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It is shown that for each A =3, there are only finitely many quasi-residual quasi-symmetric
(QRQS) designs and that for each pair of intersection numbers (x, y) not equal to (0, 1) or
(1, 2), there are only finitely many QRQS designs.

A design is shown to be affine if and only if it is QRQS with x =0. A projective design is
defined as a symmetric design which has an affine residual. For a projective design, the
block-derived design and the dual of the point-derivate of th: residual are multiples of
symmetric designs.

1. Quasi-residual quasi-symmetric designs

Let 2 be a set of elements (points) and 9B a family of subsets (blocks) of 2.
(The same subset may be repeated, i.e., occur more than once as a block.) (?, &)
is a block design with parameters (v, b, r, k, A) if

(i) |P|=v, |B|=b, v>k=2;
(ii) each point lies in r blocks;
(iii) each block contains k points;
(iv) each pair of points occurs in exactly A blocks.

A design is symmetric if v =b or equivalently, r=k. It is well-known that
symmetric designs are just those designs in which any two blocks intersect in just
A points. A design is quasi-symmetric (QS) if the number of points in the
intersection of two blocks takes just two values, x and y (x<y). The following
known results concerning QS designs can be obtained by counting frequencies of
the intersection numbers x and y (see [7] for an alternative proof using linear
algebraic methods).

Proposition 1.

k(ir—D(x+y)=(b—-1)xy+k(k—1)A—=V)+k(r—1)
Propusition 2. y—x |[k—x and y—x |r—A.

A residual design is a design obtained from a symmetric (v, k, A) design by
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deleting a block and all of its points. The parameters of the resulting residual
design will then be (v—k,v—1,k, k—A, A). A design is called quasi-residual
(OR) if its parameters are of this form. It is easy to see that a design is
quasi-residual if and only if r = k + A. We note that a QR design is not necessarily
embeddable in a symmetric design, however, Hall and Connor ([8] or [9]) have
shown that for A = 1, 2, the notions of residual and quasi-residual are equivalent.
More generally, Bose, Shrikhande and Singhi [4] i.ave shown that if k is larger
than a certain functicn g(A) of A, then a QR design is embeddable in a unique
syminetric design. We will subsequently utilizs the followiny consequence of H. il
and Conner’s result:

Theorem 3. Let D be an arbitrary design with A = 2. Then D is residual if and only
if D is QS with intersection numbers (x, y)=(1,2).

Hereafter, unless otherwise indicated we consider only quasi-residual, quasi-
symmetric (QRQS) designs. Specializing Propositions 1 and 2 to these designs we
have:

Proposition 4
KAZ—kA(k+A = 1)(x+y)+ (k2 +2kA +A2—k =2A)xy =0
or equivalently,

(k —x)(k —yIA* = (k = 1)(kx + ky =2xy)A + k(k — 1)xy = 0.
Proposition 5. y-x |x and y—x | k.

We consider two questions with regard to QRQS designs:

(1) Given A, what are the possible values of (x,y) and the other design
parameters?

(2) Given (x,y), what are the possible values of A and the other design
parameters?

The following results are helpful in partially answering these questions.

Lemma 6. If D is an arbitrary design witk i. = 1, then D is either symmetric or QS
with (x.y)=(0, 1).

Proof. Since two points lie in exactly one block, two blocks intersect in at most
one point. If each pair of blocks intersect in the same number of points then the
design is symmetric. Otherwise the design must be QS with x =0, y=1. [

The follewing partial converse results upen substituting x =0, y = 1 in Proposi-
tion 1.
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Lemma 7. If D is QS with (x,y)=(0,1), then A = 1.

Lemma 8. if x =1, then y =2 and the design is either the complete design (5, 10, 6,
3, 3) or a design with parameters of the form ((*3'), (*32), k+2, k, 2).

Proof. By Proposition 5, y—1| 1, so y =2. By Proposition 4,
(k—1)(k=2)A*—(k—1)(3k —4)A +2k(k—1)=0.

Hence [A-2][(k—-2)A—-k]=0, so A=2 or k/(k-2). If A=k/(k-2)=
1+2/(k—2), then k=3, A=3 or k =4, A =2. In the case A =3, the parameters
are (5, 10, 6, 3, 3). This is a complete design and can casily be shown to have the
required intersection numbers. If A =2, then r=k+2 and the parameters are
(31, %37, k+2, k, 2). O

We can now answer questions (1) and (2) above for the smallest parameter
values.

