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Abstract

We study in this paper the wellposedness and regularity of solutions of evolution
equations associated with abstract differential operators on a Banach space. The results
can be applied to many partial differential equations on different function spaces.
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1. Introduction

Let P(t, ξ) = ∑
|µ|�m aµ(t)ξµ be a polynomial ofξ ∈ Rn, where aµ ∈

C([0, T ],C) for |µ| � m. Corresponding to this polynomial, we introduce
an abstract differential operator as follows:P(t,A) = ∑

|µ|�m aµ(t)Aµ with
maximal domain, whereAµ = Aµ1

1 · · ·Aµnn andiAj (1 � j � n) are commuting
generators of boundedC0-groups on a Banach spaceX. This allows us to avoid
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the troubles caused by different function spaces and can be applied extensively
(cf. [4,6]). This paper is concerned with the inhomogeneous evolution equation

u′(t)= P(t,A)u(t)+ f (t), 0< t � T , u(0)= x, (1)

on X, where f∈ C([0, T ],X). A function u : [0, T ] → X is called a solution
of (1), if u ∈C([0, T ],X)∩C1((0, T ],X) and (1) is satisfied.

It is well known that the wellposedness of (1) depends on the construction of
an evolution family for homogeneous evolution equation (1) (i.e.,f ≡ 0). We
emphasize that the domain ofP(t,A)may depend ont . In the case whereP(t, ξ)
is strongly elliptic for everyt ∈ [0, T ], some authors have studied how to construct
the evolution family (see, e.g., [12,14]). Recently, motivated by regularized
semigroups (cf. [4]), people paid attention to constructing a regularized evolution
family for elliptic, even nonellipticP(t, ξ) [3,4,6,7,13,14].

The purpose of this paper is to extend these results to more general situations.
We construct in Section 2 evolution families and regularized evolution families
for strongly elliptic and some nonelliptic cases, respectively. Particularly, some
regularity results of these families are contained. Our main results are stated
in Section 3, which include the wellposedness as well as the regularity of
solutions of (1). The last section deals with the application to partial differential
equations (PDEs).

Throughout the paper,B(X) will be the space of bounded linear operators
on X, S(Rn) (respectivelyC∞

c (R
n)) the space of rapidly decreasing functions

(respectivelyC∞-functions with compact support) onRn, andH(Σ,X) the set
of analytic functions fromΣ into X. By D(B), R(B), andρ(B) we denote the
domain, range, and resolvent set of the operatorB, respectively. We also denote
byB(A∞) the Fréchet space{

B :X→
⋂
µ∈Nn0

D
(
Aµ
); AµB ∈ B(X) for µ ∈ Nn0

}
with the family of seminorms‖B‖µ := ‖AµB‖, whereN0 = N ∪ {0}.

We now introduce a functional calculus foriAj (1 � j � n). LetF denote the
Fourier transform, i.e.,(Fu)(r)= ∫

Rn u(s)e
−i(s,r) ds. If u ∈ FL1(Rn), then there

exists a uniqueL1-functionF−1u (i.e., the inverse Fourier transform ofu in the
distributional sense) such thatu=F(F−1u). We define u(A)∈B(X) by

u(A)x =
∫

Rn

(F−1u)(ξ)e−i(ξ,A)x dξ for x ∈X. (2)

It is known thatFL1(Rn) is a Banach algebra under pointwise multiplication
and addition with norm‖u‖FL1 := ‖F−1u‖L1, and u �→ u(A) is an algebra
homomorphism fromFL1(Rn) into B(X) with ‖u(A)‖ �M‖u‖FL1 for some
constantM > 0.
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Finally, let |A|2 = ∑n
j=1A

2
j and (1 + |A|2)−α/2 (α ∈ R) be defined as

fractional powers. Then(1+|A|2)−α/2 ∈ B(X) for α > 0.Yα :=D((1+|A|2)α/2)
(α � 0) will be a Banach space with graph norm‖x‖α := ‖(1 + |A|2)α/2x‖.
Moreover, we denote byM a general positive constant.

2. Evolution families

In this section, letΣ , Σ̃ be some convex neighborhoods of[0, T ] in C.
We write Ω = {(t, s) ∈ R × R; 0 � s < t � T } andΣθ = {(t, s) ∈ Σ × Σ ;
t �= s, |arg(t − s)| < θ}, where θ ∈ (0,π/2], and denote byΩ (respectively
Σ ) the closure ofΩ (respectivelyΣ). In the sequel, except in Proposition 4
and Theorem 4, we always assume thatP(t, ξ) = ∑

|µ|�m aµ(t)ξµ with aµ ∈
C[0, T ] (|µ| � m). For fixedt ∈ [0, T ], P(t, ξ) is said to be strongly elliptic if∑

|µ|=mReaµ(t)ξµ < 0 for ξ �= 0.

LetC ∈B(X) be injective. A two parameter familyU(t, s) ∈ B(X), (t, s) ∈Ω,
is called aC-regularized evolution family ifU(t, r)U(r, s) = U(t, s)C for 0 �
s � r � t � T , U(t, t)= C for 0 � t � T , andU(· , ·)x ∈ C(Ω,X) for x ∈X. In
the caseC = I , (U(t, s))(t,s)∈Ω is called an evolution family.

Proposition 1. Let P(t, ξ) be strongly elliptic for everyt ∈ [0, T ]. Then there
exists a unique evolution family(U(t, s))(t,s)∈Ω such that:

(a) U(· , ·) ∈ C1(Ω,B(A∞)), ∂
∂t
U(t, s) = P(t,A)U(t, s) and ∂

∂s
U(t, s) =

−P(s,A)U(t, s) for (t, s) ∈Ω .
(b) aµ ∈Cj [0, T ] (|µ| �m) for somej ∈ N impliesU(· , ·) ∈Cj+1(Ω,B(A∞)).

In particular aµ ∈C∞[0, T ] (|µ| �m) impliesU(· , ·) ∈C∞(Ω,B(A∞)).
(c) aµ ∈ H(Σ̃) (|µ| � m) for someΣ̃ impliesU(· , ·) ∈ H(Σθ,B(A∞)) for

someΣθ .

Proof. This is a consequence of [14, Theorem 4.1]. Here, we give a different
proof of (c).

By the assumptions onP(t, ξ) we have sup{ReP(t, ξ); ξ ∈ Rn, t ∈Σ}<∞
for someΣ with Σ ⊆ Σ̃ . Let t, s ∈Σ with Ret > Res and Imt = Im s. Then,
by the strong ellipticity ofP(t, ξ), there exist constantsδ, L> 0 such that

Re

t∫
s

P (τ, ξ) dτ =
Ret∫

Res

ReP(τ + i Im t, ξ) dτ

� −δ|ξ |mRe(t − s) for |ξ | � L.
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Also, there existsM1> 0 (without loss of generality,M1 � supt∈Σ Ret) such that∣∣Dνξµ∣∣� {
Ml1|ξ |ml−|ν| for |ξ | � L,

Ml1 for |ξ |<L,
where|µ| �ml, l ∈ N, and|ν| � [n2] + 1 (ν ∈ Nn0). Thus the same method as in
the proof of [14, (3.7)] leads to∥∥vµt,s∥∥FL1 �Ml!

