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Abstract

This paper introduces an analogue of the Solomon descent algebra for the complex reflection groups
of type G(r,1, n). As with the Solomon descent algebra, our algebra has a basis given by sums of ‘dis-
tinguished’ coset representatives for certain ‘reflection subgroups.’ We explicitly describe the structure
constants with respect to this basis and show that they are polynomials in r . This allows us to define a
deformation, or q-analogue, of these algebras which depends on a parameter q. We determine the irre-
ducible representations of all of these algebras and give a basis for their radicals. Finally, we show that the
direct sum of cyclotomic Solomon algebras is canonically isomorphic to a concatenation Hopf algebra.
Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.
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1. Introduction

In a seminal paper [28], Solomon showed that the group algebra of any finite Coxeter group
has a remarkable subalgebra, the Solomon descent algebra. In this paper we construct a similar
subalgebra of the complex reflection group of type G(r,1, n) and show that this algebra shares
many of the properties of the Solomon descent algebras.

Solomon showed that each descent algebra has a distinguished basis for which he gave an ex-
plicit description of the structure constants. This distinguished basis is given by the sums of the
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distinguished coset representatives of the parabolic subgroups. Solomon gave a basis for the rad-
ical of the descent algebra and he constructed a natural homomorphism from the descent algebra
into the parabolic Burnside ring of the associated Coxeter group. As a consequence, it follows
that the irreducible representations of the Solomon descent algebras are all one-dimensional and
that, in characteristic zero, they are naturally indexed by the conjugacy classes of the parabolic
subgroups.

There has been an explosion of research into the descent algebras of Coxeter groups since
Solomon discovered them; see, for example, [2,5–8,10,26]. The study of the Solomon descent
algebras of the symmetric groups has been even more intense because of connections between
these algebras and free Lie algebras, 0-Hecke algebras, non-commutative and quasi-symmetric
functions [1,13,15,22], the representation theory of the symmetric group, and card shuffling and
associated random walks [4,17].

The algebra that we construct in this paper is in many ways a natural generalization of the
Solomon algebra of the symmetric groups. The cyclotomic Solomon algebra Sol(Gr,n) is a
subalgebra of the group algebra of the complex reflection group Gr,n of type G(r,1, n). Like
Solomon, we define our algebra to be the subalgebra of the group algebra of Gr,n with basis the
sum of the ‘distinguished’ coset representatives of a natural class of subgroups of Gr,n. It turns
out that many natural choices of subgroups, and coset representatives for these subgroups, do not
yield a subalgebra of the group algebra (see Remark 8.10). We show, however, that with respect
to the ‘right’ length function, the sums of the minimal length coset representatives of the standard
reflection subgroups of Gr,n give rise to a subalgebra of ZGr,n which is free of rank 2 · 3n−1. We
give an explicit formula for the structure constants for this basis which is similar to Solomon’s
formula for the structure constants of the descent algebra of the symmetric group Sn.

One surprising feature of the cyclotomic Solomon algebras Sol(Gr,n) is that the structure
constants of these algebras for n � 0 are polynomials in r which are independent of n. As a con-
sequence, for a fixed n, these algebras admit a simultaneous deformation Solq(n) which depends
on a parameter q . We show that the algebras Solq(n) are free of rank 2 · 3n−1. We construct and
classify the irreducible representations of these algebras over an arbitrary field and give a basis
for the radical of Solq(n).

A remarkable result of Gessel [16] shows that there is a natural duality between the Hopf
algebra of quasi-symmetric functions and the descent Hopf algebra. This led Malvenuto and
Reutenauer [22] to show that the direct sum of these algebras under the shuffle (or convolution)
product is a Hopf subalgebra of the Hopf algebra of permutations. This Hopf algebra is dual
to the Hopf algebra of quasi-symmetric functions and it is isomorphic to the Hopf algebra of
non-commutative symmetric functions [15]. These results are important because they relate the
coproduct of the quasi-symmetric functions with the product in the descent algebras.

Baumann and Hohlweg [3] showed that there is a similar Hopf algebra structure under the
shuffle product on the space G (r) = ⊕

n�0 ZGr,n of coloured permutations; see also the an-
nouncement of Novelli and Thibon [25]. We prove that the direct sum of the cyclotomic Solomon
algebras Sol(r) = ⊕

n�0 ZSol(Gr,n) is a Hopf subalgebra of G (r). We show that Sol(r) is a con-
catenation Hopf algebra and that Sol(r) has a second bialgebra structure which has the same
coproduct as G (r) but where the product map is induced by group multiplication. We expect
that the Hopf algebra Sol(r) is dual to the Hopf algebra of quasi-symmetric functions of type B

considered by Hsiao and Petersen [18].
Different generalizations of the Solomon algebras have been considered by other authors, the

most striking of which are the Mantaci–Reutenauer algebras [23]. It is natural to ask whether the
cyclotomic Solomon algebras and the Mantaci–Reutenauer algebras are isomorphic, at least for
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type Bn, since they are both free of rank 2 · 3n−1. We show in Remark 8.10 that, in general, these
two algebras are not isomorphic. In particular, Example 8.9 shows that, in stark contrast to the
Solomon descent algebra, there is no map from Sol(Gr,n) into the character ring of Gr,n.

This paper is organized as follows. In Section 2 we introduce the complex reflection groups
Gr,n and set our notation. In Section 3 we define and classify the standard reflection subgroups
of Gr,n and Section 4 shows that every coset of a reflection subgroup has a unique element
of minimal length. Sections 4 and 5 give combinatorial descriptions of the coset and double
representatives of the reflection subgroups. This combinatorics turns out to be closely related
to the structure constants of the cyclotomic Solomon algebras, which are finally introduced in
Section 6. The first main result of the paper, Theorem 6.7, determines the structure constants
of the cyclotomic Solomon algebras, hence showing that they are in fact subalgebras of Gr,n. In
Section 7 we investigate the ‘generic’ cyclotomic Solomon algebras and in Section 8 we construct
and classify the irreducible representations of the cyclotomic algebras and their deformations. In
Section 9 we show that the direct sum of the cyclotomic algebras gives rise to a concatenation
Hopf algebra which is a Hopf subalgebra of the Hopf algebras of coloured permutations. Finally,
in Section 10 we give a second combinatorial interpretation of the structure constants of the
cyclotomic Solomon algebras. We use this to show that the direct sum of the cyclotomic Hopf
algebras comes equipped with a second bialgebra structure which has the same coproduct but
where the product map is induced by group multiplication.

2. Complex reflection groups of type G(r,1,n)

This paper is concerned with certain subalgebras of the group algebra of the complex reflec-
tion groups of type G(r,1, n), in the Shephard–Todd classification of the finite subgroups of
GLn(C) which are generated by (pseudo) reflections. In this section we introduce these groups
and study a length function on them.

Fix positive integers r and n. The complex reflection group of type G(r,1, n) is the group
Gr,n which is generated by elements s0, s1, . . . , sn−1 subject to the relations

sr
0 = 1 = s2

i , s0s1s0s1 = s1s0s1s0,

sisj = sj si , sisi+1si = si+1sisi+1,

where 1 � i � j − 1 � n − 1. This presentation is very similar to the presentation of a Coxeter
group; indeed, if r � 2 then Gr,n is a Coxeter group. Accordingly, we encode this presentation
in the following “cyclotomic Dynkin diagram”:

The node labeled by r indicates that the generator s0 has order r ; otherwise, this graph gives
the presentation of Gr,n in exactly the same way as a Dynkin diagram gives the presentation of
the corresponding Coxeter group. If r = 1 then G1,n is isomorphic to the symmetric group of
degree n; if r = 2 then Gr,n is a Coxeter group of type Bn.

From the presentation of Gr,n it is evident that there is a homomorphism from the symmetric
group Sn into Gr,n which is determined by mapping each transposition (i, i + 1) to si , for
i = 1, . . . , n−1. In fact, this map is injective so we can—and do—identify Sn with the subgroup
〈s1, . . . , sn−1〉 via this homomorphism.
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The symmetric group Sn acts on {1,2, . . . , n} from the right. We write this action exponen-
tially. Thus, w ∈ Sn sends the integer i to iw , for 1 � i � n.

Define t1 = s0 and ti+1 = si tisi , for 1 � i < n. Using the relations it is easy to see that ti tj =
tj ti , for all i, j . It follows that the subgroup T = 〈t1, . . . , tn〉 is abelian and, further, one can show
that T ∼= (Z/rZ)n. It is easy to see that

tiw = wtiw , for all w ∈ Sn and 1 � i � n, (2.1)

Hence, T is a normal subgroup of Gr,n. With a little more work we obtain the following descrip-
tion of Gr,n as an (internal) semidirect product, or wreath product:

Gr,n = T � Sn = 〈s0〉 � 〈s1, . . . , sn−1〉 ∼= (Z/rZ) � Sn. (2.2)

Let Zn
r = {α = (α1, . . . , αn) ∈ Zn: 0 � αi < r}. For α ∈ Zn

r let tα = t
α1
1 . . . t

αn
n . Then, as a set,

Gr,n = {tαw: α ∈ Zn
r and w ∈ Sn} and |Gr,n| = rnn!.

Let Π = Πr,n = {t1, . . . , tn, s1, . . . , sn−1}. Then Π generates Gr,n because {s0 = t1, s1, . . . ,

sn−1} generates Gr,n.

2.3. Definition. The Π -length function on Gr,n is the function � = �Π :Gr,n −→ N given by
�(g) = min{k � 0: g = ri . . . rk, for some ri ∈ Π}.

2.4. Remark. Let S0 = {s0, s1, . . . , sn−1}. Bremke and Malle [11] have studied the length func-
tion �0 :Gr,n −→ N which is defined by

�0(g) = min{k � 0: g = ri . . . rk, for some ri ∈ S0}.

By definition, �(g) � �0(g), for all g ∈ Gr,n. Furthermore, it is not hard to see that �(g) ≡ �0(g)

(mod 2). Moreover, if w ∈ Sn then

�(w) = �0(w) = #
{
(i, j): 1 � i < j � n and iw > jw

}
.

(The last equality is well known; see, for example, [24, Prop. 1.3].) Hence, Proposition 2.5 below
gives an effective way of computing the Π -length function on Gr,n.

For α = (α1, . . . , αn) ∈ Zn
r we set |α| = α1 + · · · + αn.

2.5. Proposition. Suppose that α ∈ Zn
r and w ∈ Sn. Then �(tαw) = |α| + �(w).

Proof. By definition �(tαw) � |α| + �(w). Conversely, suppose that tαw = r1 . . . rk , for some
ri ∈ Π . Using (2.1) we can move each ti ∈ {r1, . . . , rk} to give a new word in which all of the
elements of T appear on the left. As every element of Gr,n can be written uniquely in the form
tβv, for β ∈ Zn

r and v ∈ Sn, this new word must be tαw. By (2.1), this rewriting process does not
increase the Π -length of the word, however, it may decrease the Π -length if some cancellation
occurs. Hence, �(tαw) = k � |α| + �(w), completing the proof. �
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2.6. Corollary. Suppose that α ∈ Zn
r and that w ∈ Sn. Then

�
(
tj · tαw

) =
{

�(tαw) + 1, if αj < r − 1,

�(tαw) − r + 1, if αj = r − 1,

for 1 � j � n and �(si · tαw) = |α| + �(siw), for 1 � i < n − 1.

Note that tαw · tj = t
jw−1 · tαw by (2.1) and �(tαw · si) = |α| + �(wsi), for 1 � i < n − 1

and 1 � j � n. Hence, Corollary 2.6 can be used to compute �(g · tαw) and �(tαw · g), for any
g ∈ Gr,n.

It is sometimes convenient to describe Gr,n combinatorially as a set of ‘words.’ Fix a primitive
r th root of unity ζ = exp(2πi/r) ∈ C and set

n = {1,2, . . . , n} and nζ = {
mζ i : m ∈ n and 0 � i < r

}
.

Recall that if z ∈ C then |z| is the complex modulus of z. In particular, if mζ i ∈ nζ then
|mζ i | = m. Define a word in nζ to be an element of the set

Gr,n = {
ω = (ω1, . . . ,ωn): ωi ∈ nζ and

{|ω1|, . . . , |ωn|
} = n

}
.

If ω = (ω1, . . . ,ωn) is a word then we abuse notation and write ω = ω1 . . .ωn.
There is a faithful right action of Gr,n on Gr,n given by

ω1 . . .ωn · tαw = ζ α1ω1w . . . ζ αnωnw,

for α ∈ Zn
r and w ∈ Sn. Consequently, there is a natural bijection Gr,n → Gr,n given by tαw 
→

1 . . . n · tαw, so that |Gr,n| = rnn! = |Gr,n|. Thus, we have described the regular representation
of Gr,n as the permutation representation on the set of words Gr,n. Equivalently, Gr,n is the group
of permutations of nζ such that (mζ i)g = mgζ i , for all m ∈ n, 0 � i < r and g ∈ Gr,n.

3. Reflection subgroups

Recall that Π = {t1, . . . , tn, s1, . . . , sn−1}. In this section we define the reflection subgroups
of Gr,n and show that every coset of a reflection subgroup contains a unique element of minimal
Π -length.

3.1. Definition. A (standard) reflection subgroup of Gr,n is a subgroup which is generated by
a subset of Π .

Geometrically, a reflection subgroup of Gr,n should be any subgroup which is generated by
elements which act by (pseudo) reflections in the reflection representation of Gr,n. All of the
elements of Π act as reflections in the reflection representation of Gr,n, so every standard reflec-
tion subgroup is a reflection subgroup in this geometric sense. If r > 2 then it is not difficult to
see that there are ‘geometric reflection subgroups’ of Gr,n which are not (conjugate to) standard
reflection subgroups.