(i) For A =1, every QRQS design has (x,y)=(0, 1). The parameters must
have the form

(k*, k*+k k+1,k,1)

which is an affine plane A(2, k).
(ii) For A =2, we have, by Theorem 3, (x, y)=(1.2) and the parameters must
be of the form

(31, (32, k+2, k, 2).

(iii) For (x, y)=(0, 1), we have A = 1 and parametars as indicated in (i) above.
(iv) For (x, y)=(1,2), Lemma 8 stipulates that either A =2 with parameters as
indicated in (ii) above or A =3 with parameters (5, 10, 6, 3, 3).

In each of the above cases, there are infinitely many possible parameter sets
although not all of these may have solutions. We now show that each of the
remaining cases yields only finitely many possible parameter sets.

Lemma 9. Ina (v, b, r, k, ) QR design,
(@) v=k+k(k—1)/A=(k>+ Ak —k)/A,
b) b=v+k+A—-1=(k+A)k+A—-1)/A.

Proof. (a) follows immediately from the basic relation (v —1)A =r(k —1) and the
fact that r=k+A in a QR design.
(b) follows from (a) and the basic relation bk =vr. [

For QRQS designs in which x =0 we obtain the following:

Lemma 10. Let x =0. Then for some integer n=2
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(@) ny =k,

(b) y=kA(k+A-1),

(¢ y=A -(A=1)/n, i.e., A=y+(y-1/(n-1),
(d) v =nk,

(e) y=k?/v.

Proof. (a) follows from Proposition 5, and (b) is a consequence of Proposition 4.
For (c), note that k = nkA/(k + A — 1) by (a) and (b). HHence k +A — i = nA or (using
(a) again) ny =(n—1)A+1 from which (c) follows. Using the fact that k—1=
(n-1)A together with Lemma 9 (a), we get v=k+k(k—1)/A =k+(n-1)k and
so (d) holds. (e) follows from (a) and (d). O

As direct consequences of Lemma 10, we get,

Corollary 11. If x =0, then
(@ nlk.n|A-1and n—-1|y—-1,
M Alk=1,klvand A—y|A—1,
(©) vlk>

We let a denote the number of blocks meeting a given block B, in y points. It
is not difficult to show that a, the frequency of the intersection number vy, is

‘ndependent of B,,. The following proposition occurs upon specializing a result of
| 10] to QROS designs:

Proposition 12
(b—a-Dx~-A-D)x=A)+aly=(A=-D)y=A)=AA=1)(A=2).

We derive the following consequence:
Corollary 13. (x,y)=(A—1,A) if and only if A\ =1 or 2.
Preof. If A =1 or 2, the rignt hand side of (he equation of Proposition 12
becomes (). Since there are not integers between A — 1 and A, each term on the left
hand side is non-negative and so must be zero. The converse is straightforward.
Proposition 14. If y=A =3, then k = (A —=2)x/(A - 1—x).
Proof. From Proposition 4,

k[2Ai=DAx—=A0 = (x+A)]+A(A=-2)Ax =0,

kKifdx —AA=1))+AA=2)Ax =0,
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ie.,
k(A=1-x)=(A—-2)x.
By Corollary 13, x# A ~1, hence the result. [

Proposition 15. Suppose y# A. Then k =(B = D)/2A, where
A=QA-x)A-y), B=A-1(x+y)—(2A-1)xy,
C=AA=2)xy, D?=B?-4AC.

Proof. If y# A, then A#0 and the second equation of Proposition 4, which is
Ak?—Bk +C =0 restricts k to the stated values. O

Proposition 16. Let D be an arbitrary design with a repeated block. Then D is GS
if and onlv if D is a multiple of a symmetric design.

Proof. Let D be a (v, b, r, k, A) QS design with a repeated block. Each block has
exactly a blocks meeting it in y points. But since D has a repeated block, y = k.
Therefore every block is repeated a times. Thus D is a multiple of a (v. b', ¢, k,
A') design with no repeated blocks, where b/L' == r/r' = A/A' = a -+ 1. But this means
that every pair of blocks in the latter design intersect in x points. Hence this

design is symmetric.
The converse is obvious. [

Proposition 17. Let D be a QS design with parameters (v, b, r, k, A). If y =k, then
x =kA/r.

