yi5
5 · · · yim

m ,

h2 = a2ρ + rN(
b2 sin(Ns) + c2 cos(Ns)

) +
N+1∑

2v+i5+···+im=1

d2
vi5···im

rN+1−2v−i5−···−imρ2v−1 yi5
5 · · · yim

m ,

h3 = a3 + rN−2ρ
(−c1 sin(Ns) + b1 cos(Ns)

) + 1
rNρ−1(−c2 sin(Ns) + b2 cos(Ns)

)

N
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+
N∑

2v+i5+···+im=0

d3
vi5···im

rN−1−2v−i5−···−imρ2v yi5
5 · · · yim

m

+
N+1∑

2v+i5+···+im=1

d4
vi5···im

rN+1−2v−i5−···−imρ2v−2 yi5
5 · · · yim

m ,

hk = λk yk +
N∑

2v+i5+···+im=0

d5
vi5···im

rN−2v−i5−···−imρ2v yi5
5 · · · yim

m , (26)

where h j = h j(r,ρ, s, y5, . . . , ym).
According to the results of Section 2 we must study the real solutions of the system

hk(r,ρ, s, y5, . . . , ym) = 0 for k = 1,2,3,5, . . . ,m (27)

that have nonzero Jacobian. In order that these solutions can provide limit cycles of system (2) we must look for those such
that r2 + ρ2 �= 0 (we recall that this kind of polar coordinates are introduced in Lemma 4). We distinguish three cases.

Case 1: r = 0 and ρ �= 0. If N > 2 then in the system (27) the variable s does not appear. So the Jacobian of the system
is always zero, and consequently the number of limit cycles of system (2) provided by the averaging theory is zero in this
case.

In this case, if N = 2 then it is easy to check that all the equations of system (27) (except the first one which is identically
zero) are polynomial equations of degree two in the variables r, ρ , y5, . . . , ym , cos(2s) and sin(2s). Therefore, adding to
system (27) the equation cos2(2s) + sin2(2s) = 1 by the Bézout Theorem (see [17]) the maximum number of limit cycles
that can appear in this subcase is 2m−1. Since for each solution w0 = cos(2s) and z0 = sin(2s) of cos2(2s) + sin2(2s) = 1 we
can find s1, s2 ∈ [0,2π) such that sin(2si) = z0 and cos(2si) = w0 for i = 1,2, we get that the total number of solutions of
system (27) is at most 2m .

Case 2: b2 = c2 = 0, ρ = 0 and r �= 0. Then the degree of the polynomial equations of system (27) in the variables
r, ρ , y5, . . . , ym , cos(Ns) and sin(Ns) are N , N + 1, N + 1, N, . . . , N respectively. Therefore, adding to system (27) the
equation cos2(Ns) + sin2(Ns) = 1 by the Bézout Theorem the maximum number of limit cycles that can appear in this
case is 2Nm−3(N + 1)2. Since for each solution w0 = cos(Ns) and z0 = sin(Ns) of cos2(Ns) + sin2(Ns) = 1 we can find
s1, . . . , sN ∈ [0,2π) such that sin(Nsi) = z0 and cos(Nsi) = w0 for i = 1, . . . , N , we obtain that the total number of solutions
of system (27) is at most 2Nm−2(N + 1)2.

Case 3: rρ �= 0. Now we perform the change of variables

rN−1 = B, ρ/r = A, sin(Ns) = z, cos(Ns) = w, yk/r = Ck

for k = 5, . . . ,m. In the new variables, the functions

h̃1 = h1/r, h̃2 = h2/r, h̃3 = ρh3/r, h̃4 = z2 + w2 − 1, h̃k = hk/r

for k = 5, . . . ,m are given by

h̃1 = a1 + AB(b1z + c1 w) + B P1
(

A2, C5, . . . , Cm
)
,

h̃2 = a2 A + B(b2z + c2 w) + AB P2
(

A2, C5, . . . , Cm
)
,

h̃3 = a3 A + B A2(−c1z + b1 w) + 1

N
B(−c2z + b2 w) + AB P3

(
A2, C5, . . . , Cm

) + B A−1 P4
(

A2, C5, . . . , Cm
)
,

h̃4 = z2 + w2 − 1,

h̃k = λkCk + B Pk
(

A2, C5, . . . , Cm
)
, (28)

for k = 5, . . . ,m, where

Pi
(

A2, C5, . . . , Cm
) =

N∑
2l+i5+···+im=0

di
li5···im

A2lC i5
5 · · · C im

m

for i = 1,3,k and

Pi
(

A2, C5, . . . , Cm
) =

N+1∑
2l+i5+···+im=1

di
li5···im

A2lC i5
5 · · · C im

m

for i = 2,4.
Solving (h̃1, h̃2, h̃3) = (0,0,0), we find the solution
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z = 1

