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Abstract

We study in this paper the wellposedness and regularity of solutions of evolution
equations associated with abstract differential operators on a Banach space. The results
can be applied to many partial differential equations on different function spaces.
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1. Introduction

Let P(t,&) = ngm au, ()" be a polynomial ofé € R", wherea, €
C([0,T],C) for |u| < m. Corresponding to this polynomial, we introduce
an abstract differential operator as followB{(t, A) = ZI ul<m Au (A with
maximal domain, wherd* = A{*--- A;" andiA; (1< j <n) are commuting
generators of bounde@y-groups on a Banach spa&e This allows us to avoid
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the troubles caused by different function spaces and can be applied extensively
(cf. [4,6]). This paper is concerned with the inhomogeneous evolution equation

W (@) =P, Au@)+ f(t), 0<t<T, u@=x, 1)

on X, where fe C([0,T], X). A functionu:[0,T] — X is called a solution
of (1), ifu € C([0, T1, X) N CL((0, T1, X) and (1) is satisfied.

It is well known that the wellposedness of (1) depends on the construction of
an evolution family for homogeneous evolution equation (1) (ife= 0). We
emphasize that the domain Bz, A) may depend on. In the case wher(z, &)
is strongly elliptic for every € [0, T], some authors have studied how to construct
the evolution family (see, e.g., [12,14]). Recently, motivated by regularized
semigroups (cf. [4]), people paid attention to constructing a regularized evolution
family for elliptic, even nonellipticP (¢, ) [3,4,6,7,13,14].

The purpose of this paper is to extend these results to more general situations.
We construct in Section 2 evolution families and regularized evolution families
for strongly elliptic and some nonelliptic cases, respectively. Particularly, some
regularity results of these families are contained. Our main results are stated
in Section 3, which include the wellposedness as well as the regularity of
solutions of (1). The last section deals with the application to partial differential
equations (PDEs).

Throughout the papeB(X) will be the space of bounded linear operators
on X, S(R") (respectivelyC2°(R™)) the space of rapidly decreasing functions
(respectivelyC*°-functions with compact support) d®", and H (X, X) the set
of analytic functions from¥ into X. By D(B), R(B), andp(B) we denote the
domain, range, and resolvent set of the oper&tarespectively. We also denote
by B(A*) the Fréchet space

{B:X—> ﬂ D(A"); A*B e B(X) forueN’é}

n
ueNO

with the family of seminorm¢ B||, := ||A* B||, whereNg = N U {0}.

We now introduce a functional calculus fiod ; (1< j <n). LetF denote the
Fourier transform, i.e (Fu)(r) = [g. u(s)e='“" ds. If u € FL(R"), then there
exists a uniqué.-function 1y (i.e., the inverse Fourier transform ofin the
distributional sense) such that= F(F~1u). We define u(A)x B(X) by

u(A)x = /(F_lu)(S)e_i(é’A)x d¢ forx e X. (2)
Rn
It is known thatFL1(R") is a Banach algebra under pointwise multiplication
and addition with normjju| z;1 := ||J—'—1u||L1, andu — u(A) is an algebra

homomorphism fromFL1(R") into B(X) with [lu(A)|| < M |u|l .1 for some
constant > 0.
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Finally, let |A|2 = Z;?:lA? and (1 + |A]®)~*/2 (« € R) be defined as
fractional powers. Thefl+|A|%)~*/2 € B(X) fora > 0.Y, := D((1+|A[?)*/?)
(¢ > 0) will be a Banach space with graph noim|, := [|(1 + |A|®)*/?%x]].
Moreover, we denote by a general positive constant.

2. Evolution families

In this section, letY, ¥ be some convex neighborhoods [& 7] in C.
We write 2 = {(t,s) e Rx R; 0<s <r<T}and Xy = {(t,5) € ¥ x X}
t#s, largt — s)| < 6}, whered € (0,7/2], and denote by?2 (respectively
X') the closure of2 (respectivelyX). In the sequel, except in Proposition 4
and Theorem 4, we always assume tiRdt, £) = Zlmém a,(H)E* with g, €
C[O, T] (|u] < m). For fixedt € [0, T, P(z,&) is said to be strongly elliptic if
Zlu\:m Rea, (1)é" < 0 for& # 0.

LetC e B(X) be injective. A two parameter family (¢, s) € B(X), (¢, s) € £2,
is called aC-regularized evolution family iU (¢, r)U(r,s) = U(t,s)C for 0 <
s<r<t<T,U(t,t)=Cfor0<+<T,andU(-,)x € C(£2,X) forx e X. In
the caseC =1, (U(t, ) (1.5)e@ is called an evolution family.

Proposition 1. Let P(z, &) be strongly elliptic for every € [0, T]. Then there
exists a unique evolution family/ (z, 5)) , ) such that

@) U(,) € CY(2,B(A®), LU(t,s) = P(t,A)U(t,s) and LU(t,s) =
—P(s, AU(t, s) for (1, 5) € 2.

(b) a, € C/[0, T] (|n| < m) forsomej € NimpliesU (-, ) € C/T1(2, B(A®)).
In particular a,, € C*[0, T] (|u] < m) impliesU(-, -) € C*°(§2, B(A™)).

(€) ay € H(E) (Iu| < m) for someX implies U(-,-) € H(Zg, B(A®)) for
somexy.

