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It is shown that for each A 3 3, there are only finitely many quasi-residual quasi-symmetric 
(QRQS) des’ lgns and that for each pair of intersection numbers (x, y) not equal to (0, 1) or 
(I, 2), there are only finitely many QRQS designs. 

A design is shown to be affine if and only if it is QRQS with x = 0. A projective design is 
defined as a symmetric design which has an afine residual. For a projective design, the 
block-derived design and the dual of the point-derivate of th.3 residual are multiples of 
symmetric designs. 

I. Quasi-residual quasi-symmetric designs 

Let 9 be a set of elements (points) and 93 a family of subsets (blocks) of 9. 
(The same subset may be repeated, i.e., occur more than once as a block.) (P, 93) 
is a block design with parameters (v, b, r, k, A) if 

(i) \P\=v, 1931=b, v>kS; 
(ii) each point lies in r blocks; 

(iii) each block contains k points; 
(iv) each pair of points occizrs in exactly A blDcks. 

A design is symmetric if v = b or equivalently, r = k. It is well-known that 
symmetric designs are just those designs in which any two blocks intersect in just 
A points. A design is quasi-symmetric (OS) if the number of points in the 
intersection of two blocks takes just two values, x and y (x < y). The following 
known results concerning QS designs can be obtained by counting frequencies of 
the intersection numbers x and y (see [7] for an alternative proof using linear 
algebraic methods). 

k(r-l)(x+y)=(b-l)xy+k(k-l)(h-!)+k(r--1) 

WSi 2. y-x 1 k-x and y-x 1 r-A. 

A residual design is a design obtained from a symmetric (v, k, A) design by 
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deleting a block and all of its points. The parameters of 
design will then be ( u - k, u - 1, k, k .- A, A). A design is 

R) if its parameters are of this form. It is easy to 

the resulting residual 
called quasi-residual 

see that a design is 

quasi-residual if #and only if r = k + A. We note that a QR design is not necessarily 
embeddahle in a symmetric design, however, Hall and Connor ([S] or [9]) have 

shown that for A = 1, 2, the notions of residual and quasi-residual are equivalent. 
More generally. Bose, Shrikhande and Singhi [4] Lave shown that if k is larger 
than a certain function g(A) of A, then a QR design is embeddable in a unique 
qmmctric design. We will subsequently utilize the followin consequence of HI .il 
and Conner’s rcsul t : 

Theorem 3. Let .I) be an arbitrary design with A = 2. Then D is residual if and only 

if D is QS with intersection numbers (x, y ) := ( 1,2). 

f-iereafter, unless otherwise indicated we consider only quasi-residual, quasi- 
symmetric (QRQS) designs. Specializing Propositions 1 and 2 to these designs we 
have: 

ion 4 

k”Al--kA(k+A-l)(x+y)+(k2+2kA+A2-k-2A)xy=O 

or equivalently. 

(k-x)(k-y)A’-(k-l)(kx+ky-2xy)A+k(k_l)xy=O. 

reposition 5. y -- x 1 x c;rnd y - x 1 k. 

We consider two questions with regard to QRQS designs: 

f 1) Given A, what are the possible values of (x, y) and the other design 
parameters? 

(2) Given (x, y), what are the possible values of A and the other design 
parameters? 

The following results are helpful in partially answering these questions. 

a 6. ff D is un arbitrary design wit/.: A = 1, then D is either symmetric or QS 

roof. Since two points lie in exactly one I9lock, two blocks intersect in at most 
one point. If each pair of blocks intersect in the same number of points then the 
design is symmetric. Qtherwise the design jnust be QS with x = 0, y = 1. 0 

artial converrie results upon substituting x = 0, y = 1 in Proposi- 
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a 7. If D is QS with (x, y ) = (0, l), then A = 1. 

Lemma 8. I’ x = 1, then y = 2 and the design is either the complete design (5, 10, 6, 
3, 3) or a design with parameters of the form ((“,“), (kz2>r, k +2, k, 2). 

Proof. By Proposition 5, y - 1 1 1, so y = 2. By Proposition 4, 

(k-l)(k-2)h2-(k-1)(3k-4)A+2k(k:-l)=O.. 

Hence [A -2][(k - 2)A - k] = 0, so A = 2 OY k/(k -- 2). If A = k/(k - 2) = 
1 + 2/(k - 2), then k = 3, A = 3 or k = 4, A = 2. In the case A = 3, the parameters 
are (5, 10, 6, 3, 3). This is a complete design and can easily be shown to have the 
required intersection numbers. If A = 2, then r = k + 2 and the parameters are 

((“;‘), (“;“),_ k +2, k 2). •I 

We can now answer questions (1) and (2) above for the smallest parameter 

values. 

(i) For A = 1, every QRQS design has (x, y) = (0,l). The parameters must 
have the form 

(k2, k’+ k, k + 1, Ic, 1) 

which is an afine plane A(2, k). 
(ii) For A = 2, we have, by Theorem 3, (x, y) = (I.. 3) and the parameters must 

be of the form 

(<“;‘L (“;‘), k +2, k, 2). 