(
M1

Re(t − s)
)l

for |µ| �ml andl ∈ N0, (3)

wherevµt,s (ξ)= ξµ exp{∫ ts P (τ, ξ) dτ } for ξ ∈ Rn andµ ∈ Nn0. We note that

Ik ≡
k∑
j=0

k!
j !2

j (l + j)! = 2k(l + k)! + kIk−1 for k ∈ N.

Thus by induction onk
k∑
j=0

k!
j !2

j (l + j)! � 2k+1(l + k)! for k, l ∈ N0.

Also note that, by the Cauchy estimate, there exists a constantM2> 0 such that∑
|µ|�m

∣∣a(k)µ (t)∣∣� k!Mk+1
2 for t ∈Σ andk ∈ N0.

We now show by induction onk that∥∥∥∥( ∂∂t
)k
v
µ
t,s

∥∥∥∥
FL1

�M(2M2)
k(l + k)!

(
M1

Re(t − s)
)l+k

(4)

for |µ| �ml andl, k ∈ N0. Whenk = 0, the claim follows from (3). If (4) is true
for k then (sinceM1 � supt∈Σ Ret)∥∥∥∥( ∂∂t

)k+1

v
µ
t,s

∥∥∥∥
FL1

=
∥∥∥∥( ∂∂t

)k(
P(t, ·)vµt,s

)∥∥∥∥
FL1

�
∑

k1+k2=k

(
k

k1

) ∑
|ν|�m

∣∣a(k1)ν (t)
∣∣ · ∥∥∥∥( ∂∂t

)k2
v
ν+µ
t,s

∥∥∥∥
FL1

�
∑

k1+k2=k

(
k

k1

)
k1!Mk1+1

2 M(2M2)
k2(l + k2 + 1)!

(
M1

Re(t − s)
)l+k2+1

�M(2M2)
k+1(l + k + 1)!

(
M1

Re(t − s)
)l+k+1

for |µ| �ml andl ∈ N0, as desired. From (4) and
(
l+k
k

)
� 2l+k we obtain∥∥∥∥( ∂∂t

)k
v
µ
t,s

∥∥∥∥
FL1

�Mk!l!
(

4M1M2

Re(t − s)
)l+k

for |µ| �ml andl, k ∈ N0.
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Then, for fixed t ∈ Σ , s �→ v
µ
t,s can be extended analytically to{τ ∈ Σ ;

|arg(t − τ )| < θ}, whereθ = arctan(4M1M2)
−1. Similarly, t �→ v

µ
t,s can also

be extended analytically to{τ ∈ Σ ; |arg(τ − s)| < θ} for fixed s ∈ Σ . It
hence follows from Hartogs’ theorem (see, e.g., [2]) that the function(t, s) �→
v
µ
t,s is in H(Σθ,FL1(Rn)), and so(t, s) �→ v

µ
t,s(A) is in H(Σθ,B(X)). Let

(U(t, s))(t,s)∈Ω be the unique evolution family satisfying (a). Then

AµU(t, s)= vµt,s(A) for (t, s) ∈Σθ
(cf. the proof of [14, Theorem 4.1]), and thereforeU(· , ·) ∈H(Σθ,B(A∞)). ✷

Proposition 1 improves [6, Theorem 5.1] in several aspects. First, we do not
assume that the coefficients ofP(t, ξ) are real valued. Second, the conclusion

U(t, s)x ∈
⋂

0�r�T
D
(
P(r,A)

)
for (t, s) ∈Ω andx ∈X

in [6] is sharpened byU(· , ·) ∈ C1(Ω,B(A∞)). Finally, the regularity of
(U(t, s))(t,s)∈Ω (i.e., (b) and (c)) was not discussed in [6].

The subsequent two propositions are essentially due to [14], which will be used
in the next section.

Proposition 2. Let there exist constantsδ, L> 0 andr ∈ (0,m− 1] such that

ReP(t, ξ)� −δ|ξ |r for |ξ | � L andt ∈ [0, T ]. (5)

Then there exists a uniqueC-regularized evolution family(U(t, s))(t,s)∈Ω, where

C = (1 + |A|2)−mα/2 with α > n(m−r)
2m , such that the conclusions(a) and (b) of

Proposition1 are still true.

A polynomial P(ξ) is called to ber-coercive, if |P(ξ)|−1 = O(|ξ |−r ) as
|ξ | → ∞. Thus, the estimate (5) means that ReP(t, ξ) is bounded above and
r-coercive, uniformly fort ∈ [0, T ].

Proposition 3. Let sup{ReP(t, ξ); ξ ∈ Rn, t ∈ [0, T ]} <∞. Then there exists
a unique C-regularized evolution system(U(t, s))(t,s)∈Ω , where C = (1 +
|A|2)−mα/2 with α > n

2 , such that:

(a) U(t, s) :Yβ → Yγ for 0 � γ < β +m(α − n
2) and (t, s) ∈Ω . In particular,

U(t, s) :Yβ → Yβ for β � 0 and(t, s) ∈Ω .
(b) U(t, s) :Yβ → D(P (r,A)) for β >m(1− α + n

2), (t, s) ∈Ω , andr ∈ [0, T ].
In particular,U(t, s) :Ym→ D(P (r,A)) for (t, s) ∈Ω andr ∈ [0, T ].

(c) For (t, s) ∈Ω andx ∈ Yβ (β �m), U(· , ·)x ∈ C1(Ω,X),
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∂

∂t
U(t, s)x = P(t,A)U(t, s)x, and

∂

∂s
U(t, s)x = −P(s,A)U(t, s)x. (6)

Proposition 3 improves [6, Theorem 5.3]. In the general case, i.e.,P(t,A)

(0 � t � T ) is replaced by a familyA(t) (0 � t � T ) of closed operators onX,
similar results were given by deLaubenfels [3, Theorem 6.3] and Tanaka [13,
Theorem 2.1]. But Proposition 3 cannot be deduced from them. In fact, even in
the case whenA(t)= P(t,D) (0 � t � T ), it is possible to yield a large valueα
[3, Example 6.4], or the ellipticity ofP(t, ξ) is required [13, Theorem 3.4].

In the casem= 1, we can directly construct the evolution family.

Proposition 4. Let

P(t, ξ)=
n∑
j=1

iaj (t)ξj + a0(t) for ξ = (ξ1, . . . , ξn) ∈ Rn, (7)

whereaj ∈C([0, T ],R) (1� j � n) anda0 ∈C[0, T ]. Then there exists a unique
evolution family(U(t, s))(t,s)∈Ω such thatU(t, s) :D → D and (6) hold for

(t, s) ∈Ω andx ∈D, whereD =⋂n
j=1D(Aj ).

Proof. By the assumption onA we can define

U(t, s)= exp

{
n∑
j=1

t∫
s

aj (τ ) dτ iAj +
t∫
s

a0(τ ) dτ

}
for (t, s) ∈Ω.

Now one can easily check from the properties ofC0-groups that(U(t, s))(t,s)∈Ω
satisfies the desired conclusions. The uniqueness of(U(t, s))(t,s)∈Ω can be shown
by a standard method (cf. the proof of [6, Corollary 5.4]).✷

For general polynomials with time-dependent coefficients we have the follow-
ing result.