Proof. This is a consequence of [14, Theorem 4.1]. Here, we give a different
proof of (c).
By the assumptions oR (¢, £) we have sufReP(r,£); E e Rt € Y} < o0
for someX with ¥ € £. Lets, s € ¥ with Rer > Res and Ims = Ims. Then,
by the strong ellipticity ofP (z, &), there exist constanés L > 0 such that

t Rer
Re/ P(t,é)dr:/ReP(r—i—ilmt,é)dr
s Res

< —OlE|" Re(t —s) for|é] > L.
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Also, there existd/1 > 0 (without loss of generalityyf; > sup. 5, Rer) such that
Mylg|™ Ml for g > L,
Ml for €| < L,

where|u| <ml, 1 e N, and|v| <[5]+ 1 (v € Nj). Thus the same method as in
the proof of [14, (3.7)] leads to

|D”$“|<{

!
Hﬁwfﬁgﬂﬂ(ﬁé?}ﬁ) for || < mi and! € No, ®)
wherevﬁfs(g) =E&H exp{fs’ P(t,&)dt} for & € R" andu € Ni. We note that
ok
&522720+jﬂ:fa+kﬂ+ﬂblfmkeN
=0’
Thus by induction ort
Lk
D2+ <2+ B! fork, 1eNo.
j=07"
Also note that, by the Cauchy estimate, there exists a conktant 0 such that
> P | <ktmzth fort e X andk e No.
Il <m

We now show by induction ok that
9\ . . My I+k

— <SMEMY I+ k)| —————— 4
](at) | <m@mtas >(Re(t_s)) @

for |u] <ml andl, k € Ngo. Whenk = 0, the claim follows from (3). If (4) is true
for k then (sinceMy > sup. 5 Ret)

9 k+1 i 9 k B
G) -G e,

< k (k) 9\ v

= Z k1 Z }av (I)‘ I\ Ut,s

FL!

ky+ho=k vl<m FLt
[4+kp+1
k M
< Y (k>kﬂM?+Uﬂ2MﬂbU+k2+1ﬂ(§&ij)
ka+ko=k -

il 1 I+k+1
+ e
<M(2M>) U+k+lﬂ<qu—g>

for |u| < ml and! € No, as desired. From (4) ar{lit*) < 2/** we obtain
H( d )k M 4AM1M>
—_— 'U —_—

ar) *

I+k
for <ml and/, k € No.
Ret _s)) [l <m 0

éMk!l!(
FL
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Then, for fixedr € ¥, s — vffs can be extended analytically tbr € X;
largt — 1)| < 0}, whereé = arctaridM1M>)~L. Similarly, ¢ — vffs can also
be extended analytically t¢r € X; |argit — s)| < 6} for fixed s € X. It

hence follows from Hartogs’ theorem (see, e.g., [2]) that the fundtips) —

vy is in H(Zg, FLY(R™), and so(t,s) + v}',(A) is in H(Zp, B(X)). Let
U, 9)).0en be the unique evolution family satisfying (a). Then

AtU(t,5) =] \(A) for(r,s) € Ty

(cf. the proof of [14, Theorem 4.1]), and therefdré , -) € H(Xy, B(A%®)). O

Proposition 1 improves [6, Theorem 5.1] in several aspects. First, we do not
assume that the coefficients Bfz, &) are real valued. Second, the conclusion

Ut.s)xe () D(P(r A)) for(t,s)e2andxeX
o<r<T

in [6] is sharpened byU(-,-) € C1(£2, B(A®)). Finally, the regularity of
U, 9 pen (i.e., (b) and (c)) was not discussed in [6].

The subsequent two propositions are essentially due to [14], which will be used
in the next section.

Proposition 2. Let there exist constanés L > 0 andr € (0, m — 1] such that
ReP(t,&) < —68|&|" for|&| > L andr € [0, T1. (5)

Then there exists a unique-regularized evolution familyU (z, 5)) , ;). Where

C = (1+|A»™"/2 with o« > 2= such that the conclusion®) and (b) of
Propositionl are still true.

A polynomial P(¢) is called to ber-coercive, if |P(&)|"1 = O(&|™") as
|&] — oo. Thus, the estimate (5) means that IRe, £) is bounded above and
r-coercive, uniformly for € [0, T'].

Proposition 3. Let sugReP(t,£); € e R", t € [0, T]} < oco. Then there exists
a unique C-regularized evolution systemU(t,s))(,,S)erz, where C = (1 +

|A[2)~™e/2 with o > %, such that

@ Ut,s):Yg— Y, forO<y <p+m(@—3%) and(,s) € 2. In particular,
Ul(t,s):Yg— Ygfor g = 0and(,s) € £2.

(b) U(t,s):Yp— D(P(r, A)) for B >m(l—a+75),(t,5) € 2,andr € [0, T].
In particular, U (t, s) : Y, — D(P(r, A)) for (¢,s) € 2 andr € [0, T].

(c) For (t,5) e 2 andx € Yg (B=m), U(-,)x € CH(£2, X),
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d
gU(t, s)x =P, AU, s)x, and

%U(Z,s)x:—P(s,A)U(t,s)x. (6)

Proposition 3 improves [6, Theorem 5.3]. In the general case,R@,,A)
(0<t <T)isreplaced by a family (z) (0 <t < T) of closed operators oK,
similar results were given by delLaubenfels [3, Theorem 6.3] and Tanaka [13,
Theorem 2.1]. But Proposition 3 cannot be deduced from them. In fact, even in
the case wher (1) = P(¢, D) (0<t < T), itis possible to yield a large value
[3, Example 6.4], or the ellipticity oP(z, &) is required [13, Theorem 3.4].

In the casen = 1, we can directly construct the evolution family.

Proposition 4. Let
n
P,§)= Ziaj(t)é‘j +ao(t) foré&=(&,....&)eR", (7)
j=1
wherea; € C([0, T],R) (1< j < n)andap € C[0, T]. Then there exists a unique
evolution famin(U(t,s))(t’s)eS—2 such thatU(¢,s): D — D and (6) hold for
(t,s) € 2 andx € D, whereD = =1 D(A)).

