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Abstract Cyanobacteria express large quantities of the iron
stress-inducible protein IsiA under iron deficiency. IsiA can
assemble into numerous types of single or double rings surround-
ing Photosystem I. These supercomplexes are functional in light-
harvesting, empty IsiA rings are effective energy dissipaters.
Electron microscopy studies of these supercomplexes show that
Photosystem I trimers bind 18 IsiA copies in a single ring,
whereas monomers may bind up to 35 copies in two rings. Work
on mutants indicates that the PsaF/J and PsaL subunits facili-
tate the formation of closed rings around Photosystem I mono-
mers but are not obligatory components in the formation of
Photosystem I–IsiA supercomplexes.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

More than half of the total primary production on Earth is

provided by cyanobacteria, which are abundant in most mar-

ine and freshwater habitats. As environmental conditions vary

constantly in time (e.g., light intensity, nutrient content), there

are effective regulatory mechanisms, which allow cyanobacte-

ria to cope with unfavorable conditions and maintain their

photosynthetic production at the same time. The effect of a

low iron content on the photosynthetic machinery is particu-

larly interesting since the amount of iron can considerably fluc-

tuate in aquatic ecosystems and because iron is essential for a

number of enzymes and proteins involved in the photosyn-

thetic light reactions (see [1,2] for reviews).

Pioneering studies with the cyanobacterium Anacystis nidu-

lans grown under conditions of iron deficiency revealed signif-

icant alterations in the photosynthetic apparatus such as a loss

of pigments and phycobilisomes, which was accompanied by
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spectral changes [3–6]. Later on detailed biochemical analysis

of thylakoid membranes isolated from iron-deficient cells iden-

tified the presence of a new 36kDa chlorophyll (Chl) a binding

complex, designated CPVI-4 [7]. Afterwards, it was found that

iron deficiency leads to the induction of an iron stress-induc-

ible isiAB operon, which actually expresses two proteins,

named IsiA and IsiB. It was proven that the CPVI-4 complex

was encoded by the isiA gene [8,9]. Due to the strong sequence

homology of this complex to the CP43 core antenna of PSII

the IsiA protein was referred to CP43 0. IsiB, flavodoxin, en-

coded by the isiB gene replaces the iron-rich soluble electron

transfer protein ferredoxin [10,11]. Recently, taking advantage

of DNA microarray technology, an analysis of a full-genome

microarray of the cyanobacterium Synechocystis sp. PCC

6803 revealed that iron deficiency triggers a whole cascade of

regulations of gene transcription [12]. Regulation of photosyn-

thesis genes resulted in both reduction and specific downregu-

lation of major iron-containing complexes involved in electron

transport, like Photosystem I (PSI), the cytochrome b6/f com-

plex and Photosystem II (PSII) [12].

Especially PSI, the most iron-rich complex of the photosyn-

thetic apparatus, is highly vulnerable to iron limitation stress

and its content decreases more dramatically compared to PSII

under stress conditions [4,5,13,14]. Further, it was found that

the well-known reduction of phycobilisome content in iron-

deficient cells is caused by a decreased rate of synthesis rather

than an increased degradation [12,14]. On the other hand, the

isiA gene was upregulated with highest extent [12]. Recent

studies with iron replete cells revealed that IsiA is also synthe-

sized under conditions of oxidative stress [2,15–17]. It was con-

cluded that either there are more input signals inducing

synthesis of IsiA, or that all stress conditions lead to oxidative

stress, which would be the superior trigger for the induction of

isiAB operon [2].

The exact role of IsiA in iron-deficient cells was the subject

of discussion for many years. Originally, a function of IsiA

as an alternative light-harvesting complex for PSII was sug-

gested. Because of its high homology with the core antenna

subunit CP43 of PSII, it was considered to replace either phy-

cobilisomes or CP43 under condition of iron deficiency [7,9].