Proof. We use the notation of the previous proof. 1t was shown that every pair of
blocks in the symmetric (v, b’, r', k, A’) design intersect in x points. {ience x =A".
But A'=r'A/r and r' =k (by symmetry). Therefore x = kA/r. [
Proposition 18. If (x, y)#(0,1), then x <A <y?,
Proof. If x =0, then by Lemma 10 (c),

A=2y—1=y>—(y—-1)°<y’

Suppose now x# 0. Let

(k=DA-D+(r—1) Ck(r=1)
0= r—1 end ="

(i.e., for a given block B, u is the “mean” of the values |B,N B| as B ranges over
the remaining blocks). Then Proposition 1 becomes x +y = xy/u + 6. Since x <p,
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x +y<y+@ and hence x <#@. Since k<r,

6=(k-—l)()\—l)
r—.

+l1<A—=1+1=A

and so x <A. Note, again using the above equation, that since y>pu, x+y>x+6
and thus y > 6. It follows that (k —y)(A—y)<y(y—1). If y#k, then A—y<y’—y
or A<y’ If y=k, then by Proposition 17,

kA yA

TEEA ya

Therefore A = xy/(y — x)<xy <y?, so that in either case, A<y>. O

Although we shall utilize Proposition 18 as stated, we should also note the
following result of Bose, Shrikhande and Singhi [4]: If k >2A°—4A"+4A—2ina
QRQOS design, then y<A.

We can now complete our answers to questions (1) and (2) above.

Theorem 19. For a fixed value of A =3, there are ovnlv a finite number of QRQS
designs.

Proof. By Proposition 18, x <A. If x =0, then by Lemma 10(c) and Coroilary 11,
v can take only finitely many values each fixing the value ot n, and hence by
f.emma 10(a) for each such value there is at most one value of k and therefore
only one possible set of design parameters. If x =1, then by Lemma 8, there is
only one design if A =3 and none if A >3.

The remaining case is 2<x <A — 1. Since y — x | x, there are finitely many y for
cach x. If y=A, then by Proposition 14, there is at most one value of k and
therefore only one possible paraineter set. If y # A, then by Proposition 15, there
i< at most one value of k and therefore only one possible parameter set. If y# A,
then by Proposition 1S, there are at most two values of k, yielding two parameter
sets. O

Theorem 20. For fixed (x, y) where x =0 and y =2, there are only a finite number
of QROS designs.

Proof. By Lemma 10(c) and Corollary 11, A can take only finitely many values,
cach fixing the vaiue of n, and hence by iL.erxma 10(a) for each such value there is

at most one value of k, giving only one paranicter set. [

Theorem 2i. For fixed x =2 there are finitzly many possible values of y and for
each such pair (x.y) there are only a finite number of QRQS desigs.

Peoof. Sir ¢ v — x| x. there are finitely many y for each x. By Propcsition 18,
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x <A <y? Hence there are finitely many values for A. Also, A=3. If y =], then
by Proposition 14 there is at most one value of k and thercfore only one possible
parameter set. If y# A, then by Proposition 17, there are at most two values of k,
yielding two parameter sets. [J

It should be noted that the results of this section make it possible to coustruct
an algorithm which will generate a comprehensive listing of possible parameter
sets for QRQS designs. We have, in fact, generated such a listing with the aid of a
computer. Of course for many of these designs, the question of actual existence
remains unanswered.

2. Projective and affine Gesigns

Let D=(2, B) be an arbitrary design. An equivalence relation || on @ is a
parallelism if it satisfies the “Euclidean Axiom™:

“For all pe ® and B € B, there is a unique Ce B withpe C and B || C.”

A resolvable design is a design which admits a parallelism. We note that in a
resolvable design, if B||C, then B=C or BNC=@{. An affine design is a
resolvable design satisfying the following condition:

“There is an integer y >0 such that if B J| C, then |BNC|=y.”

The following basic result is due to Bose [1].

Theorem 22. If D is c resolvable design, then D is quasiresidual if and only if D is
affine.

Our next result characterizes affine designs:
Theorem 23. A design D is affine if and only if D is QRQS with » =0.