A
Z
(

A2, C5, . . . , Cm
)
, w = 1

A
W

(
A2, C5, . . . , Cm

)
, B = B

(
A2, C5, . . . , Cm

)
,

where

Z = Z1

Z2
, W = W1

Z2
, and B = B1

B2

with

Z1 = −N(a2b1 P1 − a1b1 P2 + a3c1 P2 − a2c1 P3)A4

+ (−a2b2 P1 + a3c2N P1 + a1b2 P2 − a1c2N P3 + a2c1N P4)A2 − a1c2N P4,

Z2 = a2
(
b2

1 + c2
1

)
N A4 − a1

(
b2

2 + c2
2

) + (a2b1b2 − a1b1Nb2 + a3c1Nb2 + a2c1c2 − a3b1c2N − a1c1c2N)A2,

W1 = −N(a2c1 P1 − a3b1 P2 − a1c1 P2 + a2b1 P3)A4

+ (−a2c2 P1 − a3b2N P1 + a1c2 P2 + a1b2N P3 − a2b1N P4)A2 + a1b2N P4,

B1 = −a2
(
b2

1 + c2
1

)
N A4 + a1

(
b2

2 + c2
2

) + (−a2b1b2 + a1b1Nb2 − a3c1Nb2 − a2c1c2 + a3b1c2N + a1c1c2N)A2,

B2 = (
b2

1 + c2
1

)
N P2 A4 − b2

2 P1 − c2
2 P1 + b2c1N P4 − b1c2N P4

+ (−b1b2N P1 − c1c2N P1 + b1b2 P2 + c1c2 P2 + b2c1N P3 − b1c2N P3)A2.

Therefore in the variables (A2, C5, . . . , Cm), B is a quotient of a polynomial of degree 2 by a polynomial of degree N + 3,
Z is a quotient of a polynomial of degree N + 3 by a polynomial of degree 2, and W is a quotient of a polynomial of degree
N + 3 by a polynomial of degree 2.

Substituting z and w in the equation h̃4 = 0, we obtain a quotient of a polynomial of degree 2(N + 3) by a polynomial
of degree 5 in the variables (A2, C5, . . . , Cm).

Substituting B in the equations h̃k = 0 we obtain a quotient of a polynomial of degree N + 4 by a polynomial of degree
N + 3 in the variables (A2, C5, . . . , Cm).

Therefore, by applying Bézout’s Theorem we have that the maximum number of possible roots (A2, C5, . . . , Cm) of the
numerator of (h̃4, h̃5, . . . , h̃m) = 0 is 2(N + 3)(N + 4)m−4. For each solution (A2

0, C50, . . . , Cm0) we have at most one B0 =
B(A2

0, C50, . . . , Cm0) and one pair

(z0, w0) = (
z
(

A2
0, C50, . . . , Cm0

)
, w

(
A2

0, C50, . . . , Cm0
))

.

For each pair (z0, w0) we can find s1, . . . , sN ∈ [0,2π) such that sin(Nsi) = z0 and cos(Nsi) = w0 for i = 1, . . . , N . So in this
case the maximum number of zeros of system (27) is at most 2N(N + 3)(N + 4)m−4.

Now we put together the results of the three cases. By Theorem 3 the maximum number of limit cycles obtained via
averaging theory for system (2) is

2m + 2Nm−2(N + 1)2 + 2N(N + 3)(N + 4)m−4 = 2m + 2m−132 + 2m−23m−45

if N = 2, or

2Nm−2(N + 1)2 + 2N(N + 3)(N + 4)m−4,

if N > 3. This completes the proof of the theorem. �
5. Some improvements for N = 2 and N = 3 with m = 5

In this section we prove Theorem 2.