Proof. By the assumption oA we can define

t

n {
U(t,s)zexp{ Z/aj(T)d‘EiAj—i-/ao(T)dT} for (¢,5) € £2.
j:ls

s

Now one can easily check from the propertie<igfgroups tha(U (z, ) (1.5)e@
satisfies the desired conclusions. The uniqueneds @f $))(1.5)eqz CaN be shown
by a standard method (cf. the proof of [6, Corollary 5.4]1

For general polynomials with time-dependent coefficients we have the follow-
ing result.

Proposition 5. For any polynomialP (z, £), there exists a two parameter family
(U(2,))r.se0,11 C B(X) such that

(a) There exists an injectiv€ € B(X) such thatU (¢, r)U(r,s) = U(t,s)C and
U(t,t)=Cfort,r,s €[0,T].

(b) Proposition1(a) with 2 replaced by[0, T] x [0, T] holds. In particular,
(U(t,5)); serp Is aC-regularized evolution family.

(c) If there existsX such thata, € H(X) for |u| < m, thenU(-,-) € H(X x
¥, B(A%)).

(d) If a, (Ju| < m) are all entire functions, the@ (¢, s));,sc[0,7] Can be extended
to an entireB(A*°)-valued function(U (¢, 5)); sec-
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Proof. Define
t

ut,s(s):exp{—|§|2m+/P(t,§)dr} fort,s € [0, T].

N

Sinceu; s € S(R") C FLYR") (t,s € [0, T]) we can defind/ (¢, s) = urs(A)

(t,s € [0,T]) and C = U(0,0). Then (a) follows from the property of the
algebra homomorphism of (2). The proof of (b) is the same as the one of [14,
Theorem 4.1(a)] with2 replaced by{0, T'] x [0, T]. Finally, it is not difficult

to show, by the condition of (c) (respectively (d)), that for everg Ng, the
function (¢, s) — &*u; s(§) is in H(X x ¥, FLY(R")) (respectivelyH (C x

C, FLY(R"))). Thus we conclude (c) (respectively (d))o

3. Evolution equations

The purpose of this section is to treat the inhomogeneous evolution equa-
tion (1). LetC#(J, X) (0 < B < 1) be the space of Holder continuous functions,
CItB(1,X) ={f € CI(J,X); fD e CPJ,X)} (j eNp), and C°(J, X) =
C(J, X), whereJ is an interval inR. For injectiveC € B(X), we denote by
[R(C)] the Banach spadéR(C), |[C~ 1 ||). Moreover,X (respectivelyX’) will
denote some convex neighborhood@f7'] (respectively0, T]) in C.

Theorem 1. Let P(z, &) be strongly elliptic for every € [0, T], and suppose
there existj € No, B € (0,1) such thata, € C/*P[0,T] (ju| < m) and
f e C/tA([0,T], X). Then for everyx € X, (1) has a unique solution e
C([0, T1, X) N C/*HHr ([, T, X) for 8 € (0, T) andy € (0, B), such that

lu@)]| < M(llxll + iug |f()|) forzefo,Tl. (8)
St

O

In particular, a;, € C*[0,T] (Jul < m) and f € C*([0,T], X) imply u €
C*((0, T1, X). Moreover, if there exist&' such thata, € H(X) (|u| < m) and
feH(X, X) thenue H(XY, X).

Proof. When j = 0, by the same argument as in the proof of [6, Corollary 5.2]
we can deduce that (1) has a unique solutiagiven by
t
u()=U(,0)x + / U(t,s)f(s)ds forre[0,T] 9)
0
where (U (¢, s))(t,s)eS_2 is the evolution family provided by Proposition 1. Thus,
(8) follows from (9).
When j > 0, by Proposition 1(b) one hdd(-,-) € C/tY(2, B(A®)). Let
0 <t <t < T. Since Proposition 1(a) implies that
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9 I+1 9 l
<E) U(t,t—r)=<§> {[PGt,A)— Pt —7, )]U@G, 1t —1)}

Lo/l 9 \*!
= Z <k>[P(k)(t, A)— PO -1, A)](E) Ut,t—1),
k=0

a simple induction shows thm%)lU(t,t —1) (I <j+1)isasum of terms of
the form

const[P(1, A) — P(t — 1, A)]* - [PUV, 4) — POV — 1, 4)]"
xU(t,t — 1), (10)

whereky + 2k + --- + lk; = [. By (10) and the binomial formula we find that
(DUt = D)}e= (1< j+ 1) is asum of terms of the form

const[P(t, A)]™*--- [PV, )] QAU (2, 0), (11)

whereQ (€) is a polynomial of degregm for someg € Ng andpy +2p2+---+

Ip; + g < I. Therefore, based on the method of proof of (10), one deduces further
from (11) that(Z)P{[(2)'U (¢, t — )]le=} (p +1 < j + 1) is a sum of terms of

the form

const[ P(t, A)]" .- - [PPT=D i, )] QAU (1, 0), (12)

whereqy +2g2+ -+ (p+Dgpy1 +g < p+1.
We now turn to estimate

9 l
(5) Utt,t—1) (<j+1)

AN/ ) ,
(E) {[(§> U(t,t—r):“t:t} (p+1<j+1).