Proof. Note that if D is affine, then D is QS with x =0 and is QR by Theorem
22. For the converse, suppose that D is QRQS witl: x = 0. We define the relation
|| on the blocks by:

“B||C if and only if B=C or BNC=§"

Clearly the relation || is reflexive and symmetric. Suppose A || B and B || C. If
any two of A, B, C are identical, then A || C trivially, so we may suppose they arc
all distinct. For contradiction, assume that A Jf+~, i.e., A and C intersect in y
points. We let a denote the number of blocks intersecting A and d the number of
blocks intersecting both . and B. By straightforward counting arguments *ve have

(i) ay =k(r--1), and

(ii) dv>=k>A.
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From (i), (ii) and Lemmma 10(b), it follows that a = d. Hence each block which
intcrsects A also intersects B so that C intersects B, contradicting B || C. Thus
A || C and || is an equivalence relation.

To see that the Euclidean Axiom is satisfied, let p be a point, B a block und B
the equivalence class of B. Suppose for all Ce B, p¢ C. Then for all C such that
pe C, |BNC|=y. Counting the number of pairs (q, C) where qe BN C and pe C,
we have kA =ry. Since a=d, we have ay’=k’A from (ii)) above and thus
ay® = kry or ay = kr. This contradicts (i) above and hence for some C e B we have
pe C. This block C is unique since blocks in the same equivalence class are
disjoint. Since || is a parallelism, it follows that D is affinc. O

We wish to note that the fact that a QRQS design with x =0 is affine can be
determined independeintly from results of Bose and Shrikhande [3]. For if D is
QS with x =0, then the dual of D is a 2 class partially balanced incomplete block
design (PBIB) as defined in [3]. Bose and Shrikhande show that each such PBIB is
a special PBIB and it can be determined from this (using Lemma 10) that D is
affine. In Bse, Bridges and Shrikhande [2] special PBIB’s are shown to be
equivalent to partial geometric designs satisfying certain conditions.

Let GF(q) be the finite field with q = p" elements and let V be the vector space
of dimension d +1 over GF(q). A projective geometry PG(d, q) of dimension d
over GF(q) is the system of subspaces of V. P(d, q) denotes the block design
obiained from PG(d, g) by taking the O-dimensional subspaces as points and the
hyperplanes ((d — 1)-dimensional subspaces) as blocks. It can be verified that
Ptd. q) is a symmetric

d 1

(q __1 qd__] qdf ___1
‘L gq-1 Tgq-1" g-1

) design.

P(2. q) has parameters (q>+q+1,q+ 1, 1) and is called a projective plane or order
q. We will allow P(2,q) to denote any design with these parameters, not just
those based on GF(q).

An affine (or Euclidean) geometry AG(d, q) is the system of point sets
S -(HNS) where S ranges over all the subspaces of PG(d, q) and H is a fixed
hyperplane. Thus an affine geometry is obtained from a projective geometry by
removing a hyperplane and all of its points. A(d, q) denotes the residual of
P(d. q) with respect to a block H. Thus Aid, q) is a (g%, q*~', q*7?) design. It is
known that every A(d, q) is an affine design. A(2, q) is called an affine plane of
order q.

In [5] Dembowski uses the term “‘projective design’™ as a synonym for ‘‘sym-
metric design” because these designs are generalizations of designs derived from
projective geometries. However, the relationship between a P(d,q) and an
Ald, ¢q) s much closer than that between a symmetric design (Dembowski’s
“projective design™) and an affine design. Every P(d, q) has a residuai which is an
Atd gy b+ a symmetric design does not always have an affine residual. The term
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“projective design” has fallen into disuse since Dembowski’s usage, and this
prompts us to revive the term under a different definition. A symmetric (v, k, A)
design is projective if there exists a nonnegative integer A’ and a block B such that
for every pair of blocks B,, B, different from B and from each other, BN B, N B,
has either A or A’ points.

If D=(P, B) is a design and B a block of D, we denote by D® the residual of
D with respect to B as previously defined. We also define the block-derivate of D
with respect to B to be the structure Dg =(%', #8') where

P"=B and %B'={B'(\B|B'e® and B’ # B}.