If J ⊆ Π let GJ = 〈J 〉 be the corresponding (standard) reflection subgroup of Gr,n. This
notation is inherently ambiguous because it can happen that GJ = GK even though J �= K , for
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J,K ⊆ Π . For example, GΠ = Gr,n = GS0 (recall that S0 = {s0, s1, . . . , sn−1}), and yet Π �= S0

if n > 1. We start our study of the reflection subgroups by resolving this ambiguity.
A composition of n is a sequence μ = (μ1, . . . ,μk) of positive integers which sum to n.

A signed composition of n is a sequence of non-zero integers μ = (μ1, . . . ,μk) such that |μ| =
|μ1| + · · · + |μk| = n. Let Λ±

n be the set of signed compositions of n and let Λn be the set of
compositions of n. Then Λn ⊆ Λ±

n .
If μ = (μ1, . . . ,μk) ∈ Λ±

n let μ+ = (|μ1|, . . . , |μk|) and −μ = (−μ1, . . . ,−μk). Then
μ+ ∈ Λn is a composition of n and −μ ∈ Λ±

n . We set |μ|+ = 1
2

∑k
i=1(μ

+
i + μi), so that |μ|+

is the sum of the positive parts of μ. Similarly, let |μ|− = 1
2

∑k
i=1(μ

+
i − μi) be the absolute

value of the sum of the negative parts of μ. Then |μ| = |μ|− + |μ|+ = n. Finally, set μ0 = 0 and
μi = |μ1| + · · · + |μi |, for i � 1.

3.2. Definition. Suppose that μ = (μ1, . . . ,μk) ∈ Λ±
n is a signed composition. Define

Πμ =
⋃

1�i�k

{sμi−1+1, . . . , sμi−1} ∪
⋃

1�i�k
μi>0

{tμi−1+1, . . . , tμi
}.

Then Πμ ⊆ Π so we set Gμ = GΠμ .

Let S = {s1, . . . , sn−1} ⊆ Π . Suppose that μ ∈ Λ±
n . Then Πμ ⊆ S if and only if −μ ∈ Λn. In

general, Πμ ⊆ Π and the reflection subgroup Gμ is conjugate to the reflection subgroup

∏
μi>0

Gr,μi
×

∏
μj <0

S−μj

of Gr,n. In fact, {Gμ: μ ∈ Λ±
n } is the complete set of reflection subgroups of Gr,n.

3.3. Proposition. Suppose that n � 1, r � 2 and that J ⊆ Π . Then GJ = Gμ, for a unique signed
composition μ ∈ Λ±

n . Consequently, Gr,n has 2 · 3n−1 distinct reflection subgroups.

Proof. We prove both statements in the proposition by induction on n. If n = 1 then G∅ = G(1)

and GΠ = G(−1) are the only reflection subgroups of Gr,1 so the proposition holds. In particular,
Gr,1 has |Λ±

1 | = 2 reflection subgroups.
Suppose then that n > 1 and observe that Πr,n = Πr,n−1 ∪ {sn−1, tn}. Let G′ = Gr,n−1, which

we consider as a subgroup of Gr,n in the natural way. By induction on n every reflection subgroup
of G′ is of the form G′

μ = (Gr,n−1)μ, for some μ ∈ Λ±
n−1.

Fix J ⊆ Π . Then GJ ∩ G′ is a reflection subgroup of G′, so that GJ ∩ G′ = Gμ, for some
μ = (μ1, . . . ,μk) ∈ Λ±

n−1. Now, tn−1 ∈ G′
μ if and only if μk > 0, so

〈
G′

(μ1,...,μk)
, sn−1, tn

〉 =
{ 〈G′

(μ1,...,μk−1,μk)
, sn−1〉, if μk > 0,

〈G′
(μ ,...,μ ,−μ ), sn−1〉, if μk < 0.
1 k−1 k
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Consequently, GJ is equal to either G′
μ, 〈G′

μ, tn〉 or 〈G′
μ, sn−1〉, for some μ ∈ Λ±

n−1. Therefore,

GJ =
⎧⎨
⎩

G′
(μ1,...,μk)

= G(μ1,...,μk,−1), if sn−1, tn /∈ GJ ,

〈G′
(μ1,...,μk)

, tn〉 = G(μ1,...,μk,1), if sn−1 /∈ GJ and tn ∈ GJ ,

〈G′
(μ1,...,μk)

, sn−1〉 = G(μ1,...,μk+εk), if sn−1, tn ∈ GJ

where εk = 1 if μk > 0 and εk = −1 if μk < 0. Moreover, by (2.2) the subgroups of Gr,n aris-
ing this way for different ν ∈ Λ±

n−1 are all distinct. Hence, the reflection subgroups of Gr,n

are naturally indexed by the signed compositions of n. Consequently, by induction, Gr,n has
3|Λ±

n−1| = 2 · 3n−1 reflection subgroups. �
It follows from the definitions and Proposition 3.3 that Πμ is the unique maximal subset of

Π (under inclusion) which generates the reflection subgroup Gμ. In contrast, if μ ∈ Λ±
n then the

reader can check that there are
∏

i: μi>0 μi distinct minimal subsets of Π which generate Gμ.
Thus, the (minimal) subsets of Π which generate the reflection subgroups are, in general, not
unique.

4. Distinguished coset representatives

In this section we describe, both algebraically and combinatorially, a set of ‘distinguished’
coset representatives for the reflection subgroups of Gr,n.

Fix a composition λ = (λ1, . . . , λk) of n. Then Sλ = Sλ1 × · · · × Sλk
is a parabolic, or

Young subgroup of Sn. According to our conventions Sλ = G−λ, so Sλ is a reflection subgroup
of Gr,n. Let

Dλ = {
d ∈ Sn: �(d) � �(w) for all w ∈ Sλd

}
.

Then, as is well known, Dλ is a complete set of right coset representatives for Sλ in Sn. More-
over, if d ∈ Dλ then d is the unique element of minimal length in the coset Sλd ; see, for
example, [14, Prop. 2.1.1]. It is not hard to see that T Dλ is a complete set of minimal length
coset representatives for G−λ = Sλ in Gr,n. We want to generalize this observation to all reflec-
tion subgroups.

Recall that if μ = (μ1, . . . ,μk) ∈ Λ±
n then μ+ = (|μ1|, . . . , |μk|) is a composition of n. Con-

sulting the definitions, Gμ ∩ Sn = Sμ+ . Similarly, define

Tμ = Gμ ∩ T = 〈ti | ti ∈ Gμ〉
= 〈ti | μj−1 < i � μj for some j with μj > 0〉.

Then, Tμ
∼= (Z/rZ)|μ|+ .

With this notation, (2.2) gives the following description of Gμ as a semidirect product of Tμ

and Sμ+ .

4.1. Lemma. Suppose that μ ∈ Λ±
n . Then Gμ = Tμ � Sμ+ .

Since T ∼= (Z/rZ)n is an abelian group, every subgroup of T is a normal subgroup of T .
In particular, if Gμ is a reflection subgroup of Gr,n then Tμ is normal in T and T/Tμ

∼=
(Z/rZ)|μ|− ∼= T−μ. Further, TμT−μ = T = T−μTμ, for all μ ∈ Λ±.
n
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Mimicking the definition of Dμ+ we have:

4.2. Definition. Suppose that μ ∈ Λ±
n . Set

Eμ = {
e ∈ Gr,n: �(e) � �(g) for all g ∈ Gμe

}
.

We can now prove the main result of this section which shows that Eμ is a (distinguished) set
of coset representatives for Gμ in Gr,n.

4.3. Theorem. Suppose that μ ∈ Λ±
n . Then Eμ = T−μ × Dμ+ and Eμ is a complete set of right

coset representatives for Gμ in Gr,n.

Proof. We first show that T−μ × Dμ+ is a complete set of coset representatives for Gμ in Gr,n.
Suppose that tαw ∈ Gr,n, where α ∈ Zn

r and w ∈ Sn. Define β = (β1, . . . , βn) ∈ Zn
r by

βi =
{

αi, if ti /∈ Gμ ⇐⇒ ti ∈ T−μ,

0, if ti ∈ Gμ ⇐⇒ ti /∈ T−μ.

Then, by definition, tβ ∈ T−μ. Moreover, Gμtαw = Gμtβw and �(tαw) � �(tβw), with equality
if and only if α = β .

Write w = vd , where v ∈ Sμ+ and d ∈ Dμ+ . Let γ = βv = (β1v , . . . , βnv ). Then tβv = vtγ ,
by (2.1), so that tγ = v−1tβv ∈ T−μ since Sμ centralizes T−μ. Consequently, Gμtαw = Gμtγ d ,
where tγ ∈ T−μ and d ∈ Dμ+ . However, by Lemma 4.1,

[Gr,n : Gμ] = [T : T−μ] · [Sn : Sμ+] = #(T−μ × Dμ+).

Therefore, T−μ × Dμ+ is a complete set of right coset representatives for Gμ in Gr,n.
It remains to prove that Eμ = T−μ ×Dμ+ . Suppose that, as above, we have Gμtαw = Gμtγ d ,

for α ∈ Zn
r , w ∈ Sn, tγ ∈ T−μ and d ∈ Dμ+ . The argument of the first paragraph shows that

�(tγ d) � �(tαw) with equality if and only if tα ∈ T−μ and w ∈ Dμ+ . That is, if and only if
α = γ and w = d . Hence, Eμ = T−μ × Dμ+ as claimed. �

Theorem 4.3 shows that every coset of a reflection subgroup contains a unique element of
minimal Π -length. We call Eμ the set of distinguished coset representatives for Gμ in Gr,n.

4.4. Example. Suppose that r � 2 and consider Gr,2 = (Z/rZ) � S2. Then Π = {t1, t2, s1} and
Gr,2 has six reflection subgroups. The following table describes these groups and the correspond-
ing sets of distinguished right coset representatives.

μ Gμ Πμ Eμ

(−1,−1) 1 ∅ T × S2

(1,−1) {tk1 : 0 � k < r} {t1} 〈t2〉 × S2

(−1,1) {tk2 : 0 � k < r} {t2} 〈t1〉 × S2
(1,1) T {t1, t2} S2
(−2) S2 {s1} T

(2) T � S2 {t1, t2, s1} 1
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For each reflection subgroup we have given the factorization of Eμ from Theorem 4.3. Observe
that the reflection subgroups do not depend in a crucial way on r and that |Eμ| = |Gr,n|/|Gμ| is
a polynomial in r , for μ ∈ Λ±

n (and r � 2).

We now give combinatorial interpretations of the set of distinguished coset representatives
Eμ, for μ ∈ Λ±

n , which is similar to the description of Dμ+ in terms of row standard tableaux
(see [24, Prop. 3.3]).

Fix a composition λ ∈ Λn. The diagram of λ is the set

[λ] = {
(i, j) ∈ N2: 1 � j � λi and 1 � i � �(λ)

}
.

Here �(λ) is the number of non-zero parts of λ. We think of [λ] as being an array of boxes in the
plane.

Now suppose that μ ∈ Λ±
n . A μ-tableau is a map t : [μ+] −→ nζ . We identify a μ-tableau

with a diagram for μ+ which is labeled by elements of nζ . If t is a μ-tableau let |t| be the
tableau obtained by taking the complex modulus of the entries in t; that is, |t|(x) = |t(x)|, for all
x ∈ [μ+].

4.5. Example. Let μ = (2,−3,1,−1). Then four μ-tableaux are:

1 2

3 4 5

6

7

1 2

3ζ 4ζ 2 5ζ 3

6

7ζ 4

3 6

2ζ 5ζ 2 7ζ 3

1

4ζ

and

7 6ζ

2ζ 5ζ 2 3ζ 3

1

4ζ

.

As remarked at the end of Section 2 we can think of Gr,n as the group of permutations of nζ

such that (mζ i)g = mgζ i , for all mζ i ∈ nζ and all g ∈ Gr,n. Consequently, Gr,n acts on the set of
μ-tableaux by composition of maps. Thus, if t is a μ-tableau and g ∈ Gr,n then tg is the tableau
with tg(x) = t(x)g , for x ∈ [μ+].

Let tμ be the μ-tableau which has the numbers 1, . . . , n entered in order, from left to right
and then top to bottom, along the rows of [μ+]. The first μ-tableau in Example 4.5 is tμ when
μ = (2,−3,1,−1).

So far none of the combinatorial definitions above distinguish between compositions and
signed compositions. We now single out a set of μ-tableaux that are in bijection with Eμ. First,
define a total order � on nζ by declaring that aζ i � bζ j if a < b, or a = b and i > j . Then

ζm−1 � ζm−2 � · · · � ζ � 1 � 2ζm−1 � · · · � 2 � · · · � nζm−1 � · · · � n.

4.6. Definition. Suppose that μ ∈ Λ±
n . A μ-tableau t is row standard if it satisfies the following

three conditions:

(a) The set of entries in the tableau |t| is {1, . . . , n}.
(b) The entries in row i of t belong to {1, . . . , n} whenever μi > 0.
(c) In each row the entries of t appear, from left to right, in increasing order with respect to �.

For example, the first three of the (2,−3,1,−1)-tableaux in Example 4.5 are row standard.
The last tableau in this example is not row standard because it fails conditions (b) and (c).
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The action of Gr,n on the set of μ-tableau which satisfy condition (a) of Definition 4.6 gives
a realization of the regular representation of Gr,n. Consequently, the map g 
→ tμg, for g ∈ Gr,n,
is a bijection from Gr,n to the set of these μ-tableaux. If t is such a μ-tableau let dt be the unique
element of Gr,n such that t = tμdt.

4.7. Proposition. Suppose that μ ∈ Λ±
n . Then

Eμ = {dt: t is a row standard μ-tableau}.