Secondly, an alternative function of the IsiA protein as a Chl
blished by Elsevier B.V. All rights reserved.
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Fig. 1. An overview of the various types of PSI–IsiA supercomplexes
obtained by single particle electron microscopy. Results of statistical
analysis and classification of particles from WT Synechocystis PCC
6803 and PsaF/J and PsaL mutants of Synechocystis PCC 6803 under
short- and long-term iron stress ([28,29,34] and Arteni, Lax, Rögner
and Boekema, unpublished results). Projection maps marked in yellow
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storage protein, which can provide chlorophylls for the synthe-

sis of chlorophyll-binding proteins during recovery from iron

stress, was proposed [9]. However, further experiments ques-

tioned the above suggested roles of IsiA [11,18]. A strong

quenching of Chl a fluorescence at various light intensities at

room temperature and a higher resistance of iron-deficient cells

to photoinhibition was attributed to the IsiA, which would

function as a non-radiative dissipator of light energy protect-

ing PSII against photo-oxidative stress [18–20]. However, the

exact mechanism of quenching and also the way of interaction

between the IsiA and PSII is not known yet. In addition, until

now there is no evidence for the formation of specific com-

plexes between IsiA and PSII.

Some years ago, two electron microscopy (EM) studies

simultaneously revealed a surprising association of the IsiA–

PSI [21,22]. Supercomplexes consisting of a ring of 18 IsiA

proteins encircling a PSI trimer were found after short-term

iron deficiency in two different cyanobacteria. Spectroscopic

measurements indicated that IsiA can increase the light-har-

vesting capacity of the remaining PSI between 70% [23] and

100% [24] with a rapid and efficient energy transfer to PSI

[25–27]. The increase in the antenna size of PSI is probably a

response to the decrease in phycobilisome level and a decrease

in the PSI to PSII ratio [4,5,13,14].

In this paper we summarize results of extensive EM studies

of the wild-type (WT) cyanobacterium Synechocystis PCC

6803 and selected mutants lacking small peripheral PSI sub-

units under conditions of short and prolonged iron deficiency.

In total, over 100000 single particle projections were processed

and single particle averaging revealed multiple types of interac-

tion between PSI and IsiA. We describe the remarkable ability

of IsiA to form variable ring-shaped structures with or without

PSI and also discuss the role of the PsaF/J and PsaL subunits

in binding of IsiA–PSI.
are from the PsaL mutant; the ones in red from the PsaF/J mutant and
the others from WT. (A) PSI trimer with a complete ring with 18 IsiA
copies. (B) PSI trimer with a ring of 17 copies. (C) PSI trimer with an
incomplete ring with 13 IsiA units. (D–F) PSI monomers with a single
rings of 12–13 copies of IsiA, respectively. (G–I) PSI monomers with
closed double rings with 12, 13 and 14 copies in the inner ring and 19,
20 and 21 copies in the outer, respectively. (J,K) mutant PSI–IsiA
complexes, similar to those of (D) and (H) fromWT. (L) A dimeric PSI
particle with 15 and 22–23 copies of IsiA in the inner and outer ring.
(M–Q) PSI–IsiA particles with incomplete variable double rings of
IsiA binding exclusively at the PsaF/J side. (R) Mutant trimers with an
incomplete IsiA ring binding to one PSI monomers.
2. PSI–IsiA supercomplexes formed during short and long-term

iron deficiency

EM analysis of single particles from WT Synechocystis

grown at different periods in the absence of iron revealed a

highly flexible interaction between IsiA proteins and both tri-

meric and monomeric PSI (Fig. 1). It is well documented that

in the WT cells cultivated for 3–4 days in iron-free medium, a

typical supercomplex of a PSI trimer surrounded by a ring of

18 IsiA proteins is exclusively formed [21,22]. But our data

show that only a few additional days of iron deficiency can af-

fect the stability of the PSI3IsiA18 complexes and smaller com-

plexes with incomplete rings of IsiA units around a PSI trimer

can be formed, such as a complex with 13 IsiA copies (Fig. 1C;