Proposition 5. For any polynomialP(t, ξ), there exists a two parameter family
(U(t, s))t,s∈[0,T ] ⊂ B(X) such that:

(a) There exists an injectiveC ∈ B(X) such thatU(t, r)U(r, s)= U(t, s)C and
U(t, t)= C for t, r, s ∈ [0, T ].

(b) Proposition1(a) with Ω replaced by[0, T ] × [0, T ] holds. In particular,
(U(t, s))t,s∈Ω is aC-regularized evolution family.

(c) If there existsΣ such thataµ ∈ H(Σ) for |µ| � m, thenU(· , ·) ∈ H(Σ ×
Σ,B(A∞)).

(d) If aµ (|µ| �m) are all entire functions, then(U(t, s))t,s∈[0,T ] can be extended
to an entireB(A∞)-valued function(U(t, s))t,s∈C.
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Proof. Define

ut,s(ξ)= exp

{
−|ξ |2m +

t∫
s

P (τ, ξ) dτ

}
for t, s ∈ [0, T ].

Sinceut,s ∈ S(Rn) ⊂ FL1(Rn) (t, s ∈ [0, T ]) we can defineU(t, s) = ut,s(A)
(t, s ∈ [0, T ]) and C = U(0,0). Then (a) follows from the property of the
algebra homomorphism of (2). The proof of (b) is the same as the one of [14,
Theorem 4.1(a)] withΩ replaced by[0, T ] × [0, T ]. Finally, it is not difficult
to show, by the condition of (c) (respectively (d)), that for everyµ ∈ Nn0, the
function (t, s) �→ ξµut,s(ξ) is in H(Σ × Σ,FL1(Rn)) (respectivelyH(C ×
C,FL1(Rn))). Thus we conclude (c) (respectively (d)).✷

3. Evolution equations

The purpose of this section is to treat the inhomogeneous evolution equa-
tion (1). LetCβ(J,X) (0< β < 1) be the space of Hölder continuous functions,
Cj+β(J,X) = {f ∈ Cj(J,X); f (j) ∈ Cβ(J,X)} (j ∈ N0), and C0(J,X) =
C(J,X), whereJ is an interval inR. For injectiveC ∈ B(X), we denote by
[R(C)] the Banach space(R(C),‖C−1 · ‖). Moreover,Σ (respectivelyΣ ′) will
denote some convex neighborhood of[0, T ] (respectively(0, T ]) in C.

Theorem 1. Let P(t, ξ) be strongly elliptic for everyt ∈ [0, T ], and suppose
there exist j ∈ N0, β ∈ (0,1) such that aµ ∈ Cj+β [0, T ] (|µ| � m) and
f ∈ Cj+β([0, T ],X). Then for everyx ∈ X, (1) has a unique solutionu ∈
C([0, T ],X) ∩Cj+1+γ ([δ, T ],X) for δ ∈ (0, T ) andγ ∈ (0, β), such that∥∥u(t)∥∥�M

(‖x‖ + sup
0�s�t

∥∥f (s)∥∥) for t ∈ [0, T ]. (8)

In particular, aµ ∈ C∞[0, T ] (|µ| � m) and f ∈ C∞([0, T ],X) imply u ∈
C∞((0, T ],X). Moreover, if there existsΣ such thataµ ∈H(Σ) (|µ| �m) and
f ∈H(Σ,X), thenu ∈H(Σ ′,X).

Proof. Whenj = 0, by the same argument as in the proof of [6, Corollary 5.2]
we can deduce that (1) has a unique solutionu given by

u(t)=U(t,0)x +
t∫

0

U(t, s)f (s) ds for t ∈ [0, T ] (9)

where(U(t, s))(t,s)∈Ω is the evolution family provided by Proposition 1. Thus,
(8) follows from (9).

When j > 0, by Proposition 1(b) one hasU(· , ·) ∈ Cj+1(Ω,B(A∞)). Let
0< τ � t � T . Since Proposition 1(a) implies that
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(
∂

∂t

)l+1

U(t, t − τ )=
(
∂

∂t

)l{[
P(t,A)− P(t − τ,A)]U(t, t − τ )}

=
l∑
k=0

(
l

k

)[
P (k)(t,A)− P (k)(t − τ,A)]( ∂

∂t

)k−l
U(t, t − τ ),

a simple induction shows that( ∂
∂t
)lU(t, t − τ ) (l � j + 1) is a sum of terms of

the form

const.
[
P(t,A)− P(t − τ,A)]k1 · · · [P (l−1)(t,A)−P (l−1)(t − τ,A)]kl

×U(t, t − τ ), (10)

wherek1 + 2k2 + · · · + lkl = l. By (10) and the binomial formula we find that
{( ∂
∂t
)lU(t, t − τ )}|τ=t (l � j + 1) is a sum of terms of the form

const.
[
P(t,A)

]p1 · · · [P (l−1)(t,A)
]plQ(A)U(t,0), (11)

whereQ(ξ) is a polynomial of degreeqm for someq ∈ N0 andp1 + 2p2 + · · · +
lpl + q � l. Therefore, based on the method of proof of (10), one deduces further
from (11) that( ∂

∂t
)p{[( ∂

∂t
)lU(t, t − τ )]|τ=t} (p+ l � j + 1) is a sum of terms of

the form

const.
[
P(t,A)

]ql · · · [P (p+l−1)(t,A)
]qp+lQ(A)U(t,0), (12)

whereq1 + 2q2 + · · · + (p+ l)qp+l + q � p+ l.
We now turn to estimate(

∂

∂t

)l
U(t, t − τ ) (l � j + 1)

and (
∂

∂t

)p{[(
∂

∂t

)l
U(t, t − τ )

]∣∣∣
τ=t

}
(p+ l � j + 1).

If l � j or l = j + 1 with kj+1 = 0 then, byaµ ∈Cj+β [0, T ] (|µ| �m) and (12),∥∥[P(t,A)− P(t − τ,A)]kl · · · [P (l−1)(t,A)− P (l−1)(t − τ,A)]kl
×U(t, t − τ )∥∥�M

∑
|µ|�mk′l

τ k
′
l

∥∥AµU(t, t − τ )∥∥�M (13)

wherek′l = k1 + · · ·+ kl . If l = j + 1 with kj+1> 0 then (10) consists of the term

const.
[
P (l−1)(t,A)− P (l−1)(t − τ,A)]U(t, t − τ ). (14)

From this, the same reasons as above lead to∥∥[P (l−1)(t,A)− P (l−1)(t − τ,A)]U(t, t − τ )∥∥�Mτβ−1.



Q. Zheng / J. Math. Anal. Appl. 275 (2002) 459–481 467

Summarizing these estimates we obtain∥∥∥∥( ∂∂t
)l
U(t, t − τ )

∥∥∥∥�
{
M for l � j ,
Mτβ−1 for l = j + 1.

(15)

To obtain the second estimate we note that by (12)∥∥[P(t,A)]ql · · · [P (p+l−1)(t,A)
]qp+lQ(A)U(t,0)∥∥

�M
∑

|µ|�m(p+l)

∥∥AµU(t,0)∥∥�Mt−(p+l).