If D is a symmetric (v, k, A) design, then Dy is again a design, with parameters
(k,v—1,k—=1,A, A—1). If p is a point of D, the point-derivate of D with respect
to p is the structure D, = (", B") where

P'=P—{p} and B"={B-{p}|peB and Be B}.

Proposition 24. Let D be a symmetric design. Then D is projective if and only if
D?® is affine for some block B of D.

Proof. Suppose D is projective. Let C,, C, be two blocks of D® corresponding to
By, B, in D. If |[BNB,NB,|=A, then |C;NC,|=0. If |[BNB,NB,|=A", then
|C,NCyl=A—A". Hence the residual D® is quasi-symmetric with x =0, y=
A —X'. Conversely, if D® is affine, then any triple intersection of B with B,, B,
has either A or A’=A—y points. [J

Note that the equation A’=A —y enables us to calculate A’. Using the rela-
tionship between the parameters of D and D® together with Lemma 10(b) we get
A=AA-1/(k—-1).

In [5], Dembowski shows that the designs P(d, q) are characterized by the fact
that we get an affine residual no matter which block is chosen. (This is not true for
projective designs in general.)

A t-design is a design in which every set of ¢ points is contained in exactly the
same number, A,, of blocks. The tollowing result is implicit in Dembowski [5]:

Proposition Z8. Let D be o symmetric (v, &, A) block design with v— 1> k. Then D
is not a 3-design.

Thus for a nontrivial symmetric design, the number of blocks containing three
points assumes at least two values. We now consider the simplest case of the two
values, which happens to reduce to the class of designs P(d, q). In a design D, 4
line through two distinct points p, q is the intersection of all blocks containing p
and q. D is called smooth if any three non-collinear points are contained in the
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same number of blocks. Note that any three collinear points must be in A blocks.
We call a (v, b, r, k, A) design a near-3-design if the number of blocks containing
three distinct points takes exactly two values, one of which is A.

Proposition 26. Let D be any design with parameters (v, b, r, k, A).
Then D is smooth if and only if D is a 3-design or a near-3-design.

Proof. If D is smocth then any 3 collinear points are in A blocks and any 3
non-collinear points are in A’ blocks. Conversely, if D is a 3-design, D is
obviously smooth.

Suppose D is a near-3-design with three distinct points contained in either A or
A’ blocks. Let p,, p», p; be three distinct points contained in A blocks. A fortiori,
cach of these A blocks contain p,, p,. But in all, there are only A blocks
containing p,, p,. Hence every block containing p,, i 2'so contains p;. Therefore
ps is on the line through p,, p,. Hence any three non-collinear points must be
contained in A’ blocks, i.e., D is smooth. [

An intrinsic characterization of the designs P(d, q) is given by Dembowski and
Wagner [6]:

Theorem 27. Let D be an arbitrary design. Then D is a P(d, q) if and only if D is
symmetric and smooth.

Since P(d, q) is never a 3-design, we can refine the preceding Theorem as
follows:

Theorem 28. D is a P(d, q) if and only if D is a symmetric near-3-design.

Our final group of theorems develop some results on the structural interrela-
tionships between projective and affine designs. In these theorems, we use DE*to
denote the dual of the derivate of D® with respect to the point p of DE. (The
dual of a structure is obtained by interchanging ‘‘points” and “blocks”. This
interchange is known as an “‘anti-isomorphism”’.)

Theorem 29. Let D be a symmetric (v, k, A) design with A > 1 and let B be a block.
The following are equivalent:

(1) D" is affine.

(2) Dy is a multiple of a symmetric design.

(3) D3* is a multiple of a symmetric design for every point p of DB,

Proof. (1) implies (2) and (3): Since D® is affine, n=(v—k)/{(k—A)=(k--1)/A is
an integer 22, Let A'=AA-1)/(k—1).
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D:(v,v,k, k,A)
DB:(v—k,v=T, k,k—A,A) Dg:(k,v—1,k=1,A,A—1)
x=0,y=A-\ =(k, nk, nA, A, nA')
x=A,y=A
DB*; (R,M, k—A—1,A, (k—'\_l)()“l))
A k-1

=(k,(n=1Dk,(n—1A A, (n—1DA")

x=A,y=A

D,:(k,k, A, X A" D,:{k,k, A\, AN

It can be verified that D®, Dy and DJ* are quasi-symmetric designs with
parameters and intersection numbers as shown. By Proposition 16, Dy is a
multiple of a symmetric (k, A, A") design D,, and DE* is a muitiple of a symmetric
(k, A, A7) design D,.