Proof. By definition, the orbit tμGμ = {tμg: g ∈ Gμ} of tμ under Gμ consists of all those
tableaux which can be obtained by permuting the entries of each row of tμ and multiplying the
entries in row i by a power of ζ when μi > 0. Consequently, tμ is the unique row standard μ-
tableaux in tμGμ, so that each right coset of Gμ in Gr,n contains a unique element e such that
tμe is row standard. Now, Eμ = T−μDμ+ by Theorem 4.3 and T−μ acts on tμ by multiplying the
entries in row i by different powers of ζ when μi < 0. If d ∈ Dμ+ then it is well known that the
entries in tμd increase from left to right along each row; see, for example, [24, Proposition 3.3].
Hence, tμe is row standard whenever e ∈ Eμ. This completes the proof. �

In the case of the symmetric groups the set of distinguished coset representatives can be
described combinatorially in terms of ‘descents.’ Explicitly, if w ∈ Sn then its descent set is

Des(w) = {
s ∈ S: �(sw) < �(w)

} = {
si : 1 � i < n and iw > (i + 1)w

}
.

If μ is a composition of n then the connection between distinguished coset representatives and
descents is that

Dμ = {
d ∈ Sn: Des(d) ⊆ S − Π−μ

}
. (4.8)

There is an analogous description of Eμ, for μ ∈ Λ±
n . If α ∈ Zn

r define the colour of tα to be
the set Col(tα) = {ti ∈ T : αi > 0}. Then using Theorem 4.3 it is easy to see that if μ ∈ Λ±

n then

Eμ = {
tαw ∈ Gr,n: Col(α) ∪ Des(w) ⊆ Π − Π−μ

}
.

We remark that it is easy to rephrase this last statement combinatorially in terms of words in Gr,n.

4.9. Remark. It is easy to check that E −1
μ = D−1

μ × T−μ is a complete set of left coset represen-
tatives for Gμ in Gr,n. Moreover, e ∈ E −1

μ if and only if �(e) � �(g) for all g ∈ eGμ, so every
left coset of Gμ in Gr,n contains a unique element of minimal Π -length.

4.10. Remark. Mak [20] has shown that every coset of a reflection subgroup contains a unique
element of minimal length with respect to the length function �0 defined in Remark 2.4. Mak’s
set of coset representatives is different from Eμ. Nonetheless, it does admit a factorization which
is similar to the factorization of Eμ given in Theorem 4.3. To describe this if μ = (μ1, . . . ,μk) ∈
Λ±

n then set

E ′
μ =

∏
k�j�1
μ <0

∏
μj �i>μj−1

[{1} ∪ {
sμj−1+1sμj−1+2 . . . si−1t

k
i : 1 � k < r

}]×Dμ,
j
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where the product is taken in order from left to right in terms of decreasing values of i. One can
show that E ′

μ is Mak’s set of coset representatives for Gμ in Gr,n. As we will never need this
result we leave the proof to the reader.

5. Double coset representatives

Our next aim is to describe the double cosets of reflection subgroups. In order to do this we
first recall some well-known facts about the symmetric group Sn. Suppose that μ and ν are
compositions of n. Then Sμ and Sν are Young, or parabolic, subgroups of Sn. Set Dμν =
Dμ ∩ D−1

ν . Then Dμν is a complete set of (Sμ,Sν)-double coset representatives in Sn; see, for
example, [24, Proposition 4.4]. Moreover, if d ∈ Dμν then d−1Sμd ∩ Sν is a Young subgroup
of Sn; see, for example, [24, Lemma 4.3]. Define μd ∩ ν to be the unique composition of n

such that Sμd∩ν = d−1Sμd ∩ Sν . We remark that the composition μd ∩ ν can be determined
by comparing the row stabilizers of the tableaux tμd and tν .

5.1. Lemma. Suppose that μ,ν ∈ Λ±
n and d ∈ Dμ+ν+ . Then d−1Gμd ∩ Gν is a reflection sub-

group of Gr,n.

Proof. The group Gν consists of those elements of Gr,n which act on tν by first multiplying
each entry of row l by possibly different powers of ζ , if νl > 0, and then permuting the entries
in each row of the resulting tableaux. Similarly, the group d−1Gμd consists of those elements
of Gr,n which act on the row standard tableau tμd by multiplying each entry of row k by different
powers of ζ , if μk > 0, and then permuting the entries in each row. Consequently, the subgroup
d−1Gμd ∩ Gν is generated by the elements {si, tj }, where i runs over those integers for which
i and i + 1 are in the same row of tν and in the same row of tμd , and j ∈ n is in row l of tν

with νl > 0 and j is in row k of tμd with μk > 0 (cf. the proof of [24, Lemma 4.3]). There-
fore, d−1Gμd ∩ Gν = Gσ , where σ is the unique signed composition such that σ+ = μ+d ∩ ν+
and σi > 0 if and only if νj > 0 and μk > 0, where σ i appears in row j of tν and row k

of tμd . �
Suppose that d ∈ Dμ+ν+ , for μ,ν ∈ Λ±

n . Then d−1 ∈ Dν+μ+ , since Dν+μ+ = D−1
μ+ν+ . There-

fore, Gμ ∩ dGνd
−1 is also a reflection subgroup of Gr,n.

5.2. Definition. Suppose that μ,ν ∈ Λ±
n and d ∈ Dμ+ν+ . Then μd ∩ ν = ν ∩ μd is the signed

composition of n such that Gμd∩ν = d−1Gμd ∩ Gν and μ ∩ dν = dν ∩ μ is the signed compo-
sition such that Gμ∩dν = Gμ ∩ dGνd

−1.

Note that the proof of Lemma 5.1 gives a recipe for computing μd ∩ν. Note also that μd ∩ν =
d−1μ ∩ ν, for d ∈ Dμ+ν+ and μ,ν ∈ Λ±

n .
We now describe a set of (Gμ,Gν)-double coset representatives. We do this by generalizing

the description of the double cosets of the Young subgroups of the symmetric group in terms of
row semistandard tableaux.

5.3. Definition. Suppose that μ ∈ Λ±
n . A μ-tableau T : [μ+] −→ nζ is row semistandard if

(a) The entries in row i of T belong to {1, . . . , n} whenever μi > 0.
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(b) The entries in each row of T appear in weakly increasing order, from left to right, with respect
to �.

There is a map from the set of row semistandard tableau to the set of row standard tableaux.
To define this first observe that a row semistandard μ-tableau T determines a unique total order
<T on [μ+] where x <T x′, for x, x′ ∈ [μ+], if

(a) |T(x)| < |T(x′)|, or
(b) |T(x)| = |T(x′)| and x is in an earlier row of [μ+] than x′, or
(c) |T(x)| = |T(x′)| and x and x′ are in the same row and x is to the left of x′.

Let x1 <T · · · <T xn be the nodes in [μ+]. Then the μ-tableau T∗ is defined by the requirements
that |T∗(xi)| = i and arg T∗(xi) = arg T(xi), for 1 � i � n. (If z ∈ C is a complex number let
arg z ∈ [0,2π) be its argument so that z = |z| exp(i arg z).) By construction, T∗ is a row standard
μ-tableaux. Moreover, it is easy to see that the map T 
→ T∗ is injective.

5.4. Definition. Suppose that μ,ν ∈ Λ±
n and let T be a μ-tableau. Then T has type ν if

(a) |νj | = #{x ∈ [μ+]: |T(x)| = j}, for j � 1.
(b) If νj > 0 then νj = #{x ∈ [μ+]: T(x) = j}.

Let Tζ (μ, ν) = {T : [μ+] −→ nζ : T is row semistandard μ-tableau of type ν}. If μ and ν are
compositions let T (μ, ν) = {T : [μ+] −→ n: T is row semistandard μ-tableau of type ν}.

See Example 5.9 below for these definitions in action.

5.5. (See [24, Proposition 4.4].) Suppose that μ,ν ∈ Λn. Then

Dμν = {
dT∗ : T ∈ T (μ, ν)

}
is a complete set of (Sμ,Sν) double coset representatives in Sn. Moreover, if d ∈ Dμν then
�(d) � �(w), for all w ∈ SμdSν , with equality if and only if w = d .

If t is a row standard tableau let ν(t)′ be the tableau obtained by replacing each entry mζa in
t with kζ a′

if m appears in row k of tν , where a′ = 0 if νk > 0 and a′ = a otherwise. Now define
ν(t) to be the row semistandard tableau obtained by reordering the entries in each row of ν(t)′ so
that they are in increasing order. Then ν(t) is a row semistandard tableau of type ν.

For example, let ν = (2,−2,1) and t = 3 4ζa 5ζb

1 2
, where 0 � a, b < r . Then, by definition,

ν(t)′ = 2 2ζa 3

1 1
and ν(t) = 2ζa 2 3

1 1
.

5.6. Proposition. Suppose that μ and ν are signed compositions of n and let

Eμν = {
dT∗ : T ∈ Tζ (μ, ν)

}
.

Then Eμν is a complete set of (Gμ,Gν) double coset representatives in Gr,n. Moreover, if e ∈ Eμν

then �(e) � �(g), for all g ∈ GμeGν .
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Proof. By Proposition 4.7 the right cosets of Gμ in Gr,n are naturally indexed by the row stan-
dard μ-tableaux. Hence, the (Gμ,Gν)-double cosets are indexed by the Gν -orbits of the row
standard μ-tableaux. Using the definitions it is easy to see that two μ-tableaux s and t belong
to the same Gν -orbit if and only if ν(s) = ν(t). Moreover, if t is row standard then ν(t) is row
semistandard. Finally, if T is a row semistandard μ-tableau of type ν then T∗ is a row standard
μ-tableau such that T = ν(T∗). Hence, Eμν is a complete set of (Gμ,Gν)-double coset represen-
tatives in Gr,n.

To complete the proof we need to show that if T ∈ Tζ (μ, ν) then dT∗ is an element of minimal
length in the double coset GμdT∗Gν . For convenience, let d = d|T∗|. Then, d ∈ Dμ+ν+ by (5.5).
Now, by the last paragraph GμdT∗Gν = ⋃

t Gμdt, where t runs over the row standard μ-tableau t

such that ν(t) = T. By definition, dT∗ = t
α1
1 . . . t

αn
n d , where if x ∈ [μ+] then T∗(x) = ζ αi id if and

only if T(x) = ζ αi k and id is in row k of tν . Now suppose that t is any row standard μ-tableaux
such that ν(t) = T. Then, using (5.5) again, dt = t

β1
1 . . . t

βn
n d|t| = t

β1
1 . . . t

βn
n du, for some u ∈ Sν

and where βi = αiw , for some w ∈ Sn (since ν(t) = T). Therefore,

�(dt) = β1 + · · · + βn + �(du) = α1 + · · · + αn + �(du)

� α1 + · · · + αn + �(d) = �(dT∗),

with equality if and only if u = 1. By Theorem 4.3, dt is the unique element of minimal length in
the coset Gμdt, for each such t. Therefore, �(dT∗) � �(g) for all g ∈ GμdT∗Gν as claimed. �

Note that we are not claiming that each double coset of two reflection subgroups of Gr,n

contains a unique element of minimal length. Indeed, the proof of Proposition 5.6 shows that
if T is a row semistandard μ-tableau of type ν then the double coset GμdT∗Gν contains more
than one element of minimal length if and only if there exist integers b, c, not both zero, such
that mζb and mζc appear in the same row of T, for some m ∈ n. For future use we make this
statement explicit.

If d ∈ Dμ+ν+ let Td ∈ T (μ+, ν+) be the unique row semistandard tableau such that d = dT∗
d

as in (5.5). If X ⊆ Gr,n let X−1 = {g: g−1 ∈ X}.

5.7. Lemma. Suppose that μ,ν ∈ Λ±
n . Then

Eμν =
∐

d∈Dμ+ν+

{
t
α1
1 . . . tαn

n ∈ T−μ∩d(−ν)

∣∣∣∣∣ αi � αj whenever id and jd are in the
same row of T∗

d and the same row of tν

}
d.

Moreover,

Eμ ∩ E −1
ν =

∐
d∈Dμ+ν+

T−μ∩d(−ν)d = {
e ∈ Gr,n: �(e) � �(g) for all g ∈ GμeGν

}

is the set of elements in Gr,n which are of minimal length in their (Gμ,Gν)-double coset.

Proof. Observe that Dμ+ν+ = D(−μ)+(−ν)+ . Therefore, if d ∈ Dμ+ν+ then the signed composi-
tion −μ ∩ d(−ν) in the statement of the lemma makes sense by Definition 5.2. (Note, however,
that the two signed compositions −μ ∩ d(−ν) and −(μ ∩ dν) are not equal in general.)
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By Proposition 5.6, we have Eμν = {dT∗ : T ∈ Tζ (μ, ν)}. Fix a row semistandard μ-tableau T
of type ν. Then, as in the proof of Proposition 5.6, dT∗ = t

α1
1 . . . t

αn
n d , where d = d|T∗| ∈ Dμ+ν+

and, for all x ∈ [μ+] if T∗(x) = ζ αi id then T(x) = ζ αi k where id is in row k of tν . In particular,
αi = 0 if ti ∈ Tμ or if tid ∈ Tν . Therefore, αi > 0 only if ti ∈ T−μ ∩ dT−νd

−1 = T−μ∩d(−ν).
If ti ∈ T−μ∩d(−ν) then the integer αi can take any value in {0, . . . , r − 1} provided that this is
compatible with T being row semistandard. That is, we require that αi � αj whenever id and jd

are in the same row of T∗ and in the same row of tν . This gives the decomposition of Eμν in the
statement of the lemma.