If 1< jorl=j+1withk;i1=0then, bya, € C/+P[0, T] (ju| < m) and (12),

and

I[P, A) = Pt —7, O] - [PV, ) — PUD@ — 7, )]

xU@t—o|<m Y ti|arvue -0 <m (13)
|| <mkj

wherek; =ky+---+k;. If | = j+ 1 with ;11 > 0 then (10) consists of the term
const[ PU=V(r, A) — PVt — o, MU, 1 — 7). (14)
From this, the same reasons as above lead to

[[POP @A) = PP~ AU o) <ML
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Summarizing these estimates we obtain

9 IU( —ol< M forl < j, (15)
J— t, —
ot ’ MtP=1 fori=j+1.
To obtain the second estimate we note that by (12)
I[P, O] [PPTD@e, )] oAU, 0)|
<MY A U@ 0)| < Mt
lul<m(p+I)
Consequently,
P l
3 2 U, t—1) < Mi—P+D
at at et
forp+i<j+1 (16)

To prove the desired conclusion we have to give a representatia¥for (1)
(0 <t < T).Since itis easy to deal withi (-, 0)x for x € X we first consider the
termu(¢) := fé U(t,s)f(s)ds fort € (O, T]. In fact, we will show by induction

that
. LN TR R\ ([ )
GHD () — <2 _
ro=2(G5) R veo}]
L j+1

[ECE a0l

—l—/P(r, AU D[P - fP0)]dr
0
+U@ OV - fP0)]. (17)

Here we note that, by (15)—(16) and the assumptiorf pall terms on the right-
hand side of (17) are well defined.

When j = 0, from the proof of [6, Corollary 5.2] and integration by parts we
obtain

AR

t

v/(t):f(t)—i—/P(t,A)U(t,T)f(r)dt

0
t

=f(t)+/[P(t,A) — P, AUt f(r)drT

0
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t t

+/P(t, A)U(t,t)[f(t)—f(t)]dr—i—/P(t, AU, 1) f(t)dr

0 0
t

=U(t,0 /(0 + /[P(t, A)—Pt—t, DUt —1)ft—T1)dT

0
t

+/P(t, AU D[ f) - fD)]dr
0
+ U@ 0[f(1) - f(O)], (18)

i.e., (17) is true forj = 0. If (17) with j replaced by; — 1 is still true,
differentiation yields

i) oo E e (0! b
; R=va] i ~ B
ro=3(5) LG vern}] o
k=0 =0 T
PN .
_ _ J—
*Z@{(m) v ”} IO
k=1
. 5\ k1 '
+/Z(£){(E> U(t,t—r)}f(fk)(t—r)dt
0 k=1
L. 9\ ‘
+0/k;(l]<>{(§> U(t,t—t)}f(f_k+1)(t—r)dt

2
{ 0 U(t,t—r)}[f(jl)(t—t)—f(j1)(t)]dt

t
+/P(t—t, AUt =[Pt —1)— fP0)]dr
0

+[Pt,A) - PO,DH]UEO[ Y V@) - U]
+U,0)f (1)

=L +Dbh+ I3+ 14+ 15+ Ig+ 17+ Is.
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Obviously,I1 + I> + U(z, 0) f)(0) (respectivelylg, Ig — U(t, 0) f1)(0)) is the
first (respectively the third, the fourth) term on the right-hand side of (17). Noting
that Proposition 1(b) and integration by parts lead to

t
Is=—I7+ /{%U(t, r— r)}f(j)(t —1)dr,
0

and also noting the fagt’,) + () = (/1%), one easily checks thag -+ 14 + Is +
I7 is exactly the second term on the right-hand side of (17), and thus the desired
result follows.

We are now in the position to shov/ 1 e C7([8, T, X). Fix § € (0, T) and
y € (0, B). We first consider the cage= 0. It is not difficult to show by (18) that

t

V() =V (s) = /[P(t, A)—P(t, AU, 1) f(r)dT

N

s

+/[P(t,A) — P(s, MU, 7) f(1)dT
0

N

+/[P(s, A) =P, A|[Ut,v) - UG, D] f(r)dr
0

N

+/P(t, AU, ) -UGD][f(x) = f9)]dT
0
1

+/P(t, AU@D[f() - f(1)]dT

+[UG. 00— U@, 0)]f ()

+[U@.s)=U@, 00+ U(s,0) = I][f(s)— fD)]
6

:=ng(t,s) fors <s<t<T.
=0

Hence, froma, € CP[0,T] (Jju| < m) and f € C#([0, T1, X) we can deduce
that l|gx(t, )l < M(t — 5)P (k=0,4,6), llge(t, )| < M(t —5)” (k=1,273),
and ||g5(t, )|l < M@t —s) for § <s <t < T. Summarizing these estimates
one hasv’ € CY ([8, T], X). By a careful observation of (17) we find thete
CY([8,T], X) impliesg, € CY([8,T], X) (k=7,8,9), where
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t

gﬂo=/{%UaJ—rﬂfa—wdn
0

t

gg(t):/P(z’, AU, D[f() - f@)]dr, and

0
go() =U 1, 0)[f (1) — f(0)].

Return now to (17). We will denote by (1) (k =1, 2, 3, 4) the four terms on
the right-hand side of (17) in proper order, and write further

! 9 j+1
fz(t)=/{(5> U(t,t—r)}f(t—r)dt
0
FL 41 3 \F .
(] (6 P
o k=2

t
+/(j +1){%U(t,t—r)}f(j)(t—r)dt
0

= fs() + fe(t) + f7(0).

Then (15) and (16) implyf1, fs € C1([8,T1, X). Since f3 (respectively fz,

f7) is exactly gg (respectivelygg, g7) in which f is replaced byf) one
obtainsf; € C” ([, T], X) (k =3, 4, 7). To show the same conclusion fgg we

denote byV (¢, 7, k;4+1) the term (10) withl = j + 1. If k11 = O then, by (13),
IV, kjir)ll S MforO<t <t <T.Also,itis similar to (15) (withl = j + 1)

to show||3%V(t, T, ki)l < M<B~1for 0 <t <t < T. Therefore we have

1
tH/V(Z,‘C,kj+1)f(t—t)d‘EECl([5,T],X) forkj.1=0. (19)
0

If kj11 > 0thenV (s, 7,k;11) is exactly the term (14) and thus, by the result
ongz,

1
tH/V(Z,T,kj+1)f(t—t)d‘EECV([S, T1,X) forkjy1>0. (20)
0

Combining (19) and (20) we obtaiis € C([s, T'], X). Hence the proof of
vUtD e Y (8, T, X) is complete. Since similar methods as in the proof of (19)
and (20) yieldr — (%)HlU(r, O)x € CY([8,T], X) for x € X, the desired result
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follows from (9). Moreover, the conclusion about the analyticity of the solution
is a direct consequence of Proposition 1(c) and (9).