Consequently,∥∥∥∥( ∂∂t
)p{[(

∂

∂t

)l
U(t, t − τ )

] ∣∣∣∣
τ=t

}∥∥∥∥�Mt−(p+l)

for p+ l � j + 1. (16)

To prove the desired conclusion we have to give a representation foru(j+1)(t)

(0< t � T ). Since it is easy to deal withU(· ,0)x for x ∈X we first consider the
termv(t) := ∫ t

0 U(t, s)f (s) ds for t ∈ (0, T ]. In fact, we will show by induction
that

v(j+1)(t)=
j∑
k=0

(
∂

∂t

)j−k k∑
l=0

(
k

l

){(
∂

∂t

)l
U(t, t − τ )

} ∣∣∣∣
τ=t
f (k−l)(0)

+
t∫

0

j+1∑
k=1

(
j + 1

k

){(
∂

∂t

)k
U(t, t − τ )

}
f (j−k+1)(t − τ ) dτ

+
t∫

0

P(τ,A)U(t, τ )
[
f (j)(τ )− f (j)(t)]dτ

+U(t,0)[f (j)(t)− f (j)(0)]. (17)

Here we note that, by (15)–(16) and the assumption onf , all terms on the right-
hand side of (17) are well defined.

Whenj = 0, from the proof of [6, Corollary 5.2] and integration by parts we
obtain

v′(t)= f (t)+
t∫

0

P(t,A)U(t, τ )f (τ ) dτ

= f (t)+
t∫

0

[
P(t,A)− P(τ,A)]U(t, τ )f (τ ) dτ
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+
t∫

0

P(τ,A)U(t, τ )
[
f (τ)− f (t)]dτ +

t∫
0

P(τ,A)U(t, τ )f (t) dτ

=U(t,0)f (0)+
t∫

0

[
P(t,A)−P(t − τ,A)]U(t, t − τ )f (t − τ ) dτ

+
t∫

0

P(τ,A)U(t, τ )
[
f (τ)− f (t)]dτ

+U(t,0)[f (t)− f (0)], (18)

i.e., (17) is true forj = 0. If (17) with j replaced byj − 1 is still true,
differentiation yields

v(j+1)(t) =
j−1∑
k=0

(
∂

∂t

)j−k k∑
l=0

(
k

l

){(
∂

∂t

)l
U(t, t − τ )

} ∣∣∣∣
τ=t
f (k−l)(0)

+
j∑
k=1

(
j

k

){(
∂

∂t

)k
U(t, t − τ )

} ∣∣∣∣
τ=t
f (j−k)(0)

+
t∫

0

j∑
k=1

(
j

k

){(
∂

∂t

)k+1

U(t, t − τ )
}
f (j−k)(t − τ ) dτ

+
t∫

0

j∑
k=1

(
j

k

){(
∂

∂t

)k
U(t, t − τ )

}
f (j−k+1)(t − τ ) dτ

+
t∫

0

{
∂2

∂t∂τ
U(t, t − τ )

}[
f (j−1)(t − τ )− f (j−1)(t)

]
dτ

+
t∫

0

P(t − τ,A)U(t, t − τ )[f (j)(t − τ )− f (j)(t)]dτ
+ [
P(t,A)− P(0,A)]U(t,0)[f (j−1)(t)− f (j−1)(0)

]
+U(t,0)f j (t)

:= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8.
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Obviously,I1 + I2 +U(t,0)f (j)(0) (respectivelyI6, I8 −U(t,0)f (j)(0)) is the
first (respectively the third, the fourth) term on the right-hand side of (17). Noting
that Proposition 1(b) and integration by parts lead to

I5 = −I7 +
t∫

0

{
∂

∂t
U(t, t − τ )

}
f (j)(t − τ ) dτ,

and also noting the fact
(
j
k−1

)+ (j
k

)= (
j+1
k

)
, one easily checks thatI3 + I4 + I5 +

I7 is exactly the second term on the right-hand side of (17), and thus the desired
result follows.

We are now in the position to showv(j+1) ∈Cγ ([δ, T ],X). Fix δ ∈ (0, T ) and
γ ∈ (0, β). We first consider the casej = 0. It is not difficult to show by (18) that

v′(t)− v′(s) =
t∫
s

[
P(t,A)− P(τ,A)]U(t, τ )f (τ ) dτ

+
s∫

0

[
P(t,A)− P(s,A)]U(t, τ )f (τ ) dτ

+
s∫

0

[
P(s,A)− P(τ,A)][U(t, τ )−U(s, τ )]f (τ) dτ

+
s∫

0

P(τ,A)
[
U(t, τ )−U(s, τ )][f (τ)− f (s)]dτ

+
t∫
s

P (τ,A)U(t, τ )
[
f (τ)− f (t)]dτ

+ [
U(s,0)−U(t,0)]f (t)

+ [
U(t, s)−U(t,0)+U(s,0)− I][f (s)− f (t)]

:=
6∑
k=0

gk(t, s) for δ � s � t � T .

Hence, fromaµ ∈ Cβ [0, T ] (|µ| � m) and f ∈ Cβ([0, T ],X) we can deduce
that ‖gk(t, s)‖ �M(t − s)β (k = 0,4,6), ‖gk(t, s)‖ �M(t − s)γ (k = 1,2,3),
and ‖g5(t, s)‖ � M(t − s) for δ � s < t � T . Summarizing these estimates
one hasv′ ∈ Cγ ([δ, T ],X). By a careful observation of (17) we find thatv′ ∈
Cγ ([δ, T ],X) impliesgk ∈ Cγ ([δ, T ],X) (k = 7,8,9), where
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g7(t)=
t∫

0

[
∂

∂t
U(t, t − τ )

]
f (t − τ ) dτ,

g8(t)=
t∫

0

P(τ,A)U(t, τ )
[
f (τ)− f (t)]dτ, and

g9(t)=U(t,0)
[
f (t)− f (0)].

Return now to (17). We will denote byfk(t) (k = 1,2,3,4) the four terms on
the right-hand side of (17) in proper order, and write further

f2(t) =
t∫

0

{(
∂

∂t

)j+1

U(t, t − τ )
}
f (t − τ ) dτ

+
t∫

0

j∑
k=2

(
j + 1

k

){(
∂

∂t

)k
U(t, t − τ )

}
f (j−k+l)(t − τ ) dτ

+
t∫

0

(j + 1)

{
∂

∂t
U(t, t − τ )

}
f (j)(t − τ ) dτ

:= f5(t)+ f6(t)+ f7(t).