For the final claim, suppose that d ∈ Dμ+ν+ and let T = ν(tμd). By the last paragraph, if t ∈ T

then ν(tμtdT∗) = T if and only if t ∈ T−μ∩d(−ν). By the last paragraph again, if t ∈ T−μ∩d(−ν)d

then td is an element of minimal length in the double coset GμtdGν . That Eμ ∩ E −1
ν =∐

d T−μ∩d(−ν)d is now follows from the definition of row semistandard tableaux. �
5.8. Corollary. Suppose that μ,ν ∈ Λ±

n and d ∈ Dμ+ν+ . Then Gr,n contains |T−μ∩d(−ν)| ele-
ments of the form tαd which are of minimal length in their (Gμ,Gν)-double coset, for some
α ∈ Zn

r . Moreover, if T = ν(tμd) then |T−μ∩d(−ν)| = rwt(T), where wt(T) is the number of pairs
(i, j) such that j appears in row i of T and μi < 0 and νj < 0.

Proof. That |T−μ∩d(−ν)| counts the number of elements of the form tαd which are of minimal
length in their (Gμ,Gν)-double coset is immediate from Lemma 5.7. The second claim fol-
lows from the observation that the tableaux {tμtd: t ∈ T−μ∩d(−ν)} differ only in that any of the
numbers appearing in row i of tμd and row j of tν can be multiplied by arbitrary powers of ζ

whenever μi < 0 and νj < 0. �
5.9. Example. Suppose that r � 2 and n = 5 and let μ = (3,−2) and ν = (−2,−2,1). Then the
set of row semistandard μ-tableaux T of type ν, together with the corresponding row standard
tableau T∗ and the coset representatives dT∗ ∈ Eμν = E(3,−2)(−2,−2,1), is as follows (we set d =
d|T∗|).

T T∗ dT∗ |T−μ∩d(−ν)| μ ∩ dν

1 1 2

2ζa 3

1 2 3

4ζa 5
ta4 r (−2,−13)

1 1 3

2ζb 2ζc

1 2 5

3ζb 4ζc
tb4 tc5s3s4 r2 (−2,1,−2)

1 2 2

1ζa 3

1 3 4

2ζa 5
ta4 s3s2 r (−1,−2,−12)

1 2 3

1ζa 2ζb

1 3 5

2ζa 4ζb
ta4 tb5 s3s2s4 r2 (−12,1,−12)

2 2 3

1ζb 1ζc

3 4 5

1ζb 2ζc
tb4 tc5s3s2s4s3s1s2 r2 (−2,1,−2)

where 0 � a, b, c < r and b � c. We use exponentials in the signed compositions to indicate
consecutive repeated parts. Therefore, there are 2r2 + 3r (Gμ,Gν)-double cosets in Gr,n. When
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checking the entries in this table observe that the signed composition μ ∩ dν = μ ∩ νd−1 can be
computed by intersecting Gμ with the ‘row stabilizer’ of tνd−1 as in the proof of Lemma 5.1.
Note that |T−μ∩d(−ν)| can be computed without finding −μ ∩ d(−ν) by using Corollary 5.8.

5.10. Remark. If μ and ν are compositions of n then Dμν = Dμ ∩ D−1
ν is a complete set of

minimal length (Sμ,Sν)-double coset representatives in Sn by (5.5). In contrast, it is not hard to
show that Eμν ⊆ Eμ ∩E −1

ν with Eμ ∩E −1
ν being strictly bigger than Eμν in general. For example,

if we take μ = (3,−2) and ν = (−22,1) then |Eμ ∩ E −1
ν | = 3r2 + 2r , whereas |Eμν | = 2r2 + 3r

by Example 5.9. So Eμν � Eμ ∩ E −1
ν since r > 1.

6. The cyclotomic Solomon algebra

Suppose that R is a commutative ring (with one) and let RGr,n be the group ring of Gr,n

over R. In this section we use the distinguished coset representatives of the reflection subgroups
of Gr,n to define an analogue of Solomon’s descent algebra for the complex reflection group Gr,n.

Recall that for each reflection subgroup Gμ of Gr,n we have a distinguished set Eμ of right
coset representatives, for μ ∈ Λ±

n . Define

Eμ =
∑
e∈Eμ

e ∈ RGr,n.

The main aim of this paper is to understand the subalgebra of RGr,n which is generated by these
elements.

6.1. Definition. Suppose that r > 1. The cyclotomic Solomon algebra

Sol(Gr,n) = SolR(Gr,n)

is the subalgebra of RGr,n generated by {Eμ: μ ∈ Λ±
n }.

From our definition, it is not clear what the dimension of Sol(Gr,n) is when R is a field. In
fact, we show in Theorem 6.7 below that if R is any ring then Sol(Gr,n) is free as an R-module
with basis {Eμ: μ ∈ Λ±

n }. We begin by taking advantage of the factorization of Eμ given by
Theorem 4.3. To do this, for i = 1, . . . , n and λ ∈ Λn define

Fi =
r−1∑
k=0

tki and Dλ =
∑

d∈Dλ

d.

Then Fi and Dλ are both elements of RGr,n.

6.2. Lemma. Suppose that 1 � i, j � n and that w ∈ Sn. Then

(a) FiFj = FjFi and F 2
i = rFi .

(b) Fiw = wFiw .
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Proof. As T is an abelian group part (a) is true and part (b) is immediate from the definitions
and (2.1). �

Hence, if 1 � i � n then Fi is a multiple of an idempotent if the characteristic of R does not
divide r and, otherwise, it is a nilpotent element of RGr,n.

Suppose that μ ∈ Λ±
n . In order to factorize Eμ set

F−μ =
∏

ti∈T−μ

Fi =
∏

i: μi<0

Fμi−1+1 · · ·Fμi
.

Then, by Lemma 6.2(a), (F−μ)2 = r |μ|−F−μ.
By Lemma 6.2, Sn acts on {F1, . . . ,Fn} by conjugation. If w ∈ Sn and i ∈ n then we set

Fw
i = w−1Fiw = Fiw . Similarly, if μ ∈ Λ±

n let

Fw−μ =
∏

ti∈T−μ

Fw
i .

Then F−μw = wFw−μ, for all w ∈ Sn, by Lemma 6.2(b).

6.3. Lemma. Suppose that μ ∈ Λ±
n is a signed composition of n. Then:

(a) Eμ = F−μDμ+ .
(b) If w ∈ Sμ+ then Fw−μ = F−μ, so that F−μw = wF−μ.

Proof. Part (a) is an immediate consequence of the factorization Eμ = T−μ × Dμ+ of Eμ given
by Theorem 4.3. For part (b), use Lemma 6.2(b) and the fact that the elements of the two sub-
groups Sμ and T−μ commute. �

Definition 6.1 is motivated by Solomon’s [28] definition of the descent algebra of a finite
Coxeter group. As an important special case, the Solomon descent algebra Sol(Sn) of Sn is
the subalgebra of RSn generated by {Dλ: λ ∈ Λn}. The next result, due to Solomon, shows that
{Dλ: λ ∈ Λn} is basis of Sol(Sn).

6.4. (See Solomon [28, Theorem 1].)

(a) The set {Dμ: μ ∈ Λn} is linearly independent in Sol(Sn).
(b) Suppose that μ and ν are composition of n. Then

DμDν =
∑

d∈Dμν

Dμ∩dν.

By the remarks before Lemma 5.1, part (b) is equivalent to the following formula:

DμDν =
∑

dμνσ Dσ ,
σ∈Λn
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where dμνσ = #{d ∈ Dμν : Sσ = Sμ ∩ d−1Sνd}. In fact, Solomon proved an analogous result
for an arbitrary finite Coxeter group W , where the Young subgroups Sμ are replaced with the
parabolic subgroups of W and Dμ by the sum of the ‘distinguished’ (right) coset representatives
which are of minimal length in their coset.

As we now recall, part (a) of Solomon’s theorem is easy to prove. Recall that S =
{s1, . . . , sn−1} and that if w ∈ Sn then Des(w) is the descent set of w; see 4.8. For each compo-
sition μ ∈ Λn let Sν = Π−ν , so that Sν ⊆ S. Now define Yμ ∈ RSn ⊂ RGr,n by

Yμ =
∑

w∈Sn
Des(w)=Sμ

w.

By definition, the descent sets partition Sn, so the set {Yμ: μ ∈ Λn} is linearly independent in
RSn. By (6.4) again, we can write

Dμ =
∑
ν∈Λn

Sν⊆S−Sμ

Yν.

Hence, {Dμ: μ ∈ Λn} is a linearly independent subset of RSn, as claimed.
We build upon this idea to prove that the Eμ’s are linearly independent.

6.5. Proposition. The set {Eμ: μ ∈ Λ±
n } is linearly independent in Sol(Gr,n).

Proof. Suppose that there exist scalars aμ ∈ R such that

∑
μ∈Λ±

n

aμEμ = 0.

By Lemma 6.3, Eμ = F−μDμ+ . Therefore, the last displayed equation becomes

0 =
∑

μ∈Λ±
n

aμF−μDμ+ =
∑

μ∈Λ±
n

aμF−μ

∑
ν∈Λn

Sν⊆S−Sμ+

Yν

=
∑
ν∈Λn

( ∑
μ∈Λ±

n
Sμ+⊆S−Sν

aμF−μ

)
Yν

Now, RGr,n = ⊕
t∈T tRSn, as an R-module, and {Yν : ν ∈ Λn} is a linearly independent subset

of RSn. Therefore, for any composition ν ∈ Λn we must have

0 =
∑

μ∈Λ±
n

Sμ+⊆S−Sν

aμF−μ. (∗)

We use this equation to argue by induction on ν to show that aμ = 0 for all μ ∈ Λ±.
n
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First suppose that ν = (n). Then Sν = S and the summation in (∗) becomes a sum over those
signed compositions μ with Sμ+ = ∅. Hence, μ+ = (1n) and (∗) becomes

0 =
∑

μ∈Λ±
n

μ+=(1n)

aμF−μ =
∑

μ∈Λ±
n

Πμ⊆{t1,...,tn}

aμF−μ.

Each monomial ti1 . . . tik , where 1 � i1 < · · · < ik � n, occurs in a unique F−μ when μ+ = (1n).
Hence, aμ = 0 for all μ ∈ Λ±

n with μ+ = (1n), as claimed.
Now suppose that ν �= (n). By induction we may assume that aμ = 0 whenever Sμ+ � S −Sν .

Therefore, by (∗) we have

0 =
∑

μ∈Λ±
n

Sμ+=S−Sν

aμF−μ =
∑

μ∈Λ±
n

Πμ−(S−Sν)⊆{t1,...,tn}

aμF−μ.

So, by exactly the same argument as before, aμ = 0 whenever μ+ = ν. Hence, aμ = 0, for all
μ ∈ Λ±

n , and {Eμ: μ ∈ Λ±
n } is linearly independent as required. �

The next result that we need amounts to a proof of part (b) of Solomon’s theorem (6.4).
Once again, we state the result only for the symmetric group even though it is valid for an
arbitrary finite Coxeter group. All of the results quoted in (6.6) follow easily from the fact that
Sμd∩ν = d−1Sμd ∩ Sν , for d ∈ Dμν .

If μ,ν ∈ Λn and Sν ⊆ Sμ then we write ν ⊆ μ and set Dμ
ν = Dν ∩ Sμ. It is easy to check

that Dμ
ν is a complete set of coset representatives for Sν in Sμ.

6.6. (See Bergeron, Bergeron, Howlett and Taylor [5, Lemmas 2.2 and 2.4].) Suppose that μ and
ν are compositions of n. Then

(a) If σ ⊆ ν then Dσ = Dν
σ Dν .

(b) Dμ = ∐
d∈Dμν

dDν
μd∩ν .

(c) If d ∈ Dμ and μd is a composition of n (that is, d−1Sμd = Sσ for some σ ∈ Λn), then
Dμ = dDμd .

We can now establish one of the main results of this paper.

6.7. Theorem. Suppose that r > 1 and that μ and ν are signed compositions of n. Then

EμEν =
∑

d∈Dμ+ν+
|T−μ∩d(−ν)|Eμ∩dν.

Proof. We use most of the results in this section to compute EμEν :

EμEν = F−μDμ+F−νDν+ , by Lemma 6.3(a),

=
∑

d∈D + +
F−μdDν+

μ+d∩ν+F−νDν+ , by Lemma 6.6(b),
μ ν
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=
∑

d∈Dμ+ν+
F−μdF−νD

ν+
μ+d∩ν+Dν+ , by Lemma 6.3(b),

=
∑

d∈Dμ+ν+
F−μFd−1

−ν dDμ+d∩ν+ , by Lemma 6.6(b),

=
∑

d∈Dμ+ν+
F−μFd−1

−ν Dμ+∩dν+ , by Lemma 6.6(c).

Fix d ∈ Dμ+ν+ and consider F−μFd−1

−ν . Now F 2
i = rFi = |〈ti〉|Fi , for 1 � i � n. So,

F−μFd−1

−ν = ∣∣T−μ ∩ dT−νd
−1

∣∣ ∏
ti∈T−μ∩dT−νd−1

Fi.

First, T−μ ∩ dT−νd
−1 = T−μ∩d(−ν) since d ∈ Dμ+ν+ = D(−μ)+(−ν)+ . Next, the subgroup of T

generated by T−μ and dT−νd
−1 is T−(μ∩dν) since ti ∈ T−(μ∩dν)

∼= T/Tμ∩dν if and only if ti /∈ Tμ

and ti /∈ dTνd
−1. Therefore, F−μFd−1

−ν = |T−μ∩d(−ν)|F−(μ∩dν). Hence, using Lemma 6.3 once
more,

EμEν =
∑

d∈Dμ+ν+
|T−μ∩d(−ν)|F−(μ∩dν)D(μ∩dν)+ =

∑
d∈Dμ+ν+

|T−μ∩d(−ν)|Eμ∩dν,

as required. �
Corollary 5.8 shows that |T−μ∩d(−ν)| is equal to the number of elements of minimal length

in the double cosets of the form GμtαdGν , for α ∈ Zr
n. This gives a combinatorial interpretation

of the structure constants of Sol(Gr,n) and shows that Theorem 6.7 is a direct generalization of
(6.4)(b). A second combinatorial interpretation of the integers |T−μ∩d(−ν)| is given in Proposi-
tion 10.3 below.