see also below). A further prolongation of iron stress up to 3

weeks gradually leads to decomposition of PSI trimers into

monomers, which can be surrounded by variable single or dou-

ble rings of IsiA (Fig. 1D,E,G–I) [28]. Nevertheless, the typical

PSI3IsiA18 complex can be still present in significant numbers,

even after growth in iron free medium for 3 weeks. However,

the projection maps of the supercomplexes consisting of PSI

monomers and double IsiA rings always appeared rather fuzzy

in comparison to those of the trimers. Analysis indicated that

this was caused by flexibility in the binding of the monomers

within the single double rings.
Recent data of DNA microarray analysis show that iron

deficiency induces downregulation of both the PsaL subunit,

which is required for trimerization of PSI, and the PsaI sub-

unit, which is important for stability of PsaL [12]. Our data

are in a good agreement with this observation, as we detected

a more than two times higher amount of PSI in monomeric

form compared to the level of PSI trimers under conditions

of prolonged iron deficiency [28].

The physiological significance of formation of large PSI–

IsiA supercomplexes is probably an increase of absorption

cross-section of the remaining PSI, as spectroscopic measure-

ments indicate a fast and efficient energy transfer from IsiA

to PSI [25–27]. In the case of the largest PSI–IsiA supercom-

plex (Fig. 2I), the double ring of IsiA can give an almost 7-fold

increase in the light-harvesting ability of PSI, assuming 16 Chl

a molecules for each IsiA protein [24]. For efficient energy



Fig. 2. An overview of the various types of IsiA supercomplexes
obtained by single particle electron microscopy. Results of statistical
analysis and classification of particles from WT Synechocystis PCC
6803 under long-term iron stress (from [28] and Kouřil, unpublished
results). (A,B) Closed single rings with 12 and 13 IsiA copies. (C)
Existence of single rings with 14 IsiA copies is possible, but particles
not yet found. (D–F) closed double rings with 12, 13 and 14 copies in
the inner ring and 19, 20 and 21 copies in the outer, similar to those of
Fig. 1. (G–I) Open double rings with variable numbers of IsiA copies.
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transfer, it is probably not relevant that the orientation of IsiA

copies around the PSI monomers is somewhat flexible, because

distance of pigments is the prime parameter in the rate of

transfer of excitation energy.
3. Role of the PsaF/J and PsaL subunits in binding of IsiA–PSI

To elucidate a role of small peripheral subunits in binding of

IsiA proteins to PSI we performed an EM analysis of two mu-

tants lacking PsaF/J and PsaL subunits grown in iron-free

medium. Our results show that the PsaF/J subunits are not

obligatory for IsiA binding to PSI because a ring of 17 IsiA

units can be formed around the PSI trimer (Fig. 1B) [29]. How-

ever, the presence of a smaller complex consisting of an incom-

plete ring of IsiA associated to PSI trimers may indicate that

the absence of PsaF/J subunits decreases the binding affinity

of IsiA–PSI (Fig. 1R), because WT trimers with incomplete

rings were hardly observed.

Based on a detailed analysis of the X-ray structure of PSI

[30], the PsaF was assigned to be the major recognition and

interaction site for IsiA proteins [31]. An important role of

the PsaJ in energy transfer from IsiA ring to PSI reaction cen-

ter was proposed from modeling of the high-resolution X-ray

data into a low-resolution 3D-cryo-EM map of PSI–IsiA

supercomplex. Three separate clusters of Chl a molecules at

the periphery of the PSI core complex, comprising the PsaA,

PsaB and PsaJ subunits, were suggested [23,26].