Proof of statement (a) of Theorem 2. We can compute explicitly system (27) for N = 2 and N = 3 when m = 5. In particular
for N = 2 and m = 5 system (2) is of the form

h1 = r
(
a1 + ρ(b1z + c1 w) + d1 y5

) = 0,

h2 = a2ρ + r2(b2z + c2 w) + d2ρ y5 = 0,

h3 = a3 − 2ρ(−c1z + b1 w) − r2ρ−1(−c2z + b2 w) + d3 y5 = 0,

h4 = z2 + w2 − 1 = 0,

h5 = λ5 y5 + d4r2 + d5ρ
2 + d6 y2

5 = 0, (29)

where the constants ai for i = 1,2,3, b1, b2, c1, c2 and d j for j = 1, . . . ,6 are arbitrary. Here z = sin(2s) and w = cos(2s).
After doing the explicit computations many terms of system (27) become zero, and consequently we can improve the
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general results for system (27), studying the particular system (29) for N = 2 and m = 5. We distinguish the same cases as
in the proof of Theorem 1.

Case 1: r = 0 and ρ �= 0. Then system (29) reduces to

g2 = a2 + d2 y5 = 0,

g3 = a3 − 2ρ(−c1z + b1 w) + d3 y5 = 0,

g4 = z2 + w2 − 1 = 0,

g5 = λ5 y5 + d5ρ
2 + d6 y2

5 = 0.

From g2 = 0 we get y5 (if d2 �= 0). Substituting it in g5 = 0 we obtain at most one ρ > 0. Substituting y5 and ρ in
g3 = g4 = 0, we get at most two solutions (z0, w0) for (z, w). Since for each solution w0 = cos(2s) and z0 = sin(2s) of
cos2(2s) + sin2(2s) = 1 we can find s1, s2 ∈ [0,2π) such that sin(2si) = z0 and cos(2si) = w0 for i = 1,2, we get that the
total number of solutions of system (27) is at most 4. In the proof of Theorem 1 for the general case the upper bound
obtained in this case was 25.

Case 2: b2 = c2 = 0, ρ = 0 and r �= 0. Now system (29) reduces to

g1 = a1 + d1 y5 = 0,

g2 = b2z + c2 w = 0,

g3 = a3 + d3 y5 = 0,

g4 = z2 + w2 − 1 = 0,

g5 = λ5 y5 + d4r2 + d6 y2
5 = 0.

We assume that the possible solution of g1 = 0 and g3 = 0 coincides. Then substituting it in g5 = 0 we obtain at most
one r > 0. Substituting y5 and r in g2 = g4 = 0, we get at most two solutions (z0, w0) for (z, w). As in the previous case
w0 = cos(2s) and z0 = sin(2s), and consequently the total number of solutions of system (27) is at most 4. In the proof of
Theorem 1 for the general case the upper bound obtained in this case was 9 · 24.

Case 3: rρ �= 0. Doing the same changes as in Case 3 of the proof of Theorem 1 we get that system (28) becomes

h̃1 = a1 + AB(b1z + c1 w) + Bd1C5,

h̃2 = a2 A + B(b2z + c2 w) + ABd2C5,

h̃3 = a3 A − 2B A2(−c1z + b1 w) − B(c2z + b2 w) + ABd3C5,

h̃4 = z2 + w2 − 1,

h̃5 = λ5C5 + B
(
d4 + d5 A2 + d6C2

5

)
.

Solving h̃1 = h̃2 = h̃3 = 0 with respect to the variables z, w and B , and substituting these into h̃4 = h̃5 = 0, we obtain

A2C2
5(K 2

1 + K 2
2 )

D2
− 1 = 0,

λ5C5 + (d4 + d5 A2 + d6C2
5)D

C5 E
= 0, (30)

where

K1 = (
c2 − 2A2c1

)
(a2d1 − a1d2) + a3

(
b2d1 − A2b1d2

) + (
A2a2b1 − a1b2

)
d3,

K2 = (2a2b1d1 − 2a1b1d2 − a3c1d2 + a2c1d3)A2 + a2b2d1 + a3c2d1 − a1(b2d2 + c2d3),

D = 2a2
(
b2

1 + c2
1

)
A4 + (

a2b1b2 − a3c1b2 + a3b1c2 − a2c1c2 − 2a1(b1b2 + c1c2)
)

A2 + a1
(
c2

2 − b2
2

)
,

E = 2
(
b2

1 + c2
1

)
d2 A4 − (

c1
(
c2(2d1 + d2) + b2d3

) + b1(2b2d1 − b2d2 − c2d3)
)

A2 + (
c2

2 − b2
2

)
d1.