Combining Theorem 6.7 and Proposition 6.5 we obtain the following.

6.8. Corollary. Suppose that r > 1. The cyclotomic Solomon algebra Sol(Gr,n) is a subalgebra
of RGr,n which is free as an R-module of rank 2 · 3n−1.

6.9. Example. Suppose that r > 1. Then, by Example 5.9, we have

E(3,−2)E(−22,1) = 2r2E(−2,1,−2) + rE(−2,−13) + rE(−1,−2,−12) + r2E(−12,1,−12).

See Example 10.4 for a second way of computing this product using Proposition 10.3.
Notice that by (6.4) and Theorem 6.7 we can recover the multiplication in Sol(Sn) by setting

r = 1 and identifying μ and μ+, for all μ ∈ Λ±
n , so that

D(3,2)D(22,1) = 2D(2,1,2) + D(2,13) + D(1,2,12) + D(15).
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7. The generic cyclotomic Solomon algebra

By Theorem 6.7, if r > 1 then the structure constants of the algebra Sol(Gr,n) are polynomials
in r . Consequently, the algebras {Sol(Gr,n): r � 2} admit a simultaneous deformation (while n

is fixed).
Recall from Corollary 5.8 that if r � 2 and μ,ν ∈ Λ±

n then |T−μ∩d(−ν)| = rwt(Td ), where
Td = ν(tμd).

Let x be an indeterminate over R and suppose that μ,ν,σ ∈ Λ±
n . Define polynomials

dμνσ (x) ∈ R[x] by

dμνσ (x) =
∑

d∈Dμ+ν+
σ=μ∩dν

xwt(Td ).

Then, by Theorem 6.7,

EμEν =
∑

σ∈Λ±
n

dμνσ (r)Eσ .

7.1. Definition. Suppose that n � 1 and that R is a commutative ring. The cyclotomic Solomon
algebra with parameter q ∈ R is the R-algebra Solq(n) = SolR,q(n) with generating set
{Eμ: μ ∈ Λ±

n } and relations

EμEν =
∑

σ∈Λ±
n

dμνσ (q)Eσ ,

for μ,ν ∈ Λ±
n . The generic cyclotomic Solomon algebra is the Z[x]-algebra Solx(n), where x

is an indeterminate over Z.

We are abusing notation slightly in Definition 7.1 because from here onwards Eμ is a gen-
erator of Solq(n) and not necessarily the element defined in the previous section. This abuse is
justified by the following result.

7.2. Corollary. Suppose that q = r ·1R , where r > 1. Then Solq(n) and Sol(Gr,n) are canonically
isomorphic R-algebras where the isomorphism Solq(n) → Sol(Gr,n) is given by Eμ 
→ Eμ, for
μ ∈ Λ±

n .

Proof. By Theorem 6.7 there is a natural surjection Solq(n) −→ Sol(Gr,n). By Corollary 6.8
this map is an isomorphism. �

The explicit description of the algebra Sol(Gr,n) as a subalgebra of the group algebra RGr,n

makes the algebra Sol(Gr,n) slightly easier to work with than the more general algebras Solq(n).
For example, we know that Eμ = F−μDμ+ in RGr,n but we have no such factorization in general.
As we will soon see, however, almost all of the properties of the algebras Sol(Gr,n) hold for the
algebras Solq(n).
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7.3. Proposition. Suppose that n � 1 and that q ∈ R. Then

(a) Solq(n) is free as an R-module with basis {Eμ: μ ∈ Λ±
n }. In particular, Solq(n) has rank

2 · 3n−1.
(b) Solq(n) ∼= Solx(n) ⊗Z[x] R, where R is considered as a Z[x]-module by letting x act on R

as multiplication by q (and 1 ∈ Z acts as multiplication by 1R).
(c) Solq(n) is a unital associative R-algebra with multiplicative identity E(n).

Proof. First consider the generic Solomon algebra over Z[x]. Suppose that

∑
μ∈Λ±

n

fμ(x)Eμ = 0,

for some fμ(x) ∈ R[x]. Then fμ(r) = 0, for r = 2,3,4, . . . and all μ ∈ Λ±
n , by Corollary 7.2

and Proposition 6.5. As non-zero polynomials have only finitely many roots, we conclude
that fμ(x) = 0, for all μ ∈ Λ±

n . Consequently, Solx(n) is free as a Z[x]-module with basis
{Eμ: μ ∈ Λ±

n }.
Now fix q ∈ R and consider R as a Z[x]-module by letting x act on R as multiplication

by q (and 1 ∈ Z act as multiplication by 1R). Then the R-algebra Solx(n) ⊗Z[x] R is free as an
R-module with basis {Eμ ⊗ 1: μ ∈ Λ±

n } and it satisfies the relations of Solq(n). As Solq(n) is
spanned by the elements {Eμ: μ ∈ Λ±

n } ⊆ Solq(n) it follows that Solq(n) ∼= Solx(n) ⊗Z[x] R.
This proves (a) and (b).

To prove (c) it is now enough to prove the corresponding statements for the generic Solomon
algebra Solx(n). We first show that E(n) is the identity element of Solx(n). This is equivalent to
the polynomial identities

dμ(−n)α(x) = δμα = dα(−n)μ(x),

for all μ,α ∈ Λ±
n . All of these identities follow directly from the definitions because

T(−n)∩d(−ν) = 1 = T−μ∩d ′(−n), for all μ,ν ∈ Λ±
n , d ∈ D(n)μ+ and d ′ ∈ Dν+(n). Similarly, the

associativity of Solx(n) is equivalent to the polynomial identities

∑
α,β∈Λ±

n

dμνα(x)dασβ(x) =
∑

α,β∈Λ±
n

dμαβ(x)dνσα(x),

for all μ,ν,σ ∈ Λ±
n . As in the first paragraph of the proof, by Corollary 7.2 these identities hold

when x = 2,3, . . . since the algebras Sol(Gr,n) are associative for r � 2. As these identities hold
for infinitely many values of x, they lift to the required polynomial identities. �

Part (b) of the proposition justifies our calling the Z[x]-algebra Solx(n) the generic cyclotomic
Solomon algebra.

As we next describe, the algebras Solq(n) have many interesting subalgebras.

7.4. Lemma. Suppose that dμνσ (q) �= 0, for μ,ν,σ ∈ Λ±
n . Then Πσ = Πμ ∩ dΠνd

−1, for some
d ∈ Dμ+ν+ .
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Proof. By definition, the polynomial dμνσ (x) is non-zero only if Gσ = Gμ ∩ dGνd
−1 for some

d ∈ Dμ+ν+ . Consequently, if dμνσ (q) �= 0 then Πσ = Πμ ∩ dΠνd
−1, for some d ∈ Dμ+ν+ . �

Notice, in particular, that this implies that the poset structure on Λ±
n given by defining μ � ν

whenever Πν ⊆ Πμ is compatible with the ideal structure of Solq(n).

7.5. Proposition. Suppose that n � 1 and that q ∈ R. Then Solq(n) has a filtration by two-sided
ideals

Solq(n) = S0 ⊃ · · · ⊃ Sn ⊃ 0

where Si is the R-submodule of Solq(n) with basis {Eμ: μ ∈ Λ±
n such that |μ|+ � i}, for i =

0, . . . , n.

Proof. By Lemma 7.4, dμνσ (q) �= 0 only if Πσ = Πμ ∩ dΠνd
−1, for some d ∈ Dμ+ν+ . Con-

sulting the definitions, |μ|+ = |Πμ ∩T |. Therefore, dμνσ (q) �= 0 only if |σ |+ � min{|μ|+, |ν|+}.
Hence, Si is a two-sided ideal of Sol(Gr,n), for 0 � i � n, and the proposition follows. �
7.6. Proposition. Suppose that n � 1 and that q ∈ R. Let

Sol+q (n) =
∑

μ∈Λn

REμ,

Sol±q (n) =
∑

±μ∈Λn

REμ,

Sol1q(n) =
∑

μ∈Λ±
n

μi>0 for i>1

REμ.

Then Sol+q (n), Sol±q (n) and Sol1q(n) are all subalgebras of Solq(n). Moreover, Sol+q (n) is natu-
rally isomorphic to Sol(Sn) via the R-linear map Eμ 
→ Dμ, for μ ∈ Λn.

Proof. All of these results can be proved directly using the definition of the polynomials
dμνσ (x), for μ,ν,σ ∈ Λ±

n . Note that Sol+q (n) = Sn in the notation of Proposition 7.5, so in
this case the result is already known. The isomorphism Sol+q (n) ∼= Sol(Sn) is trivial because if
μ ∈ Λn then T−μ = 1, so that Eμ = Dμ by Lemma 6.3. �
8. The representation theory of Solq(n)

In this section we construct all of the irreducible representations of the algebras Solq(n) over
an arbitrary field. Even though Solq(n) is, in general, not commutative, it turns out that every
irreducible Solq(n)-module is one-dimensional—so that Solq(n) is a basic algebra for all n and q .
As an application of these results we give a basis for the radical of Solq(n) when R is an arbitrary
field.

Let ∼ be the equivalence relation on the set of signed compositions where two signed com-
positions are ∼-equivalent if one can be obtained by reordering the parts of the other. More
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explicitly, if λ = (λ1, . . . , λk) and μ = (μ1, . . . ,μl) then λ ∼ μ if and only if k = l and λi = μiv ,
for some v ∈ Sk .

8.1. Lemma. Suppose that λ,μ ∈ Λ±
n . Then the following are equivalent:

(a) λ ∼ μ;
(b) Gλ = w−1Gμw, for some w ∈ Sn;
(c) Gλ = g−1Gμg, for some g ∈ Gr,n.

Proof. We leave the proof for the reader. �
8.2. Lemma. Suppose that λ,μ ∈ Λ±

n . Then

(a) If μ �∼ λ then dμλμ(q) �= 0 only if |Πλ| > |Πμ|.
(b) If μ ∼ λ then dμαμ(q) = dλαλ(q), for all α ∈ Λ±

n .

Proof. By Lemma 7.4 dμλμ(q) �= 0 only if Πμ = Πμ ∩ dΠλd
−1, for some d ∈ Dμ+λ+ . Hence,

part (a) follows since λ �∼ μ.
Consulting the definition of the polynomials dμνσ (x), to prove (b) it is enough to show that if

r � 2 then in the group Gr,n we have

∑
d∈Dλ+α+
λ=λ∩dα

|T−λ∩d(−α)| =
∑

d∈Dμ+α+
μ=μ∩dα

|T−μ∩d(−α)|. (†)

We prove this by showing that the ‘obvious’ bijection Dλ+α+ −→ Dμ+α+ preserves each of the
summands in this equation.

First note that by Lemma 8.1 we can find an element w ∈ Sn such that Gλ = w−1Gμw since
λ ∼ μ. That is, TλSλ+ = w−1Tμw · w−1Sμ+w, so that Tλ = w−1Tμw and Sλ+ = w−1Sμ+w.
Consequently, the map Sλ+\Sn/Sα+ → Sμ+\Sn/Sα+ given by C 
→ wC defines a bijection
since if d ∈ Dλ+α+ then Sλ+dSα+ = w−1Sμ+wdSα+ . Let d 
→ d ′ be the map from Dλ+α+ to
Dμ+α+ determined by Sμ+wdSα+ = Sμ+d ′Sα+ .

Now fix d ∈ Dλ+α+ such that λ = λ ∩ dα. Then

T−λ∩d(−α) = T−λ ∩ dT−αd−1

= w−1T−μw ∩ dT−αd−1

= w−1(T−μ ∩ wdT−α(wd)−1)w.

Write wd = ud ′v, for u ∈ Sμ+ and v ∈ Sα+ . Then we have

T−λ∩d(−α) = w−1(T−μ ∩ (ud ′v)T−αv−1(d ′)−1u−1)w
= w−1u

(
T−μ ∩ d ′T−α(d ′)−1)u−1w

= w−1u(T−μ ∩ Td ′(−α))u
−1w,



A. Mathas, R.C. Orellana / Advances in Mathematics 219 (2008) 450–487 473
where the second equality follows because Sμ normalizes T−μ and the last equality follows
because Sα normalizes T−α . Hence, we have shown that |T−λ∩d(−α)| = |T−μ∩d ′(−α)|, for all
d ∈ Dλ+α+ . This establishes (†), so the lemma is proved. �
8.3. Theorem. Suppose that R is a field, q ∈ R and n � 0.

(a) If λ ∈ Λ±
n then Solq(n) has a unique one-dimensional representation I (λ) upon which Eα

acts as multiplication by dλαλ(q), for α ∈ Λ±
n .

(b) Every irreducible representation of Solq(n) is isomorphic to I (λ), for some λ ∈ Λ±
n .

(c) If λ ∼ μ then I (λ) ∼= I (μ).

Proof. Choose a total order � on Λ±
n such that |Πλ| � |Πμ| whenever λ > μ, for λ,μ ∈ Λ±

n .
Let Sλ be the R-submodule of Solq(n) with basis {Eμ: λ � μ ∈ Λ±

n } and let S ′
λ be the R-

submodule with basis {Eμ: λ > μ ∈ Λ±
n }. Then Sλ and S ′

λ are both right Solq(n)-modules by
Lemma 7.4. Hence the quotient module I (λ) = Sλ/S

′
λ = R(Eλ + S ′

λ) is a one-dimensional
Solq(n)-module. By definition, if α ∈ Λ±

n then Eα acts on I (λ) as multiplication by dλαλ(q).
Hence, I (λ) is the one-dimensional Solq(n)-module described in part (a).