Then (15) and (16) implyf1, f6 ∈ C1([δ, T ],X). Sincef3 (respectivelyf4,
f7) is exactly g8 (respectivelyg9, g7) in which f is replaced byf (j) one
obtainsfk ∈ Cγ ([δ, T ],X) (k = 3,4,7). To show the same conclusion forf5 we
denote byV (t, τ, kj+1) the term (10) withl = j + 1. If kj+1 = 0 then, by (13),
‖V (t, τ, kj+1)‖ �M for 0< τ � t � T . Also, it is similar to (15) (withl = j +1)
to show‖ ∂

∂t
V (t, τ, kj+1)‖ �Mτβ−1 for 0< τ � t � T . Therefore we have

t �→
t∫

0

V (t, τ, kj+1)f (t − τ ) dτ ∈C1([δ, T ],X) for kj+1 = 0. (19)

If kj+1 > 0 thenV (t, τ, kj+1) is exactly the term (14) and thus, by the result
ong7,

t �→
t∫

0

V (t, τ, kj+1)f (t − τ ) dτ ∈Cγ ([δ, T ],X) for kj+1> 0. (20)

Combining (19) and (20) we obtainf5 ∈ Cγ ([δ, T ],X). Hence the proof of
v(j+1) ∈Cγ ([δ, T ],X) is complete. Since similar methods as in the proof of (19)
and (20) yieldt �→ ( d

dt
)j+1U(t,0)x ∈ Cγ ([δ, T ],X) for x ∈X, the desired result
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follows from (9). Moreover, the conclusion about the analyticity of the solutionu

is a direct consequence of Proposition 1(c) and (9).✷
Theorem 1 improves [6, Corollary 5.2], in whichaµ(t) (|µ| = m) is real

valued. In particular, some regularity for the solution of (1) was shown in
Theorem 1, but there were none in [6]. Only a few results on higher order
differentiability of solutions of nonautonomous evolution equations are known
(see [10,12]). However, Theorem 1 cannot be deduced from the corresponding
theorems in [10,12]. Indeed,D(P (t,A)) independent oft was assumed in [10],
while this is not satisfied in Theorem 1. Although it is allowable thatD(P (t,A))
depends ont in [12], a stronger regularity condition on the coefficientsaµ
(|µ| �m) must be satisfied (cf. remarks after Corollary 1 below).

Theorem 2. Let P(t, ξ) satisfy (5), and let there existβ ∈ [0,1] such that
aµ ∈Cβ [0, T ] (|µ| �m) andf ∈Cβ([0, T ], Yγ ), where

γ =mα +m− rβ − r for someα >
n(m− r)

2m
. (21)

Then, for everyx ∈ Ymα , (1) has a unique solutionu such that∥∥u(t)∥∥�M
(
‖x‖mα + sup

0�s�t

∥∥f (s)∥∥
mα−r

)
for t ∈ [0, T ]. (22)

Proof. Let (U(t, s))(t,s)∈Ω be theC-regularized evolution family provided by

Proposition 2, whereC = (1 + |A|2)−mα/2. Then for everyx ∈ Ymα , w :=
U(· ,0)C−1x is a solution of (1) (withf ≡ 0) and satisfies∥∥w(t)∥∥�M‖x‖mα for t ∈ [0, T ]. (23)

Now, chooseα′ ∈ ( n(m−r)
2m ,α) such thatα − α′ < r

m
, and define

vt,s ≡ (
1+ | · |2)−(mα−r)/2 exp

{ t∫
s

P (τ, ·) dτ
}

for (t, s) ∈Ω.

Then, similarly to the proof of [14, Theorem 3.1], one has by (5)∣∣Dνvt,s(ξ)∣∣�M|ξ |(m−r−1)|ν|−(mα−r)exp
{−δ|ξ |r (t − s)}

�M(t − s)m(α−α′)/r−1|ξ |(m−r−1)|ν|−mα′

for (t, s) ∈ Ω , |ξ | � L, and|ν| � [n2] + 1 (ν ∈ Nn0), where we note thatm(α −
α′)/r − 1< 0. It follows therefore from [14, Lemma 1.1(c)] thatvt,s ∈ FL1(Rn)
and

‖vt,s‖FL1 �M(t − s)m(α−α′)/r−1 for |µ| �m and(t, s) ∈Ω, (24)
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which implies thatv(t) := ∫ t
0 vt,s (A)C

−1
1 f (s) ds (0 < t < T ) exists and is in

C([0, T ],X), whereC1 = (1+ |A|2)−(mα−r)/2.
On the other hand, define

v
µ
t,s(ξ)= ξµ

(
1+ |ξ |2)−γ /2 exp

{ t∫
s

P (τ, ξ) dτ

}

for µ ∈ Nn0, (t, s) ∈ Ω , andξ ∈ Rn. Then, the same argument as in the proof
of (24) yields thatvµt,s ∈FL1(Rn) and∥∥vµt,s∥∥FL1 �M(t − s)(−m+γ−mα′)/r for |µ| �m and(t, s) ∈Ω.
Combining our assumptions with this leads to∥∥P(t,A)vt,s (A)C−1

1

(
f (t)− f (s))∥∥

�M
∑

|µ|�m

∥∥vµt,s (A)∥∥ · ∥∥f (t)− f (s)∥∥
γ

�M(t − s)(−m+γ−mα′)/r+β

=M(t − s)m(α−α′)/r−1 for (t, s) ∈Ω
and ∥∥(P(t,A)− P(s,A))vt,s (A)C−1

1 f (t)
∥∥

�M(t − s)β
∑

|µ|�m

∥∥vµt,s (A)∥∥ · ∥∥f (t)∥∥
γ

�M(t − s)m(α−α′)/r−1 for (t, s) ∈Ω.
Therefore, by integration by parts, one has (cf. (18))

v′(t)= f (t)+
t∫

0

P(t,A)vt,s(A)C
−1
1 f (s) ds

= vt,0(A)C−1
1 f (t)+

t∫
0

P(t,A)vt,s (A)C
−1
1

(
f (s)− f (t)) ds

+
t∫

0

(
P(t,A)− P(s,A))vt,s (A)C−1

1 f (t) ds,

i.e.,v ∈C1((0, T ],X). Also,
t∫

0

P(t,A)vt,s (A)C
−1
1 f (s) ds = P(t,A)

t∫
0

vt,s (A)C
−1
1 f (s) ds.
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Thusv is a solution of (1) (withx = 0) and satisfies, by (24),∥∥v(t)∥∥�M sup
0�s�t

∥∥f (s)∥∥
mα−r for t ∈ [0, T ]. (25)

Thereforeu :=w+ v is a solution of (1), while (22) follows from (23) and (25).
If u1 is also a solution of (1), then from Proposition 2 one deduces that

∂
∂s

[U(t, s)(u(s)− u1(s))] = 0 for (t, s) ∈Ω . Integrating this froms = 0 to s = t
yields thatC(u(t)− u1(t))= 0, i.e.,u(t)= u1(t) for t ∈ [0, T ]. ✷

First, from the proof of Theorem 2 one sees that it is also true forr =m. Next,
in Theorem 2 the indexβ indicates the degree of regularity ofaµ andf on the
time-variable. Becausef (t) ∈ Yγ (0 � t � T ), the indexγ indicates the degree of
regularity off on the space-variable, while (21) showed the relationship between
these two indices. Finally, in the caseβ = 1 the condition (21) can be rewritten as
γ > n

2(m− r)+m− 2r. In particular, whenr > m− 2m
n+4 we can chooseγ = 0.

In the subsequent theorem, we will improve Theorem 4.6 and Corollary 5.4
in [6].