The importance of the PsaF/J subunits in mediation of the

interaction between IsiA and PSI is also obvious from the pres-

ence of an interesting PSI–IsiA supercomplex in WT iron defi-

cient cells, which consists of a PSI trimer with an incomplete

ring of 13 IsiA units (Fig. 1C). Close inspection shows that

the lower two PSI monomers have the PsaF/J a density at their

periphery and are flanked by IsiA copies, but that this density

and the IsiA copies are lacking in the upper PSI monomer. The

susceptibility of the PsaF/J subunits to the iron deficiency is

caused by downregulation of PsaJ [12]. This subunit is impor-
tant for stability and proper conformation of the PsaF [32] and

both subunits together enhance binding of IsiA.

A decrease in binding affinity of IsiA–PSI was also observed

in the case of a PsaL mutant, especially after short-term iron

stress. All IsiA proteins were bound in variable partial double

rings to PSI monomers, exclusively on the side of PsaF/J (Fig.

1M–Q). Supercomplexes with an inner ring of six IsiA copies

have the sharpest features, suggesting a rather specific binding

(Fig. 1M–N). A higher number of copies induces flexibilities

between PSI and the rings, as can be seen from an increasing

fuzziness, especially in the particle of Fig. 1Q. The exact num-

ber of the IsiA copies bound to PSI monomers lacking PsaL is

variable and is not restricted to a double ring conformation,

since the occurrence of single partial rings was demonstrated

in an independent study [33]. Only conditions of prolonged

iron deficiency led to the formation of variable single or double

IsiA rings around PSI monomers (Fig. 1J and K). The PsaL

mutant does not produce PSI trimers, but small numbers of

particles were interpreted as a double IsiA ring around a un-

ique PSI dimer (Fig. 1L). From the variation in shape and dis-

tribution we can conclude that the PsaL subunit is not an

obligatory structural component for binding of IsiA–PSI [34].
4. PSI-free IsiA complexes formed during prolonged iron

deficiency

The extensive EM study of WT cyanobacteria grown for 3

weeks under conditions of iron deficiency also revealed the

capability of cyanobacteria to form highly diverse IsiA com-

plexes, which do not require the presence of either PSI trimers

or monomers for their assembly (Fig. 2). Two varieties of sin-

gle IsiA rings consisting of either 12 or 13 IsiA units (Fig. 2A

and B), different double IsiA rings with 12, 13 and 14 copies in

the inner ring and 19, 20 and 21 copies in the outer, respec-

tively (Fig. 2D–E), and fragments of double rings with variable

number of IsiA units (Fig. 2G–I) were found. The exact match

in numbers of IsiA units in inner ring of double rings and in

single rings (Fig. 2D,E and A,B, respectively) can predict the

existence of single ring of 14 IsiA units, even though we did

not detect this type of complex in our data set (Fig. 2C). EM

analysis of both PsaF/J and PsaL mutants showed that the for-

mation of variable single or double IsiA rings is not restricted

only to wild type cells, as small numbers of similar rings and

fragments of IsiA were also observed in both types of mutants

([34], unpublished data). Since the period of iron deficiency

was shorter in mutant cultures compared to WT, we suppose

that the extent of iron stress itself is likely more crucial for syn-

thesis of IsiA supercomplexes than the composition of PSI. On

the other hand, the absence of small peripheral subunits of PSI

can cause, e.g., oxidative stress [15], which can, in addition to

iron deficiency stress, further enhance the synthesis of IsiA.

Recent experiments show that the presence of IsiA in the

cells causes a quenching of a room temperature Chl a fluores-

cence of PSII and increases the resistance of cells against a

high-light stress (see Section 1). As we did not detect any par-

ticle resembling a potential PSII–IsiA complex in our data set,

we assume that the PSI-free IsiA rings can be involved in

quenching of light energy and protect PSII against photo-oxi-

dative damage by shading it. A recently found mobility of IsiA

proteins in the thylakoid membrane [35] can be important for a

flexible interaction with PSII and a quenching regulation.
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5. Conclusions