Now suppose that Λ±
n = {λ1 > λ1 > · · · > λN }, where N = 2 · 3n−1 = dim Solq(n). Then

Solq(n) = Sλ1 ⊃ Sλ2 ⊃ · · · ⊃ SλN
⊃ 0

is a filtration of Solq(n) by two-sided ideals with quotients Sλi
/Sλi+1

∼= I (λi), since
Sλi+1 = S ′

λi
. As every irreducible Solq(n)-module arises as a composition factor of Solq(n)

part (b) now follows.
Finally, if λ ∼ μ then I (λ) ∼= I (μ) by Lemma 8.2(b). Hence, part (c) holds. �

8.4. Corollary. Every field is a splitting field for Solq(n).

Proof. Suppose that D is an irreducible Solq(n)-module. Then D is one-dimensional by the
proposition, and hence absolutely irreducible. �

If A is an algebra over a field then let RadA be its radical. Thus, RadA is the unique maximal
nilpotent ideal of A and A is semisimple if and only if RadA = 0. Recall that a ∈ A is nilpotent
if ak = 0, for some k > 0, whereas an ideal I of A is nilpotent if I k = 0 for some k > 0.

8.5. Corollary. Suppose that R is a field. Then Rad Solq(n) is the set of nilpotent elements
in Solq(n).

Proof. By definition every element of Rad Solq(n) is nilpotent. To prove the converse let M be
the number of irreducible Solq(n)-modules. By Theorem 8.3 every irreducible Solq(n)-module
is one-dimensional. Therefore, Solq(n)/Rad Solq(n) ∼= RM by the Wedderburn theorem. In par-
ticular, Solq(n)/Rad Solq(n) contains no nilpotent elements, so the result follows. �
8.6. Corollary. Suppose that R is a field and q ∈ R. Then Solq(n) is semisimple if and only if
n = 1 and q �= 0.

Proof. If n � 2 then Solq(n) is not semisimple because there exist distinct signed compositions
λ, ν ∈ Λ± such that λ ∼ μ. Therefore, Eλ −Eμ ∈ Rad Solq(n), so that Rad Solq(n) �= 0. If n = 1
n
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then a quick calculation verifies that I (1) ∼= I (−1) if and only if q = 0 which implies the re-
sult. �

Each ∼-equivalence class of Λ±
n contains a unique signed composition μ = (μ1, . . . ,μk) such

that μ1 � · · · � μk . If μ ∈ Λ±
n and μ1 � · · · � μk then μ is a signed partition of n. Let Λ⊕

n be
the set of all signed partitions of n. By the remarks above, the Sn-conjugacy classes of reflection
subgroups of Gr,n are indexed by the signed partitions of n. We note that Λ⊕

n is naturally in
bijection with the set of bipartitions of n, however, for us the signed partitions are more natural
because we have already defined a reflection subgroup Gλ for each λ ∈ Λ⊕

n .

8.7. Theorem. Suppose that R is a field of characteristic zero and that q �= 0. Then

{
I (λ): λ ∈ Λ⊕

n

}
is a complete set of pairwise non-isomorphic irreducible Solq(n)-modules.

Proof. As the ∼-equivalence classes of Λ±
n are indexed by the signed partitions of n, {I (λ): λ ∈

Λ⊕
n } is a complete set of irreducible Solq(n)-modules by parts (b) and (c) of Theorem 8.3. It

remains then to show that if λ,μ ∈ Λ⊕
n then I (λ) �∼= I (μ) if λ �= μ. Now, R is a field of char-

acteristic zero and q �= 0, so dλνλ(q) �= 0 if and only if dλνλ(x) �= 0, for λ, ν ∈ Λ±
n . However,

dλλλ(x) ∈ 1 + xN[x] since 1 ∈ Dλ+λ+ and Πλ = Πλ ∩ 1 · Πλ · 1−1. Therefore, dλλλ(q) �= 0 and
so, using Lemma 8.2(a) again, if λ �= μ then I (λ) �∼= I (μ). �
8.8. Corollary. Suppose that R is a field of characteristic zero and q �= 0. Then

{
Eλ − Eμ: λ ∈ Λ⊕

n , μ ∈ Λ±
n , λ ∼ μ and λ �= μ

}
is a basis of Rad Solq(n). Consequently, dim Solq(n)/Rad Solq(n) = |Λ⊕

n |.

Proof. Suppose that λ ∼ μ where λ ∈ Λ⊕
n , μ ∈ Λ±

n and λ �= μ. Then, by Theorem 8.7 and
Lemma 8.2, Eλ − Eμ acts as multiplication by zero on every irreducible Solq(n)-module.
Therefore, Eλ − Eμ belongs to Rad Solq(n) whenever λ ∼ μ. Consequently, dim Solq(n)/

Rad Solq(n) � |Λ⊕
n |. However, dim Solq(n)/Rad Solq(n) = |Λ⊕

n | by Theorem 8.7, so the result
follows. �

Suppose that R is a field of characteristic zero and that q �= 0. Define the character table
of Solq(n) to be the matrix

Cq(n) = (
dλμλ(q)

)
λ,μ∈Λ⊕

n
.

Then Cq(n) is the character table of Solq(n)/Rad Solq(n), by Theorem 8.7, so it completely
determines the maximal semisimple quotient of Solq(n). The character table Cq(n) is explicitly
known for all q �= 0 and all n � 1 since the polynomials dλμσ (x) are explicitly known for all
λ,μ,σ ∈ Λ± by Corollary 5.8.
n
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8.9. Example. Suppose that R is a field of characteristic zero and that q = 2 = n. Then Sol2(2) ∼=
Sol(G2,2) and the character table C2(2) of Sol2(2) is the following matrix.

(2) (12) (1,−1) (−2) (−12)

(2) 1
(12) 1 2
(1,−1) 1 2 2
(−2) 1 . . 4
(−12) 1 2 4 4 8

As all of the diagonal entries of Cq(2) are powers of 2 it follows that if R is any field of char-
acteristic different from 2 then {I (λ): λ ∈ Λ⊕

n } is a complete set of pairwise non-isomorphic
irreducible Solq(2)-modules. If R is a field of characteristic 2 then I (2) is the only irreducible
Solq(2)-module. This is in agreement with Theorem 8.11 below.

By comparing the character table of Sol(G2,2) with the character table of the group G2,2 (the
Coxeter group of type B2) it is easy to see that there cannot be a ring homomorphism from
Sol(G2,2) into the character ring of G2,2. This is in marked contrast with the Solomon algebras
of Coxeter groups for which such a homomorphism always exists.

8.10. Remark. As discussed in Remark 4.10, Mak has shown that the cosets of the reflection
subgroups of Gr,n have a unique element of minimal length with respect to the Bremke–Malle
length function �0 (see Remark 2.4). For each μ ∈ Λ±

n let E ′
μ be Mak’s set of distinguished coset

representatives for Gμ and let E′
μ = ∑

e∈E ′
μ
e ∈ RGr,n. Define

Σ ′(Gr,n) =
∑

μ∈Λ±
n

RE′
μ.

If r > 2 then Σ ′(Gr,n) is not, in general, a subalgebra of RGr,n. The smallest counter example
occurs when r = n = 3.

Now suppose that r = 2. Then G2,n is a Coxeter group of type Bn and Bonnafé and
Hohlweg [9] have shown that Σ ′(G2,n) is a subalgebra of RG2,n and, moreover, that Σ ′(G2,n) is
isomorphic to the Mantaci–Reutenauer algebra [23]. Now, the algebras Sol(G2,n) and Σ ′(G2,n)

are both free of rank 2 ·3n−1, so it is natural to ask whether these algebras are isomorphic. In fact,
Sol(G2,n) �∼= Σ ′(G2,n) if n > 1. This can be proved by induction on n starting from the following
observation. Bonnafé and Hohlweg have shown in [9, Table V] that the following matrix is the
character table of the semisimple quotient of Σ ′(G2,2).

(2) (12) (1,−1) (−2) (−12)

(2) 1
(12) 1 2
(1,−1) 1 2 2
(−2) 1 . . 2
(−12) 1 2 4 4 8
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Observe that the ((−2), (−2))-entry in this character table is different to the corresponding entry
in the character table of Sol(G2,2) given in Example 8.9. Therefore, Sol(G2,2) and Σ ′(G2,2) are
not isomorphic algebras because they have non-isomorphic maximal semisimple quotients.

We close this section by classifying the irreducible Solq(n)-modules over an arbitrary field.
This classification is a direct generalization of the corresponding results for the descent algebra
of the symmetric groups [2]—although our proofs are necessarily different because there is no
homomorphism from Solq(n) into the character ring of Gr,n.

For λ ∈ Λn let NSn
(Sλ) = {w ∈ Sn: Sλ = w−1Sλw} be the normalizer of Sλ in Sn.

8.11. Theorem. Suppose that R is a field, q ∈ R and λ ∈ Λ⊕
n . Then the following are equivalent:

(a) dλλλ(q) = 0;
(b) q |λ|−[NSn

(Sλ+) : Sλ+] = 0 in R;
(c) Eλ ∈ Rad Solq(n);
(d) Eλ is nilpotent; and,
(e) I (λ) ∼= I (μ), for some μ ∈ Λ⊕

n with |Πμ| > |Πλ|.

Proof. By definition,

dλλλ(q) =
∑

d∈Dλ+λ+
λ=λ∩dλ

|T−λ∩d(−λ)| =
∑

d∈Dλ+λ+
λ=λ∩dλ

q |λ|− = q |λ|−[
NSn

(Sλ+) : Sλ+
]
,

since |T−λ| = q |λ|− and T−λ∩d(−λ) = T−λ if λ = λ ∩ dλ. Hence, (a) and (b) are equivalent. Fur-
ther, (c) and (d) are equivalent by Corollary 8.5.

To complete the proof it is enough to show that (a) ⇒ (c) ⇒ (e) ⇒ (a). In order to do this
let Solq(n) = Sλ1 ⊃ Sλ2 ⊃ · · · ⊃ SλN

⊃ 0 be the filtration of Solq(n) by two sided ideals which
was constructed in the proof of Theorem 8.3 using a total order > on Λ±

n . Recall that |Πμ| � |Πν |
whenever μ > ν, for μ,ν ∈ Λ±

n . Then Sλi
is a subalgebra of Solq(n) which is also a quotient of

Solq(n) since Sλi
∼= Solq(n)/Sλi+1 , for 1 � i � N . Therefore, by Theorem 8.3, every irreducible

Sλi
-module is isomorphic to I (μ) for some μ ∈ Λ⊕

n with μ � λi , for 1 � i � N . In particular,
every irreducible Sλ-module is isomorphic to I (μ) for some μ � λ.

We can now return to the proof of the theorem.
First, suppose (a) holds, so that dλλλ(q) = 0. By definition, if μ ∈ Λ⊕

n then Eλ acts on I (μ)

as multiplication by dμλμ(q). By Lemma 8.2(a), if μ > λ then Eλ acts on I (μ) as multiplication
by 0, whereas Eλ acts on I (λ) as multiplication by 0 since dλλλ(q) = 0. Therefore, Eλ ∈ RadSλ

and (c) holds because RadSλ ⊆ Rad Solq(n).
Next, suppose that (c) holds. Then Eλ belongs to the radical of Sλ. Now, Sλ ⊂ Sλl−1 so, as

vector spaces, RadSλ = REλ + RadSλl−1 . On the other hand, dimSλ = dimSλl−1 + 1, so it
follows that the algebras Sλ and Sλl−1 have the same number of irreducible modules. Hence,
I (λ) ∼= I (μ) for some signed partition μ > λ. That is, (e) holds.

Finally, assume that (e) holds. Then I (λ) ∼= I (μ), for some signed partition μ > λ. Therefore,
Eλ acts on these modules as multiplication by dλλλ(q) = dμλμ(q). Consequently, dλλλ(q) = 0
by Lemma 8.2, so (a) holds.

This completes the proof of the theorem. �
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In the following corollaries note that the integer dλλλ(q) = q |λ|−[NSn
(Sλ+) : Sλ+] is explic-

itly known by Theorem 8.11 (and Corollary 5.8).

8.12. Corollary. Suppose that R is a field and q ∈ R. Then{
I (λ): λ ∈ Λ⊕

n and dλλλ(q) �= 0
}

is a complete set of pairwise non-isomorphic irreducible Solq(n)-modules.

Proof. This follows from Theorems 8.11 and 8.3. �
Similarly, combining Theorem 8.11 with Corollaries 8.5 and 8.8, we obtain the general de-

scription of the radical of Solq(n) when R is a field.

8.13. Corollary. Suppose that R is a field and q ∈ R. Then{
Eλ − Eμ: λ ∈ Λ⊕

n ,μ ∈ Λ±
n , λ ∼ μ and λ �= μ

} ∪ {
Eλ: λ ∈ Λ⊕

n and dλλλ(q) = 0
}

is a basis of Rad Solq(x).

Finally, we can use Theorem 8.11 to describe the radical and irreducible modules for each of
the subalgebras of Solq(n) described in Proposition 7.6. For brevity we state only the following
result.

8.14. Corollary. Suppose that R is a field, n � 1 and q ∈ R. Let A be one of the subalgebras
Sol+q (n), Sol±q (n), Sol1q(n) of Solq(n). Then RadA = A ∩ Rad Solq(n).

9. The Hopf algebra of cyclotomic Solomon algebras

In this section we fix r > 1 and show that the direct sum of cyclotomic Solomon algebras⊕
n�0 Sol(Gr,n) is a concatenation Hopf algebra, where Gr,0 = {1Gr,0} is the trivial group.

Further, this Hopf algebra is a Hopf subalgebra of the Hopf algebra of colored permutations
introduced by Baumann and Hohlweg [3].