System (30) reduces to

A2C2
5

(
K 2

1 + K 2
2

) − D2 = 0,

λ5C2
5 E + (

d4 + d5 A2 + d6C2
5

)
D = 0.

Substituting C2
5 , obtained from the first equation, into the second one we obtain

D
(
λ5 D E + (

d4 + d5 A2)A2(K 2 + K 2) + d6 D2) = 0,
1 2
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a polynomial equation of degree 12 in the variable A2, which can have at most 6 positive real solutions for A. Each of these
possible solutions for A will provide at most 1 positive solution for C5. Finally each of these at most 6 solutions for (A, C5)

provide one solution for (z, w, B). As before every one of these possible 6 solutions for w = cos(2s) and z = sin(2s) can
provide two solutions for s, and consequently the total number of solutions of system (27) is at most 12, instead of the
23 · 3 · 5 = 120 estimated in the general case for N = 2 and m = 5.

In short the maximum number of solutions of system (29) is bounded by 4 + 4 + 12 = 20. �
Proof of statement (b) of Theorem 2. Now we shall improve the upper estimate on the number of limit cycles when N = 3
and m = 5. In this case system (2) after direct computations is of the form

h1 = r
(
a1 + rρ(b1z + c1 w) + d1r2 + d2ρ

2 + d3 y2
5

) = 0,

h2 = a2ρ + r3(b2z + c2 w) + ρ
(
d4r2 + d5ρ

2 + d6 y2
5

) = 0,

h3 = a3 + 3rρ(−c1z + b1 w) + r3ρ−1(−c2z + b2 w) + d7r2 + d8ρ
2 + d9 y2

5 = 0,

h4 = z2 + w2 − 1 = 0,

h5 = λ5 y5 + y5
(
d10r2 + d11ρ

2 + d12 y2
5

) = 0, (31)

where the constants ai for i = 1,2,3, b1, b2, c1, c2 and d j for j = 1, . . . ,12 are arbitrary. As for the case N = 2 and m = 5
we distinguish the following three cases.

Case 1: r = 0 and ρ �= 0. Then system (29) reduces to

g2 = a2 + d5ρ
2 + d6 y2

5 = 0,

g3 = a3 + d8ρ
2 + d9 y2

5 = 0,

g4 = z2 + w2 − 1 = 0,

g5 = λ5 y5 + y5
(
d11ρ

2 + d12 y2
5

) = 0.

From g2 = 0 we get y5 (if d2 �= 0). Substituting it in g5 = 0 we obtain at most one ρ > 0. Substituting y5 and ρ in
g3 = g4 = 0, we get at most two solutions (z0, w0) for (z, w). Since for each solution w0 = cos(2s) and z0 = sin(2s) of
cos2(2s) + sin2(2s) = 1 we can find s1, s2 ∈ [0,2π) such that sin(2si) = z0 and cos(2si) = w0 for i = 1,2, we get that the
total number of solutions of system (27) is at most 4. In the proof of Theorem 1 for the general case the upper bound
obtained in this case was 2 · 33 · 42 = 864.

Case 2: b2 = c2 = 0, ρ = 0 and r �= 0. Now system (29) reduces to

g1 = a1 + d1 y5 = 0,

g2 = b2z + c2 w = 0,

g3 = a3 + d3 y5 = 0,

g4 = z2 + w2 − 1 = 0,

g5 = λ5 y5 + d4r2 + d6 y2
5 = 0.

In the case that g1 = 0 and g2 = 0 share some solution, we shall get a continuum of solutions for (z, w) and consequently
the Jacobian of the system at these solutions will be zero, and we cannot apply the averaging theory for obtaining limit
cycles in this case.