Theorem 1 improves [6, Corollary 5.2], in whiah,(¢) (|| = m) is real
valued. In particular, some regularity for the solution of (1) was shown in
Theorem 1, but there were none in [6]. Only a few results on higher order
differentiability of solutions of nonautonomous evolution equations are known
(see [10,12]). However, Theorem 1 cannot be deduced from the corresponding
theorems in [10,12]. Indee®(P(t, A)) independent of was assumed in [10],
while this is not satisfied in Theorem 1. Although it is allowable thaP (¢, A))
depends orr in [12], a stronger regularity condition on the coefficients
(Ju| < m) must be satisfied (cf. remarks after Corollary 1 below).

Theorem 2. Let P(t, &) satisfy (5), and let there exisi8 € [0, 1] such that
a, € CPIO, T] (Jul <m) and f € CA([0, T1, Y,), where

nim—r)

y=ma+m-—rp—r forsomex > - (21)
Then, for every € Y,,, (1) has a unique solution such that
Ju@)] < M(lellma + sup | £(s) Hmafr) for ¢ € [0, T1. (22)
0<s <t

Proof. Let U, 9)).0en be theC-regularized evolution family provided by
Proposition 2, whereC = (1 + |A|®) /2, Then for everyx € Yo, w :=
U(-,0)C1x is a solution of (1) (withf = 0) and satisfies

lw®) | < Mlixllme forte[o, T1. (23)

n(m—r)

Now, chooser’ € (=5,7~, ) such thatr — o’ < .-, and define

t

v = (141" |2)_(’"“_r)/2exp{ / P(r, -)dr} for (t,s) € 2.

s

Then, similarly to the proof of [14, Theorem 3.1], one has by (5)

|DVv, 5 (&)] < M|g| = DIVImmen) expl 51517 (1t — 5) )

<
<M(t— s)m(afa )/r71|§|(m7r71)|u|fma

for (z,s) € 2, 1] = L, and|v| < [5] + 1 (v € Np), where we note thah (o —
a')/r — 1< 0. It follows therefore from [14, Lemma 1.1(c)] that; € FLYR™)
and

vl < Mt —)™@@/™=2 for |u| <m and(r,s) € 2, (24)
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which implies thatv(z) := fé v,,S(A)Cl‘lf(s) ds (O<t <T) exists and is in
C([0, T1, X), whereCy = (14 |A[3)~(me=n)/2,
On the other hand, define
t

vt (&) =& (1+ |s|2)”2exp{ / P(ué)dr}

N
for uw e N, (¢,5) € £2, and& € R". Then, the same argument as in the proof
of (24) yields thav!’, € ZL(R") and
vt | e < M(x — )y =meD/T for || <m and(r, 5) € £2.

Combining our assumptions with this leads to
| P, Ayv (AT = )]
<M Y0 @l - fel,

lul<m
<M(t— s)(—m+y—ma’)/r+/3

= M(t —s)"@ /=1 for (¢, 5) € 2
and

[(P, A) = P(s, A) v s (ACTHf )
<M= 37 ] -rol,

lul<m
<Mt —s)™ @)/ =1 for(t,5) e 2.
Therefore, by integration by parts, one has (cf. (18))

t

V() = f()+ / P(t, Ay, (A)CT f(s)ds
0

1
=vz,o(A)C1_1f(t)+/P(t,A)vz,s(A)C1_1(f(S)—f(t))ds
0

t
+ /(P(t, A) — P(s, A))vr s (A)CTHf (1) ds,
0
i.e.,veCL((0, T], X). Also,
t t
/P(t,A)vt,s(A)qlf(s)dszP(t,A)/u,,S(A)cglf(s)ds.
0

0
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Thusv is a solution of (1) (witht = 0) and satisfies, by (24),
lv@)| <M sup |f)|,, , forzel0.T]. (25)

Thereforeu := w + v is a solution of (1), while (22) follows from (23) and (25).

If up is also a solution of (1), then from Proposition 2 one deduces that
%[U(r, s)(w(s) —ui(s))] =0 for (z,s) € £2. Integrating this fromy =0tos =¢
yields thatC (u(t) — u1(z)) =0, i.e.,u(t) =u1(¢) fort € [0, T]. O

First, from the proof of Theorem 2 one sees that it is also true forn. Next,
in Theorem 2 the indeg indicates the degree of regularity @f and f on the
time-variable. Becausg(r) € ¥, (0 <t < T), the indexy indicates the degree of
regularity of f on the space-variable, while (21) showed the relationship between
these two indices. Finally, in the cage= 1 the condition (21) can be rewritten as
y > %(m —r)+m — 2r. In particular, whem > m — 2% we can choosg = 0.

n+a
In the subsequent theorem, we will improve Theorem 4.6 and Corollary 5.4

in [6].