Theorem 3. Let sup{ReP(t, ξ); ξ ∈ Rn, t ∈ [0, T ]}<∞, and letf ∈ C([0, T ],
Ym(α+1)), whereα > n/2. Then, for everyx ∈ Ym(α+1), (1) has a unique solution
u ∈C([0, T ], Ym)∩C1([0, T ],X) satisfying(22) (with r = 0) and∥∥u(t)∥∥

m
�M

(
‖x‖m(α+1) + sup

0�s�t

∥∥f (s)∥∥
m(α+1)

)
for t ∈ [0, T ]. (26)

Proof. Let (U(t, s))(t,s)∈Ω be theC-regularized evolution family provided by
Proposition 3, and define

u(t)=U(t, s)C−1x +
t∫

0

U(t, s)C−1f (s) ds for t ∈ [0, T ]. (27)

Then, by our assumptions and Proposition 3, one sees thatu ∈ C1([0, T ],X) and

u′(t)= P(t,A)U(t, s)C−1x + f (t)+
t∫

0

P(t,A)U(t, s)C−1f (s) ds

= P(t,A)U(t, s)C−1x + f (t)+ P(t,A)
t∫

0

U(t, s)C−1f (s) ds. (28)

Thusu is a solution of (1), and (22) (withr = 0) follows immediately from (27).
The rest of the proof is the same as in that of [6, Corollary 5.4].✷
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It is obvious from the proof that the assumptionf ∈ C([0, T ], Ym(α+1))

in Theorem 3 can be replaced by the weaker one:f ∈ C([0, T ], Ymα) ∩
L1([0, T ], Ym(α+1)). In this case, (26) is of the form

∥∥u(t)∥∥
m

�M
(

‖x‖m(α+1) +
t∫

0

∥∥f (s)∥∥
m(α+1) ds

)
for t ∈ [0, T ].

Theorem 4. Let P(t, ξ) be given by(7), and let f ∈ C([0, T ], [D]), where
[D] meansD :=⋂n

j=1D(Aj ), made into a Banach space with the graph norm
‖x‖D := ‖x‖ +∑n

j=1 ‖Ajx‖. Then, for everyx ∈D, (1) has a unique solution

u ∈C([0, T ], [D])∩C1([0, T ],X) satisfying(8) and∥∥u(t)∥∥
D

�M
(
‖x‖D + sup

0�s�t

∥∥f (s)∥∥
D

)
for t ∈ [0, T ]. (29)

Proof. Let u be defined by (9), in which(U(t, s))(t,s)∈Ω is the evolution
family provided by Proposition 4. Then it follows from our assumptions and
Proposition 4 thatu ∈ C1([0, T ],X) and (28) (withC = I ) is true. Thusu is a
solution of (1), while (8), (29),u ∈ C([0, T ], [D]), and the uniqueness ofu are all
consequences of the representation (9).✷

We remark that wheniAj (1 � j � n) are commuting generators of
contraction semigroups Theorem 4 follows from [5, Section 13.2].

Theorem 5. Let f ∈ C([0, T ], [R(C)]), whereC is defined as in the proof
of Proposition5. Then, for everyx ∈ R(C), (1) has a unique solutionu ∈
C1([0, T ],X), such that∥∥u(t)∥∥�M

(∥∥C−1x
∥∥+ sup

0�s�t

∥∥C−1f (s)
∥∥) for t ∈ [0, T ]. (30)

Moreover, if in additionaµ (|µ| �m) andf are all entire functions, then so is the
solutionu.

Proof. Let u be defined by (27), in which(U(t, s))t,s∈[0,T ] is the two parameter
family provided by Proposition 5. Thenu ∈C1([0, T ],X) and (28) follows easily
from our assumptions and Proposition 5. Thusu is a solution of (1), while (30) and
the uniqueness ofu follow from the representation (27). The remaining statement
can be obtained by (27) and Proposition 5(d).✷
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4. Applications to PDEs

This section is concerned with the following PDE
∂

∂t
u(t, x)=

∑
|µ|�m

aµ(t)D
µu(t, x)+ f (t, x)

for (t, x) ∈ (0, T ] × Rn,

u(0, x)= u0(x) for x ∈ Rn,

(31)

on some function spaceX on which translations are uniformly bounded and
strongly continuous. Then the results in Section 3 can be applied to (31) (i.e., take
iAj = iDj := ∂/∂xj ), immediately.X can be chosen as, for example,Lp(Rn),
Lp([0,1]n) (1� p <∞), or one of the following spaces of continuous functions:{

f ∈C(Rn); f is bounded and uniformly continuous
}
,{

f ∈C(Rn); lim|x|→∞f (x)= 0
}
,{

f ∈C(Rn); f (x) exists as|x| → ∞}
,{

f ∈C(Rn); f is 1-periodic
}
,{

f ∈C(Rn); f is almost periodic
}
,{

f ∈C([0,1]n); f |xj=0 = f |xj=1 = 0
}
,{

f ∈C([0,1]n); f |xj=0 = f |xj=1
}

with sup-norms.
LetWα,X(Rn) (α � 0) be the completion ofS(Rn) under the norm

‖u‖α,X ≡ ‖u‖X + ∥∥F−1((1+ | · |2)α/2Fu)∥∥
X

for u ∈ S
(
Rn
)
.

WhenX = Lp(Rn) (1 � p <∞) and α � 0, Wα,p(Rn) ≡ Wα,X(Rn) is the
so-called Bessel potential space. From [7, Lemma 2.1] we have that{λ ∈ C;
Reλ > 0} ⊆ ρ(=) and

(1−=)−α/2Wβ,X(Rn)=Wα+β,X(Rn) for α,β � 0.

In particular, when−|A|2 ==, Yα =Wα,X(Rn) for α � 0. Moreover, we define

nX

{= n∣∣1
2 − 1

p

∣∣ if X = Lp (1<p <∞),
> n/2 if X = L1 or the above space of continuous functions,

andnp = nX for X= Lp(Rn). Thus the following result holds.

Corollary 1. LetP(t, ξ)=∑
|µ|�m aµ(t)ξµ with aµ ∈C[0, T ] (|µ| �m).

(a) If P(t, ξ) is strongly elliptic for everyt ∈ [0, T ], and if there existj ∈ N0 and
β ∈ (0,1) such thataµ ∈ Cj+β [0, T ] (|µ| � m) and f ∈ Cj+β([0, T ],X),
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then for everyx ∈X, (31) has a unique solutionu ∈ Cj+1+γ ([δ, T ],X) for
δ ∈ (0, T ) andγ ∈ (0, β), such that∥∥u(t, ·)∥∥

X
�M

(
‖u0‖X + sup

0�s�t

∥∥f (s, ·)∥∥
X

)
for t ∈ [0, T ]. (32)

Moreover, if in additionaµ ∈ H(Σ) (|µ| � m) and f ∈ H(Σ,X), then
u ∈H(Σ ′,X).

(b) If P(t, ξ) satisfies(5) for somer ∈ (0,m], and if there existsβ ∈ [0,1]
such thataµ ∈ Cβ [0, T ] (|µ| � m) and f ∈ Cβ([0, T ],Wγ,X(Rn)), where
γ > (nX + 1)(m− r)− rβ , then for everyu0 ∈WnX(m−r),X(Rn), (31)has a
unique solution u such that∥∥u(t, ·)∥∥

X
�M

(
‖u0‖nX(m−r),X + sup

0�s�t

∥∥f (s, ·)∥∥
γ−m+rβ,X

)
for t ∈ [0, T ]. (33)

(c) If sup{ReP(t, ξ); ξ ∈ Rn, t ∈ [0, T ]}<∞, and iff ∈ C([0, T ],Wγ,X(Rn)),
whereγ > m(nX + 1), then for everyu0 ∈ Wm(nX+1),X(Rn), (31) has a
unique solution

u ∈ C([0, T ],Wm,X(Rn))∩C1([0, T ],X), (34)

such that∥∥u(t, ·)∥∥
m,X

�M
(
‖u0‖m(nX+1),X + sup

0�s�t

∥∥f (s, ·)∥∥
γ,X

)
for t ∈ [0, T ]. (35)

(d) If f ∈ C([0, T ],C∞
c (R

n)) then there exists a dense subspaceD, which
containsC∞

c (R
n), such that for everyu0 ∈ D, (31)has a unique solutionu ∈

C1([0, T ],X). In particular u0 ∈ C∞
c (R

n) impliesu ∈ C1([0, T ],C∞(Rn)).
Moreover, if in additionaµ (|µ| � m) and f are all entire, then so is the
solutionu.