Case 3: rρ �= 0. Doing the same changes as in Case 3 of the proof of Theorem 1 we get that system (28) becomes

h̃1 = a1 + AB(b1z + c1 w) + B
(
d1 + d2 A2 + d3C2

5

)
,

h̃2 = a2 A + B(b2z + c2 w) + AB
(
d4 + d5 A2 + d6C2

5

)
,

h̃3 = a3 A − 2B A2(−c1z + b1 w) − B(c2z + b2 w) + AB
(
d7 + d8 A2 + d9C2

5

)
,

h̃4 = z2 + w2 − 1,

h̃5 = λ5C5 + B
(
d10 + d11 A2 + d12C2

5

)
C5.

Solving h̃1 = h̃2 = h̃3 = 0 with respect to the variables z, w and B , and substituting these into h̃4 = h̃5 = 0, we obtain

A2(K 2
1 + K 2

2 )

D2
− 1 = 0,

λ5C5 + C5(d10 + d11 A2 + d12C2
5)D = 0, (32)
E
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where

K1 = (−2a2c1d2 + 2a1c1d5 + a2b1d8)A4 + (
a1

(−c2d5 + 2c1
(
d6C2

5 + d4
) − b2d8

)
+ a2

(
b1d9C2

5 + c2d2 − 2c1(d3C2
5 + d1) + b1d7

))
A2 + a2c2

(
d3C2

5 + d1
) + a3

(
b2

(
d2 A2 + d1 + C2

5d3
)

− A2b1
(
d5 A2 + d4 + C2

5d6
)) − a1

(
c2

(
d6C2

5 + d4
) + b2

(
d9C2

5 + d7
))

,

K2 = (−2a2b1d2 + 2a1b1d5 + a3c1d5 − a2c1d8)A4 + (
a3

(
c1

(
d6C2

5 + d4
) − c2d2

)
+ a1

(
b2d5 + 2b1

(
d6C2

5 + d4
) + c2d8

) − a2
(
c1d9C2

5 + b2d2 + 2b1
(
d3C2

5 + d1
) + c1d7

))
A2

− a2b2
(
d3C2

5 + d1
) − a3c2

(
d3C2

5 + d1
) + a1

(
b2

(
d6C2

5 + d4
) + c2

(
d9C2

5 + d7
))

,

D = 2a2
(
b2

1 + c2
1

)
A4 + (

a2b1b2 − a3c1b2 + a3b1c2 − a2c1c2 − 2a1(b1b2 + c1c2)
)

A2 + a1
(
c2

2 − b2
2

)
,

E = 2
(
b2

1 + c2
1

)
d5 A6 + (

2
(
d6C2

5 + d4
)
b2

1 + (
b2(d5 − 2d2) + c2d8

)
b1

+ c1
(−c2(2d2 + d5) + 2c1

(
d6C2

5 + d4
) − b2d8

))
A4 − ((

b2
2 − c2

2

)
d2 + c1

(
c2

(
(2d3 + d6)C2

5 + 2d1 + d4
)

+ b2
(
d9C2

5 + d7
)) + b1

(
b2

(
(2d3 − d6)C2

5 + 2d1 − d4
) − c2

(
d9C2

5 + d7
)))

A2 + (
c2

2 − b2
2

)(
d3C2

5 + d1
)
.

Since D cannot be zero system (30) reduces to

A2(K 2
1 + K 2

2

) − D2 = 0,

C5
(
λ5 E + (

d10 + d11 A2 + d12C2
5

)
D

) = 0.

Substituting C5 = 0, obtained from the second equation, into the first one we obtain a polynomial of degree 10 in the
variable A2, which can have at most 5 positive real solutions for A.

Substituting C2
5 , obtained from the second factor of the second equation, into the first one we obtain a rational function

in the variable A2 whose numerator is a polynomial of degree 18, which can have at most 9 positive real solutions for A.
Each of these possible solutions for A will provide at most 5 + 9 = 14 solutions for C5. Finally each of these at most 14

solutions for (A, C5) provide one solution for (z, w, B). As before every one of these possible 14 solutions for w = cos(3s)
and z = sin(3s) can provide three solutions for s, and consequently the total number of solutions of system (32) is at
most 42, instead of the 62 · 7 = 252 estimated in the general case for N = 3 and m = 5.

In short the maximum number of solutions of system (31) is bounded by 4 + 0 + 42 = 46. �
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