(2) implies (1): Dy has block size A. Since it is a multiple of a symmetric design
it is quasi-symmetric with x = u (say) and y = A. This means that for any pair of
blocks B,, B, of D, BN B, N B, has either A or u points. Hence the residual D"
is quasi-symmetric with x =0, y = A — . Therefore D® is affine.

(3) implies (1): DE* has block size A. Let C,, C, be two blocks of Dg. Suppose
CiNGC,#0. Let peC;NC,. The anti-isomorphism Dy— DE* maps C,—{p},
C,—{p} into points p,, p, (say). The pair p,, p, is contained in a fixed number of
blocks, say v (i.e., v is independent of the choice of C,, C,). Hence in D},
C,—1{p}, C;—{p} have v points in common. Therefore, in D®, |C,NC,j=v+1.

Since D® is not symmetric, there must be blocks C,;, C, which are disjoint.
Hence D® is quasi-symmetric with x =0, y=»+1. O

Theorem 30. Let D be a projective (v, k,A) design with A>1. Then n=
(v=k)/(k—=A)=(k—1)/\ is an integer =2. Moreover, there exist a block B and
symmetric (k, A, ') designs D,, D, such that Dg =nD, and D2*=(n—1)D,.

Proof. Since D is projective, D® is affine for some block B. Thus the proof is the
same as the first part of the proof of the previous theorem. [

The next two theorems are specializations of the previous theorem to P(d, q).
For d =4, we have the additional result that D, and D, are isomorphic, and are in
fact the unique P(d—1, q).

Theorem 31. Let D = P(d, q) and E =P(d—1, q) where d=4. Let B be any block
of D. Then D® = A(d, q), Dg =q-E and Df*=(q—1)-E.
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Proof. Let the parameters of D be (v, k, »). Then

v=qi+q? "+ +1,  k=q'+---+1, A=q? 4. +1.

Hence
bk _k-1_
kAT a ¢
We take
AA-1) L, AMA-1) .
M L] L R
A k=1 q‘—+ +1, A A=l q 1

It is well known that D® =A(d, q). By Theorem 29, Dy =qD, and DE*=
(qg-1)D, where D,, D, are symmetric (k, A, A’) designs.

It is easily verified that both D, and D, have the parameters of P(d —1, q), so it
only remains to show that they are isomorphic to P(d—1, q).

To show D, =P(d-1,q): Let K, L, M, N be four blocks in D.

dim KL =dim MN =d —2.
dim(KL+MN)=d-2,d-1 or d.

dim KLMN =dim KL +dim MN —dim (KL + MN)
’ =d—-4,d-3 or d-2.

Hence |[KLMN|= A", A’ or A.

Since D is self-dual, any 4 points are in A”, A’ or A blocks. Therefore any 4
pcints of D¥ are in A”, A" or \ blocks. It follows thas any 3 points of D are in A",
A’ or A blocks. Hence any 3 blocks of DE* intersect in A”, A, or A points. If g =2,
D3*=D,, so any 3 blocks can intersect only in A” or A’ points. If ¢>2, D5* is a
multiple of D, and again any 3 blocks of D, can intersect only in A” or A’ points.
Hence in any case, any 3 points of D¥ are in A" or A’ blocks. Therefore, D¥ is
smooth and by the Dembowski-Wagner Theorem is the design P(d—1, q). But
this design is self-dual, so D, =P(d—1, q).

To show D,=P(d—1, q): Any 3 points of D are in A’ or A blocks (since D is
self-dual). Hence any 3 points of Dg are in A'—1 or A—1 blocks. Since
Dy =q- D,, any 5 points of D, are in (A'—1)/q or (A —1)/q blocks, i.e., A" or A’
blocks. Hence D, is smooth. Therefore D, =P(d—1,q). [J

Theorem 32. Let D=P(3,q). Let B be any block of D. Then D®=A(3,q),
D, =q-D, and DE*=(q—1)- D,, where [},, D, are projective planes P(2, q).

Proof. The proof is the same as the first part of the proof of the previous
theorem. We cannot conclude D. =D, because there may be more than one
P(2,q) for a given q. O
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