Corollary 1(a) and (d) follow from Theorems 1 and 5, respectively. When
X is a space of continuous functions orL1(Rn), Corollary 1(b) and (c) follow
Theorems 2 (also see its remark) and 3, respectively. WhenX = Lp(Rn) (1<
p < ∞), Corollary 1(b) and (c) can be deduced by modifying the proofs of
Theorem 2 and 3, respectively. The main points are using the Riesz–Thorin
convexity theorem and a multiplier theorem [8, Theorem G], as well as noting
u(D)φ =F−1(uFφ) for u ∈FL1(Rn) andφ ∈ S(Rn).

Corollary 1(a) improves [6, Theorem 5.5]. IfD(P (t,D)) is independent of
t then, as seen in [10, Section 3], Corollary 1(a) can be deduced from [10,
Theorem 1]. This is not possible in the general case. To illustrate the assumptions
in Corollary 1(a) to be weaker, we will use Theorem 2 in [12] to gain the solution
u ∈ Cj+1+γ ([δ, T ],X). To this end, we chooseω > sup{ReP(t, ξ); ξ ∈ Rn,
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t ∈ [0, T ]}. From [12, Theorem 2] it is necessary to guarantee the following
condition(

ω− P(·,D))−1 ∈ Cj+1+β([0, T ],B(X)) for someβ ∈ (γ,1). (36)

A careful computation shows that the assumption onaµ has to take the form
aµ ∈ Cj+1+β [0, T ] (|µ| � m). It is not sufficient for (36) to suppose onlyaµ ∈
Cj+β [0, T ] (|µ| � m). The other conditions of [12, Theorem 2] are implied by
that of Corollary 1(a). Thus to obtain the claim by [12, Theorem 2], a stronger
assumption, i.e.,aµ ∈ Cj+1+β [0, T ] (|µ| �m) is necessary.

Corollary 1(c) improves [13, Theorem 3.4] and, in the caseX = Lp(Rn)
(1<p <∞), [7, Corollary 3.2]. Moreover, by a careful observation of the proof
of Theorem 3 we find that, corresponding to Corollary 1(c), the following result
on the so-called strong solution of (31) is true.

Corollary 2. Let P(t, ξ) = ∑
|µ|�m aµ(t)ξµ with aµ ∈ L∞(0, T ) (|µ| � m),

and suppose there existsω ∈ R such that supξ∈Rn ReP(t, ξ) � ω a.e. on
[0, T ]. If f ∈ L1([0, T ],Wα,X(Rn)) whereα > m(nX + 1), then for everyu0 ∈
Wm(n

′
X+1),X(Rn), (31)has a unique strong solutionu (i.e., u is differentiable a.e.

on [0, T ], u′ ∈L1([0, T ],X), and u satisfies(31)a.e. on[0, T ]).

We now turn to consider (31) with constant coefficients, i.e.,aµ(t) ≡ aµ
(|µ| �m). First, we note that an improvement of Corollary 1(a) can be obtained.
More precisely, we can chooseγ = β in Corollary 1(a). In fact, this follows
immediately from [14, Theorem 2.2] and the following general result (cf. [9]).

Lemma 1. LetB be the generator of an analytic semigroup on a Banach spaceX,
and let f ∈ Cj+β([0, T ],X) for somej ∈ N0 and β ∈ (0,1). Then for every
x ∈X, the inhomogeneous Cauchy problem

u′(t)= Bu(t)+ f (t), 0< t � T , u′(0)= x,
has a unique solutionu ∈Cj+1+β([δ, T ],X) for δ > 0.

Next, we can give the higher order differentiability of the solution in
Corollary 1(b). Indeed, this can be deduced from the following result.

Lemma 2. LetP(ξ)=∑
|µ|�m aµξµ (ξ ∈ Rn), and letReP(ξ) is bounded above

and r-coercive for somer ∈ (0,m]. If there existj ∈ N0 and β ∈ [0,1) such
that f ∈ Cj+β([0, T ], Yγ ), whereγ > (n2 + 1)(m− r)− rβ , then for everyx ∈
Yα(m−r), α > n

2 , (1) (with aµ(t)≡ aµ) has a unique solutionu ∈ Cj+1((0, T ],X)
satisfying∥∥u(t)∥∥�M

(
‖x‖α(m−r) + sup

0�s�t

∥∥f (s)∥∥
γ−m+rβ

)
for t ∈ [0, T ]. (37)
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In particular, f ∈ C∞([0, T ], Yδ) for someδ > (n2 + 1)(m − r) − r implies
u ∈C∞((0, T ],X).

Proof. By [14, Theorem 3.1],P(A) generates aC-regularized semigroup
(T (t))t�0 with T (·) ∈ C∞((0,∞),B(A∞)), whereC = (1 + |A|2)−α(m−r)/2.
Then (cf. [14])w := T (·)C−1x is a solution of the Cauchy problemw′(t) =
P(A)w(t) (t > 0), w(0)= x. Moreover, we havew ∈ C∞((0, T ],X).

We now definev(t) = ∫ t
0 vt−s(A)C

−1
1 f (s) ds for t ∈ [0, T ], whereC1 =

(1+ |A|2)−(γ−m+rβ)/2 andvt = (1+ | · |2)−(γ−m+rβ)/2etP . Then, from the proof
of Theorem 2 one has thatu :=w + v is a solution of (1) (withaµ(t)≡ aµ) and
satisfies (37).

Sincew ∈ C∞((0, T ],X), it remains to showv ∈ Cj+1((0, T ],X). Indeed, as
seen in (17), an induction onj leads to

v(j+1)(t)=C−1
1 f

(j)(t)+
j∑
k=1

(
d

dt

)k
vt (A)C

−1
1 f

(j−k)(0)

+
t∫

0

P(A)vt−s(A)C−1
1 f

(j)(s) ds for t ∈ (0, T ].

Becausef (j) satisfies the same condition asf in Theorem 2, it follows from the
proof of Theorem 2 thatv(j+1)(t) (t ∈ (0, T ]) exists and is inC((0, T ],X). ✷

We now summarize the above results (withB = P(D) andA=D), as well as
Corollary 1(c)–(d) (withaµ(t)≡ aµ) in the following corollary.

Corollary 3. LetP(ξ)=∑
|µ|�m aµξµ (ξ ∈ Rn).

(a) If P(ξ) is strongly elliptic, and iff ∈ Cj+β([0, T ],X) for somej ∈ N0 and
β ∈ (0,1), then for everyx ∈X, (31) (with aµ(t)≡ aµ) has a unique solution
u ∈ Cj+1+β([δ, T ],X) for δ ∈ (0, T ) such that(32) holds. Moreover,f ∈
H(Σ) impliesu ∈H(Σ ′,X).