Theorem 3. LetsupReP(t,£); £ e R",t €[0,T]} < 0o, and letf € C([0, T,
Yin(a+1)), Wherea > n/2. Then, for every € Y,,(o+1), (1) has a unique solution
u € C([0,T],Y,») NCL(0, T, X) satisfying(22) (with » = 0) and

Ju], < (|x||m(a+1)+ sup y\f(s)y\m(a+l)) forre[0,T]. (26)

Proof. Let U, 9)).5en be theC-regularized evolution family provided by
Proposition 3, and define

t
u(t)=U(t,s)C Lx + / U(t,s)C L f(s)ds fortelO,T]. (27)
0
Then, by our assumptions and Proposition 3, one sees that!([0, 7], X) and

t
W' (t)=P@t, AUG,s)C x + (1) + / P@t, AU, s)C f(s)ds
0

=P, AU, s)C x + f@®)+ P, A) / Ult, s)Cflf(s) ds. (28)

Thusu is a solution of (1), and (22) (with = 0) follows immediately from (27).
The rest of the proof is the same as in that of [6, Corollary 5.4].
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It is obvious from the proof that the assumptighe C([0, T'], Yin(a+1))
in Theorem 3 can be replaced by the weaker oiiec C([0,T], Yiue) N
LY([0, T1, Yin-+1))- In this case, (26) is of the form

1
lu®],, < M(Hxnm(am + f (RAG] s ds) for € [0, T].
0

Theorem 4. Let P(z,&) be given by(7), and let f € C([0, T, [D]), where
[D] meansD := ﬁ’}le(Aj), made into a Banach space with the graph norm
Ixllp:=llxIl + Z;?:l lAjx|l. Then, for every € D, (1) has a unigque solution
ueC(0,T],[D]) NCL(q0,T], X) satisfying(8) and

Ju)] , < M(||x||D + 02?2,” 1) ||D) for 7 € [0, T1. (29)

Proof. Let u be defined by (9), in Whin‘(U(Z,S))([,S)ErZ is the evolution
family provided by Proposition 4. Then it follows from our assumptions and
Proposition 4 that: € C1([0, T, X) and (28) (withC = I) is true. Thusu is a
solution of (1), while (8), (29« € C([0, T], [D]), and the uniqueness ofare all
consequences of the representation (9).

We remark that whenA; (1 < j < n) are commuting generators of
contraction semigroups Theorem 4 follows from [5, Section 13.2].

Theorem 5. Let f € C([0, T],[R(C)]), where C is defined as in the proof
of Proposition5. Then, for everyx € R(C), (1) has a unique solution €
c1([0, T1, X), such that

lu] <m(Jc x|+ sup [cTHf@]) forieo.T]. (30)
0<s<r

Moreover, if in additioru,, (Ju| < m) and f are all entire functions, then so is the
solutionu.

Proof. Letu be defined by (27), in whickU (¢, 5)): se[o, 77 iS the two parameter
family provided by Proposition 5. Thene C([0, T, X) and (28) follows easily
from our assumptions and Proposition 5. Thus a solution of (1), while (30) and
the uniqueness of follow from the representation (27). The remaining statement
can be obtained by (27) and Proposition 5(djz
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4. Applicationsto PDEs
This section is concerned with the following PDE

Eu(r,x)= > anD* ult, x) + f(t.x)

ot
lul<m 31
for (r,x) € (0, T] x R, .

u(0,x) =uo(x) forxeR",
on some function spac& on which translations are uniformly bounded and
strongly continuous. Then the results in Section 3 can be applied to (31) (i.e., take
iA; =iD; :=9/dx;), immediately.X can be chosen as, for exampl&)(R"),
LP([0,1]") (1< p < o), or one of the following spaces of continuous functions:
feC(R"); fisbounded and uniformly continuous

feCR"); I|m f(x)=0},

{
{fecR
{fec(R"): (x) exists agx| — oo},
{f eC(R"); fis1-periodid,
{f eC(R"); fisalmost periodif,
{fec(l0.11"); fli=0=flx;=1=0},
{feC(0.11"): fly=0= flx=1}
with sup-norms.
Let WX (R") (« > 0) be the completion of(R") under the norm
lulla,x = llullx + |72 +1- 1)/

WhenX = LP?(R") (1< p < o0) anda > 0, WP (R") = WX (R") is the
so-called Bessel potential space. From [7, Lemma 2.1] we have{xhatC;
Reix > 0} C p(A) and

11— A)"PWAX R = wetBX(R") fora, B = 0.

fu)“x foru e S(R").

In particular, when-|A|%2 = A, Y, = WX (R") for o > 0. Moreover, we define
=n’%—% if X=LF (1< p<o0),

>n/2 if X = L or the above space of continuous functions,
andn, =nx for X = L7 (R"). Thus the following result holds.

Corollary 1. Let P(z,&) = ngm au, ()& witha, € C[0, T] (Ju| < m).

(@) If P(z,¢) is strongly elliptic for every € [0, T'], and if there exis§ € No and
B € (0,1) such thata, € C/*P[0, T] (Jju| < m) and f € C/*P([0, T], X),
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then for everyc € X, (31) has a unique solution € C/T17([8, T1, X) for
8€(0,T)andy € (0, B), such that

Juet, )] < M (Jlwollx +Oilslr<)t||f(s, Jy) forrel0, 71 (32)

Moreover, if in additiona, € H(X) (ju| < m) and f € H(X, X), then
ue HX', X).

(b) If P(z,&) satisfies(5) for somer € (0, m], and if there exist$8 € [0, 1]
such thata, € CP[0,T] (|u] < m) and f € C#([0, T], W”"X(R")), where
y > (nx + 1)(m —r) — rB, then for everyig € Wx(m—r).X(R") (31)has a
unique solution u such that

Juett, ) < M (N0l onryx + SUD [ £,y x)

0<s <t

fort € [0, T]. (33)

(c) If supReP(r,&); E e R, 1 €[0,T]} < o0, and if f € C([0, T], W»" X (R™)),
wherey > m(ny + 1), then for everyug € Wx+tD.X(Rm) (31) has a
unigue solution

u e C([0, T1, Ww™X(R™)nc([o, T1, X), (34)
such that

Jut, )], x <M (||uo||m(nx+1>x+0sup [76.90,x)

<s<t

fort €[0, T]. (35)

(d) If f eC(0,T],CX(R") then there exists a dense subspdee which
containsC2°(R™), such that for everyg € D, (31) has a unique solution €
CL([0, T], X). In particular ug € C*(R") impliesu € C([0, T, C*®(R")).
Moreover, if in additiona,, (|| < m) and f are all entire, then so is the
solutionu.