The summarized structural studies clearly show that the

adaptation mechanism of cyanobacteria to conditions of iron

deficiency leads to the assembly of PSI–IsiA and IsiA super-

complexes with an astonishing structural variation. In general

the variation of the many structures that IsiA can form, with

and without PSI, is rather unique. It is also remarkable that

many types of single and double rings surrounding PSI have

counterparts without PSI. The only other protein in photosyn-

thesis that is capable to form highly variable ring structures is

light-harvesting complex I (LH1) from purple bacteria [36]. On

a different level structural variation is also present in green

plants, in which PSII complexes bind a variable number of

peripheral light-harvesting antenna complexes to form super

and megacomplexes [37]. Thus the ability to form flexible pro-

tein structures is rather special for cyanobacteria. In this way,

the cyanobacteria can cope with a different degree of iron defi-

ciency in an optimal way and survive till the amount of iron in

the environment will be restored. However, most of the varia-

tion of IsiA only appears in mutants, rather than in WT bac-

teria. It needs to be established how much of this variation is

present under physiological conditions in salt and fresh water

and in which species it will occur.

Although the structural organization of the IsiA under con-

ditions of iron stress seems to be well characterized, the fate of

IsiA supercomplexes after transition to iron replete conditions

is still an interesting open question and remains to be an-

swered. Future structural research should also concentrate

on the question which PSI domains and subunits are crucial

for IsiA binding. Furthermore it would be helpful to improve

resolution in the existing 3D model for PSI3IsiA18 complexes

[26] to address questions about crucial chlorophylls in energy

transfer.
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[3] Öquist, G. (1974) Iron deficiency in the blue–green algae
Anacystis nidulans. Physiol. Plant. 30, 30–37.

[4] Sherman, D.M. and Sherman, L.A. (1983) Effect of iron
deficiency and iron restoration on ultrastructure of Anacystis
nidulans. J. Bacteriol. 156, 393–401.

[5] Guikema, J.A. and Sherman, L.A. (1983) Organization and
function of chlorophyll in membranes of cyanobacteria during
iron starvation. Plant Physiol. 73, 250–256.

[6] Guikema, J.A. and Sherman, L.A. (1984) Influence of iron
deprivation on the membrane composition of Anacystis nidulans.
Plant Physiol. 74, 90–95.

[7] Pakrasi, H.B., Riethman, H.C. and Sherman, L.A. (1985)
Organization of pigment proteins in the photosystem II complex
of the cyanobacterium Anacystis nidulans R2. Proc. Natl. Acad.
Sci. USA 82, 6903–6907.
[8] Laudenbach, D.E. and Straus, N.A. (1988) Characterization of a
cyanobacterial iron stress-induced gene similar to psbC. J.
Bacteriol. 170, 5018–5026.

[9] Burnap, R.L., Troyan, T. and Sherman, L.A. (1993) The highly
abundant chlorophyll–protein complex of iron-deficient Synecho-
coccus sp. PCC 7942 (CP430) is encoded by the isiA gene. Plant
Physiol. 103, 893–902.

[10] Sandmann, G. (1985) Consequences of iron deficiency on photo-
synthetic and respiratory electron transport in blue–green algae.
Photosynth. Res. 6, 261–271.

[11] Falk, S., Samson, G., Bruce, D. and Huner, N.P.A. (1995)
Functional analysis of the iron-stress induced CP430 polypeptide
of PS II in the cyanobacterium Synechococcus sp. PCC 7942.
Photosynth. Res. 45, 51–60.

[12] Singh, A.K., McIntyre, L.M. and Sherman, L.A. (2003) Micro-
array analysis of the genome-wide response to iron deficiency and
iron reconstitution in the cyanobacterium Synechocystis sp. PCC
6803. Plant Physiol. 132, 1825–1839.

[13] Ivanov, A.G., Park, Y.I., Miskiewicz, E., Raven, J.A., Huner,
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