Most of the results in this section hold over an arbitrary integral domain, however, the main
results of this section (Theorem 9.7 and Corollary 9.8), hold only in characteristic zero. Conse-
quently, for this section we fix a field k of characteristic zero and we work only over this field.
For the rest of this paper all tensor products are over k, all modules are k-vector spaces and all
algebras are k-algebras. In particular, the cyclotomic Solomon algebras Sol(Gr,n) = Solk(Gr,n)

are k-algebras.
We first recall some general facts about bialgebras and Hopf algebras.
A k-coalgebra is a triple (A, δ, ε) consisting of a k-vector space A together with two linear

maps δ :A −→ A ⊗ A (comultiplication) and ε :A −→ k (the counit) such that

(δ ⊗ idA) ◦ δ = (idA ⊗ δ) ◦ δ and (ε ⊗ idA) ◦ δ = (idA ⊗ ε) ◦ δ,

where idA is the identity map on A.
A k-bialgebra is a coalgebra (A, δ, ε) such that A is a k-algebra and the structure maps

δ :A −→ A ⊗ A and ε :A −→ k are algebra homomorphisms. A Hopf algebra is a quadruple
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(A, δ, ε, S) where (A, δ, ε) is a bialgebra and S :A −→ A (the antipode) is a linear map such that
μ(S ⊗ idA)δ = ηε = μ(1 ⊗ S)δ. Here μ :A ⊗ A −→ A : (a, b) 
→ ab is the multiplication map
and η : k −→ A;1 
→ 1A is the unit map for the algebra A.

Finally, a graded bialgebra is a triple (A, δ, ε) where A = ⊕
n∈N

An is N-graded bialgebra
and the maps δ and ε are graded (degree zero) vector space homomorphisms. A graded Hopf
algebra is a graded bialgebra which is equipped with an antipode which is a graded vector space
homomorphism of degree zero. A graded bialgebra, or a graded Hopf algebra, A = ⊕

n�0 An is
connected if A0 = k.

Following Baumann and Hohlweg [3], we next define the (graded connected) Hopf algebra of
coloured permutations. As a graded vector space this Hopf algebra is the direct sum of the group
algebras of groups Gr,n:

G (r) :=
⊕
n�0

kGr,n.

We need some more notation before we can describe the Hopf algebra structure on G (r).
First, suppose that m and n are non-negative integers. Then Gr,m × Gr,n is naturally isomor-

phic to the reflection subgroup G(m,n) of Gr,m+n. By identifying Gr,m × Gr,n and G(m,n) we
have an embedding Gr,m × Gr,n ↪→ Gr,m+n. Explicitly, this embedding sends the generators
{s0, . . . , sm−1} of Gr,m to {s0, . . . , sm−1} in Gr,m+n and the generators {s0, . . . , sn−1} of Gr,n to
{tm+1, sm+1, . . . , sm+n−1}, respectively.

By Proposition 4.7 there is a natural bijection between the set E(m,n) = D(m,n) of right coset
representatives of G(m,n) in Gr,n and the set of row standard (m,n)-tableau. The product ∗ on
the Hopf algebra G (r) is the bilinear map determined by

u ∗ v =
∑

e∈E(m,n)

(u × v)e = (u × v)E(m,n),

for u ∈ Gr,m, v ∈ Gr,n and where u × v is multiplication inside Gr,m+n. The product ∗ on G (r)

is the shuffle product, or the external product, on G (r) because, by Proposition 4.7, E(m,n) is in
bijection with the ways of shuffling the two sets {1, . . . ,m} and {m + 1, . . . ,m + n} together. It
is easy to check that E(0) = 1Gr,0 ∈ Sol(Gr,0) is the unit for the shuffle product.

To define the coproduct on G (r) observe that for m = 0, . . . , n any element g ∈ Gr,n can be
written uniquely in the form g = e−1

m (g(m) × g(n)), where g(m) ∈ Gr,m, g(n) ∈ Gr,n and em ∈
E(m,n). Using this notation, the coproduct Δ on G (r) is the linear map determined by

Δ(g) =
n∑

m=0

g(m) ⊗ g(n),

for g ∈ Gr,n.

9.1. Example. In order to better distinguish between the elements Gr,n for different values of
n recall from the end of Section 2 that there is a natural bijection between Gr,n and the set
of words Gr,n = {ω = ω1 . . .ωn: ωi ∈ nζ and {|ω1|, . . . , |ωn|} = n}. To give an example of the
shuffle product and the coproduct on G (r) we identify Gr,n and Gr,n using this bijection.

Suppose that 0 � a, b, c, d < r . Then, using the identification above,
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1ζ a 2ζ b ∗ 2ζ c 1ζ d = 1ζ a2ζ b4ζ c3ζ d + 1ζ a3ζ b4ζ c2ζ d + 1ζ a4ζ b3ζ c2ζ d

+ 2ζ a3ζ b4ζ c1ζ d + 2ζ a4ζ b3ζ c1ζ d + 3ζ a4ζ b2ζ c1ζ d

and

Δ
(
2ζ a3ζ b1ζ c4ζ d

) = ∅ ⊗ 2ζ a3ζ b1ζ c4ζ d + 1ζ c ⊗ 1ζ a2ζ b3ζ d + 2ζ a1ζ c ⊗ 1ζ b2ζ d

+ 2ζ a3ζ b1ζ c ⊗ 1ζ d + 2ζ a3ζ b1ζ c4ζ d ⊗ ∅,

where ∅ is the empty word in Gr,0.

As remarked above, E(0) = 1Gr,0 is the multiplicative unit for the shuffle product. The counit
of G (r) is the linear map ε :G (r) −→ k defined by

ε(w) =
{

1 if w = E(0) ∈ Gr,0,

0 otherwise.

9.2. Theorem. (See Baumann and Hohlweg [3, Theorem 1].) The triple (G (r),Δ, ε) is a graded
connected bialgebra.

In fact, (G (r),Δ, ε) is a Hopf algebra at least when k is a field because every connected
N-graded k-bialgebra is a Hopf algebra; see [29, Example 1, p. 238].

We remind the reader that r > 1 is fixed throughout this section.

9.3. Definition. The cyclotomic Hopf algebra is the graded vector space

Sol(r) =
⊕
n�0

Sol(Gr,n).

The cyclotomic Hopf algebra is naturally graded with Sol(r)n = Sol(Gr,n) and, as a vec-
tor space, Sol(r)n is finite dimensional with basis {Eμ: μ ∈ Λ±

n }. For convenience, we set
En = E(n), for n ∈ Z.

Our next aim is to show that Sol(r) is a Hopf subalgebra of G (r). We begin with a lemma
which generalizes 6.6(a).

9.4. Lemma. Suppose that α,β ∈ Λ±
n with Gα ⊆ Gβ . Then E

β
α = Eα ∩ Gβ is a complete set of

minimal length right coset representatives for Gα in Gβ and Eα = E
β
α Eβ .

Proof. It is clear that E
β
α is a complete set of right coset representatives for Gα in Gβ . Moreover,

by definition, if e ∈ E
β
α then e is the unique element of minimal length in the coset Gαe. To prove

the second statement observe that

Gr,n =
∐

d∈Eβ

Gβd =
∐

d∈Eβ

( ∐
e∈E

β
α

Gαe

)
d.

So, E
β
α Eβ is a complete set of coset representatives for Gα in Gr,n. Therefore, Eα = E

β
α Eβ since

the elements of both sides are of minimal length in their respective cosets. �
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9.5. Proposition. Suppose that μ ∈ Λ±
m and ν ∈ Λ±

n . Then

Eμ ∗ Eν = Eμ�ν ∈ Sol(Gr,n+m)

where μ � ν = (μ1, . . . ,μl, ν1, . . . , νk) is the concatenation of two signed these permutations.

Proof. By definition, Eμ ∗ Eν = (Eμ × Eν)E(m,n) where, as above, we interpret Eμ × Eν as an

element of kG(m,n) ⊆ kGr,n. Therefore, it is enough to prove that Eμ�ν = E (m,n)
μ×ν E(m,n). However,

this follows immediately from the previous lemma because Gμ�ν = Gμ × Gν ⊆ G(m,n). �
Notice that the proposition says that Sol(r) is a subalgebra of G (r) and that, as an algebra,

Sol(r) is freely generated by the elements {E±n: n � 1}.

9.6. Proposition. Suppose that n is a positive integer. Then

(a) Δ(En) = ∑n
m=0 Em ⊗ En−m;

(b) Δ(E−n) = ∑n
m=0 E−m ⊗ Em−n.

Proof. Part (a) follows directly from the definitions. This result is well known because
En = 1Gr,n is the identity element of kGr,n, so we omit the details.

For part (b), observe that E−n = F(n) = ∑
t∈T t . Therefore,

Δ(E−n) =
∑

α=(α1,...,αn)∈Zr
n

Δ
(
t
α1
1 . . . tαn

n

)

=
∑

α=(α1,...,αn)∈Zr
n

n∑
m=0

t
α1
1 . . . tαm

m ⊗ t
αm+1
1 . . . t

αm
n−m

=
n∑

m=0

∑
β∈Z

r
m

γ∈Z
r
n−m

t
β1
1 . . . tβm

m ⊗ t
γ1
1 . . . t

γn−m

n−m

=
n∑

m=0

E−m ⊗ Em−n,

as required. �
We henceforth adopt the unusual convention that

∑b
m=a f (m) = ∑a

m=b f (m) if b < a. This
allows us to write Proposition 9.6 more compactly as Δ(En) = ∑n

m=0 Em ⊗ En−m, for n ∈ Z.
As the coproduct is an algebra homomorphism G (r) → G (r) ⊗ G (r) it follows from the last

two propositions that Sol(r) is a sub-bialgebra of G (r).
Let P be a set of non-commuting indeterminates over k. The concatenation Hopf algebra on

P is the free associative k-algebra k〈P〉 on P with counit ε, where ε(f (P)) = f (0) is the constant
term of f (P) ∈ k〈P〉, coproduct δ(p) = p ⊗ 1 + 1 ⊗p for any p ∈ P, and antipode S determined
by S(p1 . . . pk) = (−1)kpk . . . p1, for p1, . . . , pk ∈ P. Any function deg : P −→ N extends to a
degree function on the monomials in k〈P〉 by setting deg(p1 . . . pk) = deg(p1) + · · · + deg(pk).
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In this way, k〈P〉 = ⊕
n�0 k〈P〉n becomes a graded connected Hopf algebra, where k〈P〉n is the

space of homogeneous polynomials p1 . . . pk in P with deg(p1 . . . pk) = n.
We can now prove the main result of this section. Up until now we have not used the assump-

tion that k is a field of characteristic zero. This assumption is necessary, however, for the proof
of the following theorem.

9.7. Theorem. Suppose that k is a field of characteristic zero. Then (Sol(r),Δ, ε) is isomorphic
to the graded connected concatenation Hopf algebra k〈P〉 on a set of non-commuting indetermi-
nates P = {Pn: n ∈ Z \ {0}} where degP±n = n, for n > 0.

Proof. Our argument is modeled on the proof of [22, Theorem 2.1].
Let x be a formal variable and consider the algebra Sol(r)�x� of formal power series in x

over Sol(r), where x commutes with Sol(r). For each positive integer n define elements P±n ∈
Sol(r)�x� using the generating series

∑
n>0

Pnx
n = log

(
1 + E1x + E2x

2 + · · ·)

and ∑
n>0

P−nx
n = log

(
1 + E−1x + E−2x

2 + · · ·).
A straightforward calculation using Proposition 9.5 and the Taylor series expansion of log(1 + t)

shows that

Pn =
∑
α∈Λn

(−1)�(α)−1

�(α)
Eα and P−n =

∑
−α∈Λn

(−1)�(α)−1

�(α)
Eα.

(Recall that �(α) is the number of non-zero parts in α.) Therefore, Pn,P−n ∈ Sol(Gr,n) are
homogeneous of degree n; in particular, P±n ∈ Sol(r), for all n > 0. Consequently, the elements
{P±n: n > 0} generate a subalgebra of Sol(r).

Similarly, since
∑

n�0 E±nx
n = exp(

∑
n>0 P±nx

n), another completely formal calculation
using the Taylor series expansion of exp(x) and Proposition 9.5 shows that if n > 0 then

En =
∑

α∈Λn

1

�(α)!Pα and E−n =
∑

−α∈Λn

1

�(α)!Pα,

where we set Pα = Pα1 ∗ · · · ∗Pαk
, for α = (α1, . . . , αk) ∈ ±Λn. Therefore, by the last paragraph,

the set P = {Pn: n ∈ Z\{0}} freely generates Sol(r) as an algebra. That is, Sol(r) = 〈P±n | n > 0〉
as an algebra.

We claim that Δ(Pn) = Pn ⊗1+1⊗Pn, for n ∈ Z\ {0}. This will complete the proof because
it shows that these elements generate a concatenation Hopf algebra k〈P〉 inside Sol(r). Starting
from the definition of P±n we have that

∑
Δ

(
P±nx

n
) = Δ

( ∑
log

( ∑
E±nx

n

))
= log

( ∑
Δ(E±n)x

n

)
,

n>0 n�0 n�0 n�0
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where the last equality follows by the linearity of Taylor expansions since Δ is an algebra homo-
morphism. Using Proposition 9.6 to expand the right-hand side of the last equation, exactly as
in the proof of [22, (2.9)], shows that Δ(P±n) = Pn ⊗ 1 + 1 ⊗ Pn. This proves our claim and so
completes the proof. �
9.8. Corollary. Suppose that r > 1. Then the graded vector space Sol(r) equipped with the
product ∗, coproduct Δ, unit E0 and counit ε, is a graded connected Hopf subalgebra of G (r).