(b) If ReP(ξ) is bounded above andr-coercive for somer ∈ (0,m], and if there
exist j ∈ N0 and β ∈ [0,1) such thatf ∈ Cj+β([0, T ],Wγ,X(Rn)), where
γ > (nX + 1)(m− r)− rβ , then for everyu0 ∈WnX(m−r),X(Rn), (31) (with
aµ(t) ≡ aµ) has a unique solutionu ∈ Cj+1((0, T ],X) satisfying(33). In
particular, f ∈ C∞([0, T ],Wδ,X(Rn)) for someδ > (nX + 1)(m − r) − r
impliesu ∈C∞((0, T ],X).

(c) If ReP(ξ) is bounded above, and iff ∈ C([0, T ],Wγ,X(Rn)) whereγ >
m(nX+1), then for everyu0 ∈Wm(nX+1),X(Rn), (31) (with aµ(t)≡ aµ) has
a unique solutionu satisfying(34)and(35).
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(d) If f ∈ C([0, T ],C∞
c (R

n)) then there exists a dense subspaceD, which
containsC∞

c (R
n), such that for everyu0 ∈ D, (31) (with aµ(t) ≡ aµ) has

a unique solutionu ∈ C1([0, T ],X). In particular, u0 ∈ C∞
c (R

n) implies
u ∈ C1([0, T ],C∞(Rn)). Moreover, if in additionf is entire then so is the
solutionu.

We conclude this paper with several examples.

Example 1. We first consider the following equation with space-dependent
coefficients and Dirichlet boundary condition

∂

∂t
u(t, x)= P (t, q(x)D)u(t, x)+ f (t, x)
for (t, x) ∈ (0, T ] × In,

u(t, x)= 0 for t ∈ (0, T ] andx ∈ ∂ In,
u(0, x)= u0(x) for x ∈ In,

(38)

onC0(In) := {f ∈ C(In); f |∂In = 0}, where I= [0,1], ∂ In denotes the boundary
of In, q(x)D = (q(x1)D1, . . . , q(xn)Dn) and q(xj ) = xαj (1 − xj )α for some
α � 1.

By [1, Proposition 3] we know thatq(xj )iDj (1 � j � n) are the generators
of commuting boundedC0-groups onC0(In), if P(t, ξ) is strongly elliptic for
everyt ∈ [0, T ], and if there existsβ ∈ (0,1) such thataµ ∈ Cβ [0, T ] (|µ| �m)
andf ∈ Cβ([0, T ],C0(In)), then for everyu0 ∈ C0(In), Corollary 1(a) implies
that (38) has a unique solutionu ∈ C([0, T ],C0(In)) ∩ C1+γ ([δ, T ],C0(In)),
whereδ ∈ (0, T ) andγ ∈ (0, β). Moreover,∥∥u(t, ·)∥∥0 �M

(
‖u0‖0 + sup

0�s�t

∥∥f (s, ·)∥∥0

)
for t ∈ [0, T ],

where‖ · ‖0 denotes the sup-norm ofC0(In).

Example 2. Next, we consider then-dimensional linearized KdV-Burgers
equation

∂

∂t
u(t, x)=

∑
1�|µ|�3

aµ(iD)
µu(t, x)+ f (t, x)

for (t, x) ∈ (0, T ] × Rn,

u(0, x)= u0(x) for x ∈ Rn,

(39)

onLp(Rn) (1 � p <∞), whereaµ ∈ R (|µ| = 1,2,3). We note that, except in
the casep = 2 (cf. [9, Section 8.5]), (39) cannot be treated byC0-semigroups.

If
∑

|µ|=2 aµξ
µ > 0 for ξ �= 0, and if f ∈ Cj+β([0, T ],Wγ,p(Rn)) for

some j ∈ N0, β ∈ [0,1) and γ > np − 2β + 1 then by Corollary 3(b), for
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every u0 ∈ Wnp,p(Rn), (39) has a unique solutionu ∈ C([0, T ],Lp(Rn)) ∩
Cj+1((0, T ],Lp(Rn)) such that∥∥u(t, ·)∥∥

Lp
�M

(
‖u0‖np,Lp + sup

0�s�t

∥∥f (s, ·)∥∥
γ+2β−3,Lp

)
for t ∈ [0, T ].

Moreover, if in additionf ∈C∞([0, T ],Wδ,p(Rn)) for someδ > np−1 thenu ∈
C∞((0, T ],X).

If aµ = 0 (|µ| = 2) then (39) is then-dimensional linearized KdV equation. In
this case we assume thatf ∈ C([0, T ],Wγ,p(Rn)) whereγ > 3(np + 1). Then
by Corollary 3(c), for everyu0 ∈W3(np+1),p(Rn), (39) (withaµ = 0 for |µ| = 2)
has a unique solutionu ∈C([0, T ],W3,p(Rn))∩C1([0, T ],Lp(Rn)) such that∥∥u(t, ·)∥∥3,Lp �M

(
‖u0‖3(np+1),Lp + sup

0�s�t

∥∥f (s, ·)∥∥
γ,Lp

)
for t ∈ [0, T ].

Example 3. Finally, consider the first order equation
∂

∂t
u(t, x)=

n∑
j=1

aj (t)
∂

∂xj
u(t, x)+ a0(t)u(t, x)+ f (t, x)

for (t, x) ∈ (0, T ] × Rn,

u(0, x)= u0(x) for x ∈ Rn,

(40)

onX, whereaj ∈C[0, T ] (0� j � n).
If aj (1 � j � n) are real valued, andf ∈ C([0, T ],Wα,X(Rn)), whereα = 1

for X = Lp(Rn) (1< p <∞) andα > 1 otherwise, then by Theorem 4 and
Miklin’s multiplier theorem [11], for everyu0 ∈ Wα,X(Rn), (40) has a unique
solutionu ∈ C([0, T ],Wα,X(Rn))∩C1([0, T ],X) such that∥∥u(t, ·)∥∥

α,X
�M

(
‖u0‖α,X + sup

0�s�t

∥∥f (s)∥∥
α,X

)
for t ∈ [0, T ].

In the caseX = L1(Rn), if W1,1(Rn) is understood as the usual Sobolev space
then the conclusion (withα = 1) still holds.

If aj (1 � j � n) are purely imaginary valued andf ∈ C([0, T ],C∞
c (R

n))

then, by Corollary 1(d), there exists a dense subspaceD, which containsC∞
c (R

n),
such that for everyu0 ∈ D, (40) has a unique solutionu ∈ C1([0, T ],X).
In particular,u0 ∈ C∞

c (R
n) implies u ∈ C1([0, T ],C∞(Rn)). Moreover, if in

additionaj (0� j � n) andf are all entire then so is the solutionu.
In the case whenaj (1 � j � n) are real valued, the statement “(40), even

with constant coefficients, cannot be treated by integrated semigroups” in [7,
p. 817] is not right. Indeed, (40) can be treated by evolution families, even by
C0-groups directly (see the proof of Theorem 4). Meanwhile, our result improves
[7, Corollary 3.3], in whichα > 1+ nX is required.
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