Corollary 1(a) and (d) follow from Theorems 1 and 5, respectively. When
X is a space of continuous functions bt(R"), Corollary 1(b) and (c) follow
Theorems 2 (also see its remark) and 3, respectively. WhenL?(R") (1 <
p < o0), Corollary 1(b) and (c) can be deduced by modifying the proofs of
Theorem 2 and 3, respectively. The main points are using the Riesz—Thorin
convexity theorem and a multiplier theorem [8, Theorem G], as well as noting
u(D)p = F Y (uF¢) foru e FLY(R") and¢p € S(R").

Corollary 1(a) improves [6, Theorem 5.5]. B(P(¢, D)) is independent of
t then, as seen in [10, Section 3], Corollary 1(a) can be deduced from [10,
Theorem 1]. This is not possible in the general case. To illustrate the assumptions
in Corollary 1(a) to be weaker, we will use Theorem 2 in [12] to gain the solution
u € CITYHY (8, T1, X). To this end, we choose > supReP(t,£); & € R",
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t € [0, T]}. From [12, Theorem 2] it is necessary to guarantee the following
condition

(@— P(-, D)) " e CITH([0,T], B(X)) forsomeBe(y,1).  (36)

A careful computation shows that the assumptionagnhas to take the form
a, € CITHPI0, T1 (|u] < m). Itis not sufficient for (36) to suppose ondy, €
C/*+P[0, T] (] < m). The other conditions of [12, Theorem 2] are implied by
that of Corollary 1(a). Thus to obtain the claim by [12, Theorem 2], a stronger
assumption, i.eq, € C/*1P[0, T] (1| < m) is necessary.

Corollary 1(c) improves [13, Theorem 3.4] and, in the case- LP(R")
(1< p <), |[7, Corollary 3.2]. Moreover, by a careful observation of the proof
of Theorem 3 we find that, corresponding to Corollary 1(c), the following result
on the so-called strong solution of (31) is true.

Corollary 2. Let P(¢,&) = Zw|<m au ()& with a, € L0, T) (|u| < m),
and suppose there exists € R such thatsup..g. ReP(t,§) < w a.e. on
[0, T]. If £ e LY(0, T], WX (R")) wherea > m(nx + 1), then for everyig €
wmx+1).X (Rny (31)has a unique strong solutian(i.e., u is differentiable a.e.
on[0, T, ' € LY([0, T], X), and u satisfie$31) a.e. on[0, T']).

We now turn to consider (31) with constant coefficients, i®.(1) = a,
(Ju| < m). First, we note that an improvement of Corollary 1(a) can be obtained.
More precisely, we can chooge= g in Corollary 1(a). In fact, this follows
immediately from [14, Theorem 2.2] and the following general result (cf. [9]).

Lemmal. Let B be the generator of an analytic semigroup on a Banach s@ace
and let f € C/*A([0, T], X) for somej € Ng and 8 € (0,1). Then for every
x € X, the inhomogeneous Cauchy problem

W @) =Bu@®)+ f@), 0<t<T, u'(0)=x,

has a unique solution € C/ 1A ([, T, X) for § > 0.

Next, we can give the higher order differentiability of the solution in
Corollary 1(b). Indeed, this can be deduced from the following result.

Lemma2. LetP(§) = Z|m<m au&* (£ e R"), andletReP (&) is bounded above
and r-coercive for some € (0, m]. If there existj € Np and 8 € [0, 1) such
that f € C/+P([0, T, Y)), wherey > (5 + 1)(m —r) — rp, then for everyr €
Yam—r), &> %, (1) (Witha, (1) = a,,) has a unique solution € C/+1((0, T1, X)
satisfying

[ < M(Ixlatn-r)+ sUP [ FO], ) Toreel@T1  (37)

\S\
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In particular, f € C*([0,T],Ys) for somes > (5 + L)(m — r) — r implies
ueC®(0,7T], X).

Proof. By [14, Theorem 3.1],P(A) generates aC-regularized semigroup
(T (1))r>0 With T(-) € C*((0, 00), B(A™®)), whereC = (1 + |A|?)~«m=")/2,
Then (cf. [14])w := T'(-)C~1x is a solution of the Cauchy problem’ (1) =
P(A)w(t) (t > 0), w(0) = x. Moreover, we havay € C*°((0, T'], X).

We now definev(r) = ]é vt_S(A)Cl‘lf(s)ds for t € [0, T], whereC1 =
A+ A2~ —mtB)/2 andy, = (1 + | - [2)~ ¥ —m+7B)/2¢!P Then, from the proof
of Theorem 2 one has that= w + v is a solution of (1) (withu, () = a,) and
satisfies (37).

Sincew € C*((0, T'1, X), it remains to show € C/*1((0, T, X). Indeed, as
seenin (17), an induction ohleads to

. L I rd\* o
U(]+1)(t):C1 lf(ﬁ(ﬂ_,_é(a) v (A)C] lf(] k)(o)

t
+ / P(A)v—s(A)C{ P (s)ds forre (0, T].
0

Becausef/) satisfies the same condition #sn Theorem 2, it follows from the
proof of Theorem 2 that/+D(¢) (¢ € (0, T]) exists and is irC((0, T], X). O

We now summarize the above results (with= P(D) andA = D), as well as
Corollary 1(c)—(d) (witha, (t) = a,) in the following corollary.

Corollary 3. Let P(§) = Z|m<m au &t (£ e R").

(@) If P(&) is strongly elliptic, and iff € C/+£ ([0, T], X) for somej € Ng and
B € (0,1), thenforevery € X, (31) Wwitha,(t) = a,) has a unique solution
u e CItHA([s,T1, X) for § € (0, T) such that(32) holds. Moreoverf e
H(X) impliesu € H(X', X).