10. A second bialgebra structure on Sol(r)

In this section we show that the cyclotomic Hopf algebra Sol(r) has a second bialgebra
structure with the same coproduct Δ as in Section 9, but where the product is inherited from
multiplication in the groups Gr,n, for r, n � 0. More precisely, the internal product is the unique
bilinear map · :G (r) −→ G (r) such that if w ∈ Gr,m and v ∈ Gr,n then

w · v =
{

wv, if n = m,

0, otherwise.

We frequently abuse notation and write xy = x · y, for x, y ∈ G (r).
As each of the group algebras kGr,n are associative algebras it follows that (G (r), ·) is an as-

sociative algebra. Note, however, that (G (r), ·) does not have a multiplicative unit, so we cannot
expect to obtain a second Hopf algebra structure on Sol(r) in this way. Note also that the internal
product · does not respect the grading on G (r) = ⊕

n kGr,n.
By Theorem 6.7, Sol(r) is a subalgebra of the algebra (G (r), ·). It is straightforward to check

that ε restricts to an algebra homomorphism ε :G (r) −→ k with respect to the internal product,
whereas Δ is not an algebra homomorphism on G (r) with respect to this product; see [21, Re-
mark 5.15]. Nonetheless, we show that (Sol(r), ·,Δ) is a bialgebra. To prove this we need only
show that Δ is an algebra homomorphism with respect to the internal product. The argument that
we give generalizes that used by Malvenuto [21, Remark 5.15] to prove the analogous statement
for the descent algebra of the symmetric group. We start with some new definitions.

A pseudo signed composition of n is an element c = (c1, c2, . . . , ck) ∈ Zk , for some k > 0,
such that |c| = |c1| + |c2| + · · · + |ck| = n. A pseudo composition is an element of Nk , for some
k > 0. The difference between (signed) compositions and pseudo (signed) compositions is that
pseudo (signed) compositions can contain zeros. If c is a pseudo signed composition let c be the
signed composition obtained by omitting the zeros from c. For example, if c = (−2,0,3,0,1)

then c = (−2,3,1).
If c ∈ Zk is a pseudo signed composition then set Ec = Ec. If c, c′ ∈ Zk are two pseudo signed

composition of the same length then c + c′ ∈ Zk , where addition is defined componentwise. We
extend the operation of concatenation to pseudo signed compositions in the obvious way so that
if c ∈ Zk and c′ ∈ Zl then c � c′ ∈ Zk+l .

Two integers c and c′ are sign equivalent, and we write c ∼sgn c′, if cc′ � 0. Similarly,
two (pseudo) signed compositions c = (c1, . . . , ck) and c′ = (c′

1, . . . , c
′
k) are sign equivalent if

ci ∼sgn c′ , for i = 1, . . . , k. Again, we write c ∼sgn c′.
i
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10.1. Proposition. Suppose that μ ∈ Λ±
n and that �(μ) = k. Then

Δ(Eμ) =
∑

c′∼sgnc′′∈Z
k

μ=c′+c′′

Ec′ ⊗ Ec′′ .

Proof. We argue by induction on k. As Δ(E0) = E0 ⊗ E0 the case k = 0 is clear. So we may
assume that k > 0. Let ν = (μ1, . . . ,μk−1) so that μ = ν � (μk). Then, by Propositions 9.5
and 9.6,

Δ(Eμ) = Δ(Eν ∗ Eμk
) = Δ(Eν) ∗ Δ(Eμk

)

=
( ∑

c′∼sgnc′′∈Z
k−1

ν=c′+c′′

Ec′ ⊗ Ec′′
)

∗
(

μk∑
m=0

Em ⊗ Eμk−m

)
,

by induction on k. (If μk < 0 then recall our unusual convention for summations from after
Proposition 9.6.) Therefore, using Proposition 9.5 for the second equality,

Δ(Eμ) =
∑

c′∼sgnc′′∈Z
k−1

ν=c′+c′′

μk∑
m=0

Ec′ ∗ Em ⊗ Ec′′ ∗ Eμk−m

=
∑

c′∼sgnc′′∈Z
k−1

ν=c′+c′′

μk∑
m=0

Ec′�(m) ⊗ Ec′′�(μk−m)

=
∑

c′∼sgnc′′∈Z
k

μ=c′+c′′

Ec′ ⊗ Ec′′

as required. �
Let k, l > 0 be positive integers and let Matkl(Z) be the set of k × l integer matrices. If M ∈

Matkl(Z) let row(M) = (r1, . . . , rk) be the pseudo composition where ri is the sum of the absolute
values of the entries in row i of M , for 1 � i � k. Similarly, let col(M) = (c1, . . . , ck) be the
pseudo composition where cj is the sum of the absolute values of the entries in column j of M .
Finally, if M ∈ Matkl(Z) let comp(M) be the signed composition obtained by listing the non-
zero entries in M in order, from left to right and then top to bottom; thus, if M = (mij ) then
comp(M) = (m11, . . . ,m1l ,m21, . . . ,mk1, . . . ,mkl).

If c = (c1, . . . , ck) is a pseudo signed composition then define c+ = (|c1|, . . . , |ck|). In the
next definition we are most interested in the case when μ and ν are signed compositions. We
include pseudo signed compositions in the definition because they are needed in the proof of
Theorem 10.5 below.
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10.2. Definition. Suppose that μ = (μ1, . . . ,μk) and ν = (ν1, . . . , νl) are pseudo signed compo-
sitions of n. Let

Nμν =
{

M = (mij ) ∈ Matkl(Z)

∣∣∣∣∣
row(M) = μ+, and col(M) = ν+,

mij � 0 if μi < 0 or if νj < 0,
and mij � 0 if μi > and νj > 0

}
.

Suppose now that M = (mij ) ∈Nμν . The weight of M is the non-negative integer

wt(M) = −
∑

i: μi<0
j : νj <0

mij ,

where in the sum 1 � i � k and 1 � j � l (note that mij � 0 for all such i, j ). If μ and ν

are signed compositions let TM be the unique row semistandard tableau in T (μ, ν) such that j

appears |mij | times in row i of T, for 1 � i � k and 1 � j � l.

Note that if μ and ν are compositions and M = (mij ) ∈ Nμν then wt(M) = 0 and mij � 0,
for 1 � i � �(μ) and 1 � j � �(ν).

10.3. Proposition. Suppose that μ and ν are signed compositions of n. Then

EμEν =
∑

M∈Nμν

rwt(M)Ecomp(M)

Proof. By Theorem 6.7, EμEν = ∑
d∈Dμ+ν+ |T−μ∩d(−ν)|Eμ∩dν . Therefore, to prove the propo-

sition it is enough to show that there exists a bijection Nμν → Dμ+ν+;M 
→ dM such that
comp(M) = μ ∩ dMν and rwt(M) = |T−μ∩dM(−ν)|.

First, observe that the map Nμν → T (μ, ν);M 
→ TM is a bijection because its inverse is the
map which sends the tableau T ∈ T (μ, ν) to MT = (mij ), where |mij | is the number of times
that j appears in row i of T, and where the sign of mij is determined by the constraints on Nμν .
Next, by (5.5), the map T (μ, ν) → Dμ+ν+;T 
→ dT∗ is a bijection. Hence, the map

Nμν → Dμ+ν+;M 
→ dM = dT∗
M

is a bijection.
Fix M ∈ Nμν . Then wt(M) = wt(TM) in the notation of Corollary 5.8, so that rwt(M) =

|T−μ∩dM(−ν)|. Hence, it remains to prove that comp(M) = μ ∩ dMν. The permutation dM

is determined by the row semistandard tableau T which, by the last paragraph, also deter-
mines M = (mij ). If mij �= 0 then |mij | is equal to the number of times that j appears in row i

of T. Writing Gμ = Gμ1 × · · · × Gμk
and Gν = Gν1 × · · · × Gνl

, and abusing notation slightly,
we see that mij computes the intersection of Gμi

with dMGνj
d−1
M ; more precisely,

Gμi
∩ dMGνj

d−1
M

∼=
{

G(r,1,mij ), if mij > 0,

S−mij
, if mij < 0.

Comparing this with the recipe given in the proof of Lemma 5.1 for computing μ ∩ dMν we see
that comp(M) = μ ∩ dMν, as required. �
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Garsia and Remmel [13, Prop. 1.1] (see also [12, §4]), proved the analogue of this result
for the Solomon algebras of the symmetric groups. This is equivalent to the special case of
Proposition 10.3 when μ and ν are both compositions of n. If μ,ν ∈ Λn then the bijection

Nμν
�−→ Dμν is well known; see, for example, [19, Theorem 1.3.10].

10.4. Example. As in Example 5.9, suppose that μ = (3,−2) and ν = (−22,1). The following
table lists all of the elements of Nμν , together with the associated signed composition and row
semistandard μ-tableau of type ν and the weight of the matrix.

M comp(M) TM wt(M)(−2 −1 0
0 −1 −1

)
(−2,−13)

1 1 2

2 3
1

(−2 0 1
0 −2 0

)
(−2,1,−2)

1 1 3

2 2
2

(−1 −2 0
−1 0 −1

)
(−1,−2,−12)

1 2 2

1 3
1

(−1 −1 1
−1 −1 0

)
(−12,1,−12)

1 2 3

1 2
2

( 0 −2 1
−2 0 0

)
(−2,1,−2)

2 2 3

1 1
2

The reader might like to compare this table with the one given in Example 5.9.
Combining the information above with Proposition 10.3 shows that

E(3,−2)E(−22,1) = 2r2E(−2,1,−2) + rE(−2,−13) + rE(−1,−2,−12) + r2E(−12,1,−12).

This calculation agrees with Example 6.9, as it must.

Suppose that M ′ = (m′
ij ),M

′′ = (m′′
ij ) ∈ Matkl(Z), for some k, l > 0. Then M ′ and M ′′ are

signed equivalent, and we write M ′ ∼sgn M ′′, if m′
ij ∼sgn m′′

ij , for 1 � i � k and 1 � j � l.
We can now prove the main result of this section.

10.5. Theorem. Suppose that r > 1. Then Sol(r) equipped with product ·, coproduct Δ and
counit ε, is a bialgebra.

Proof. As remarked at the beginning of this section, it remains to show that the coproduct
Δ : Sol(r) −→ Sol(r) ⊗ Sol(r) is an algebra homomorphism with respect to the internal prod-
uct. By linearity it is enough to show that

Δ(EμEν) = Δ(Eμ)Δ(Eν),

for all signed compositions μ and ν. Further, we may assume that |μ| = |ν| since otherwise
both sides of this equation are zero. Let k = �(μ) and l = �(ν) and for M ∈ Nμν let �(M) =
�(comp(M)). Then, by Propositions 10.3 and 10.1,
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Δ(EμEν) =
∑

M∈Nμν

rwt(M)Δ(Ecomp(M))

=
∑

M∈Nμν

∑
c′∼sgnc′′∈Z

�(M)

comp(M)=c′+c′′

rwt(M)Ec′ ⊗ Ec′′ .

For the moment, fix a matrix M ∈ Nμν and c′, c′′ ∈ Z�(M) such that c′ ∼sgn c′′ and comp(M) =
c′ + c′′. Since c′ ∼sgn c′′ there exist unique matrices M ′ = (m′

ij ),M
′′ = (m′′

ij ) ∈ Matkl(Z) such

that M = M ′ + M ′′, M ∼sgn M ′ ∼sgn M ′′, comp(M ′) = c′ and comp(M ′′) = c′′. Note that
wt(M) = wt(M ′) + wt(M ′′) since M ′ ∼sgn M ′′. Therefore, the last equation becomes

Δ(EμEν) =
∑

M∈Nμν

∑
M ′∼sgnM

′′
M ′+M ′′=M

rwt(M ′)Ecomp(M ′) ⊗ rwt(M ′′)Ecomp(M ′′).

For each pair M ′ and M ′′ in the second sum let μ′ = row(M ′) and μ′′ = row(M ′′). Then μ′
and μ′′ are pseudo signed compositions such that μ = μ′ + μ′′ and μ′ ∼sgn μ′′. Similarly, ν′ =
col(M ′) and ν′′ = col(M ′′) are pseudo signed compositions such that ν = ν′ + ν′′ and ν′ ∼sgn ν′′.
By signed equivalence, M ′ ∈ Nμ′ν′ and M ′′ ∈ Nμ′′ν′′ . Moreover, M ′ and M ′′ run through Nμ′ν′
and Nμ′′ν′′ , respectively, for all possible μ′,μ′′, ν′ and ν′′, as M runs through Nμν . Observe
that if M ′ ∈ Nμ′ν′ and M ′′ ∈ Nμ′′ν′′ , for μ′,μ′′, ν′ and ν′′ as above, then M ′ ∼sgn M ′′ since
μ′ ∼sgn μ′′ and ν′ ∼sgn ν′′. Therefore, we can reverse the order of summation in the last displayed
equation to obtain

Δ(EμEν) =
∑

μ′∼sgnμ
′′

μ=μ′+μ′′
ν′∼sgnν

′′
ν=ν′+ν′′

∑
M ′∈Nμ′ν′
M ′′∈Nμ′′ν′′

rwt(M ′)Ecomp(M ′) ⊗ rwt(M ′′)Ecomp(M ′′)

=
∑

μ′∼sgnμ
′′

μ=μ′+μ′′
ν′∼sgnν

′′
ν=ν′+ν′′

( ∑
M ′∈Nμ′ν′

rwt(M ′)Ecomp(M ′)

)
⊗

( ∑
M ′′∈Nμ′′ν′′

rwt(M ′′)Ecomp(M ′′)

)

=
( ∑

μ′∼sgnμ
′′

μ=μ′+μ′′

Eμ′ ⊗ Eμ′′
)( ∑

ν′∼sgnν
′′

ν=ν′+ν′′

Eν′ ⊗ Eν′′
)

= Δ(Eμ)Δ(Eν),

where the last two equalities follow by Propositions 10.3 and 10.1 respectively. This completes
the proof. �
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