(b) If ReP (&) is bounded above andcoercive for some € (0, m], and if there
exist j € Np and 8 € [0, 1) such thatf e C/tA([0, T], W¥"X(R")), where
y > (nx + 1)(m —r) — rB, then for everyig € Wx(m=r).X(R") (31) (with
au(t) = ay,) has a unique solution C/+1((0, T1, X) satisfying(33). In
particular, f € C*([0, T'], W&X(R")) for somes > (nx + 1)(m —r) —r
impliesu € C*°((0, T], X).

(c) If ReP (&) is bounded above, and if € C([0, T], W”-X(R")) wherey >
m(nx + 1), then for everyig € W x+1.X(R") (31) witha, (1) = a,) has
a unique solution: satisfying(34) and (35).
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(d) If feC(0,T],C*(R") then there exists a dense subspdee which
containsC2°(R"), such that for everyg € D, (31) (With a,(t) = a,) has
a unique solutionu € C1([0, T1, X). In particular, ug € C(R") implies
u € CL([0, T], C*(R™)). Moreover, if in additionf is entire then so is the
solutionu.

We conclude this paper with several examples.

Example 1. We first consider the following equation with space-dependent
coefficients and Dirichlet boundary condition

%u(r,x) = P(t, q(x)D)u(t,x) + f(t,x)

for (r,x) e (0, T] x 1", (38)
u(t,x)=0 forre (0, T]andx € al”,
u(0,x) =uo(x) forxel”,

onCo(I") :={f € C(I™); flaim = 0}, where I=[0, 1], 91" denotes the boundary
of I", q(x)D = (q(x1) D1, ...,q(xx)Dy) and g(x;) = x;’-‘(l — x;)“ for some
a>1.

By [1, Proposition 3] we know thaj(x;)iD; (1< j < n) are the generators
of commuting bounded’o-groups onCo(1"), if P(z,&) is strongly elliptic for
everyt € [0, T'], and if there existg < (0, 1) such that, € CPlO, T (Jju| < m)
and f € CE([0, T], Co(I™)), then for everyug € Co(l"), Corollary 1(a) implies
that (38) has a unique solutiane C([0, T'], Co(I")) N CY ([8, T1, Co(1™)),
wheres € (0, T) andy € (0, 8). Moreover,

L) <M + su ) forr e[0,T],
Juace. g < M (l1uollo w7 o) forsel0.7]
where|| - ||o denotes the sup-norm 6 (1").

Example 2. Next, we consider the:-dimensional linearized KdV-Burgers
equation

0 .
Eu(t,X) = Z a, (iDY*u(t,x)+ f(t,x)
NS (39)
for (z,x) € (0,T] x R",
u(0,x) =uo(x) forx eR",

on L?(R") (1< p < 00), wherea, € R (Ju| =1, 2, 3). We note that, except in
the casep = 2 (cf. [9, Section 8.5]), (39) cannot be treateddyrsemigroups.

If Y. —2au€" > 0 for & #0, and if f e C/HP([0, T], W"P(R")) for
somej € No, B €[0,1) andy > n, — 28 + 1 then by Corollary 3(b), for
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every ug € W"-P(R"), (39) has a unique solution € C([0,T], L?(R™)) N
Ci+L((0, T], LP(R™)) such that

u, )||LP<M(||MO||,1,, L sup £, s 3L,,) forr € [0, T).

\S\t

Moreover, if in additionf € C*°([0, T, W57 (R")) for somes > n), — 1 thenu €
C>((0, T1, X).

If a,, =0 (|u| = 2) then (39) is the&-dimensional linearized KdV equation. In
this case we assume thate C([0, T'], W*”(R")) wherey > 3(n, + 1). Then
by Corollary 3(c), for everyig € W3'»+1:-P(R"), (39) (witha,, = 0 for || = 2)
has a unique solutiome C([0, T'], WP (R")) N C1([0, T], L?(R™)) such that

lutt. )5, <M <||u0||3(n,,+1)Ll’+OSUD [ rel, Lp) forz [0, T].

\s\

Example 3. Finally, consider the first order equation

—u(t x)—ZaJ(t)—u(t x) 4+ ao(t)u(t,x)+ f(t,x)
(40)
for (z, x)e (O T]x R",
u(0,x) =uo(x) forx eR",

onX, wherea; € C[0, T] (0< j <n).

If a; (1< j<n)arerealvalued, and € C([0, T], weX(R")), whereq = 1
for X =LP(R") (1 < p <o) anda > 1 otherwise, then by Theorem 4 and
Miklin’s multiplier theorem [11], for everyug € W*X(R"), (40) has a unique
solutionu € C([0, T], W*X(R")) N C1([0, T, X) such that

Jarte, )y < M (0l x + OZ‘;‘EJ““)”*X) fort € [0, T1.

In the caseX = L1(R"), if WL1(R") is understood as the usual Sobolev space
then the conclusion (with = 1) still holds.

If a; (1< j < n)are purely imaginary valued anfle C([0, T1, C°(R"))
then, by Corollary 1(d), there exists a dense subspaeehich containg°(R"),
such that for everyug € D, (40) has a unique solution € C1([0, T], X).
In particular,ug € CX°(R") implies u € C([0, T], C*(R")). Moreover, if in
additiona; (0< j <n)andf are all entire then so is the solutian

In the case whewm; (1< j < n) are real valued, the statement “(40), even
with constant coefficients, cannot be treated by integrated semigroups” in [7,
p. 817] is not right. Indeed, (40) can be treated by evolution families, even by
Co-groups directly (see the proof of Theorem 4). Meanwhile, our result improves
[7, Corollary 3.3], in whichy > 1+ ny is required.
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