(iii) For (x, y) = (0, l), we have A = 1 and paramet srs as indicated in (i) above. 

(iv) For (x, y) = (1,2), Lemma 8 stipulates that either A = 2 with parameters as 
indicated in (ii) above or A = 3 with parameters (5, 10, 6, 3, 3). 

In each of the above cases, there are infinitely many possible parameter sets 
although not all of these may have solutions. We now show that e:ach of the 
remaining cases yields only finitely many possible parameter sets. 

In a (v, b, r, k, A) QR design, 
(a) v=@k+k(k-1)/A-(k2+Ak-k)/A, 
(b) b=v+k+A-l=(k+A)(k+A-1)/A. 

. (a) follows immediately from the basic relation ( u - 1) A = r( k - 1) and the 

fact that r = k -I A in a QR design. 
(b) follows from (a) and the basic relation bk = vr. 17 

For QRQS designs in which x = (b we obtain the following: 

e 4% x = 0. Tkzen for some integer n 2 2 
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(a) ny = k, 
(b) y=kA/(k+A-l), 
(c) y = A _ (A - 1)/n, i.e., A = y +( y - l)/(n - l), 

(8) 0 =nk, 
(e) y = k2/n. 

(a) follows from Proposition 5, and (b) is a consequence of Proposition 4. 
For note that k = &A/( k + A - 1) by (a) and (b). Hence k + A - i = nh or (using 

(a) again) ny = (n - 1)A + 1 from which (c) follows. Using the fact that k - 1 = 
(n--l)A together with Lemma 9 (a), we get u=k+k(k-l)/h=k+(n-1)k and 
so (d) holds. (4:) follows from (a) and (d). 0 

As direct consequences of Lemma 10, we get, 

or011 1, If x = 0, hen 
(a) nlk, nlh-1 and;--llyy-I, 
Cb) A1k-ll,kIvandA-ylh-1, 
ic) u 1 k”. 

WC let c1 denote the number of blocks meeting a given block B,,, in y points. It 
l.9 nt9t difficult to show that cd, the frequency of the intersection number y, is 
:ndcpcndcnt of B,,. The following proposition occurs upon specializing a result of 
1 10) to QRQS designs: 

ropositim 12 

WC derive the following consequence: 

orollary 13. (x, y ) = (A - 1, A) if and only Ef A = 1 QV 2. 

p if A = 1 or 2, the right hand side of Ae equation of Proposition 12 
becomes 0. Since there are not integers between A - 1 and A, each term on the left 
hand side is non-negative and so must be zero. The converse is straightforward. 

. If y = A 2 3, then k = (A - 2)x}(A - 1 -x). 

. Frxn Proposition 4, 

k[(2~- I)hx-A(?.-1)(.~+A)]+h(A.-2)Ax=O, 

i.e., 
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i.e., 

k(h--l-x)=(A-2)x. 

By Corollary 13, x # A -- 1, hence the result. El 

roposition 15. Suppose y # A. Then k = (B =t D)/2A, wktere 

A = (A - x)(A - y), B=(A-l)(x+y)-(2A-I)xy, 

C = A(A -2)xy, D2= B2-4AC. 

If y # A, then A#0 and the second equation of Proposition 4, which is 
Ak2 :Bk -I- C = 0 restricts k to the stated values, q 

Proposition 16. Let D be an arbitrary design with a repeated block. Then D is QS 
if und 0nIq if D is a multiple of a symmetric design. 

Proof. Let D be a (v, b, r, k, A ) OS de. sign with a repeated block. Each block has 
exactly a blocks meeting it in y points. But since D has a repeated block, y = k. 
Therefore every block is repeated II times. Thus D is a multiple of a (u, b’, r’, k, 
A’) design with no repeated blocks, where 6/b’ = r/r’ = A/A’ = a -t 1. But this means 
that every pair of blocks in the latter design intersect in x points. Hence this 
design is symmetric. 

The converse is obvious. Cl 

Proposition 17. Let D be a QS design with prkramtiters (u, 6, r, k, A). ff y = k, then 
x = khlr. 

roof, We use the notation of the previous proof. It was shown that every pair of 
blocks in the symmetric (u, b’, r’, k, A’) design intersect in x points. I Ience x = A’. 
But A’ = r’A/r and r’ = k (by symmetry). Therefore x = kA/r. 0 

Proposition 18. If (x, y) # (0, l), then x <A C y*. 

roof. If x = 0, then by Lemma 10 (c), 

Aa2y-1=y*-(y-1)*<y2. 

Suppose now xf 0. Let 

O=(k-l)(A-l)+(r-I) and ~ k(r-1) =- 
r-l b-l 

(i.e., for a given block BO, p is t.he “mean ” of the values I&n BI as B ranges over 

the remaining blocks). Then Proposition 1 becomes x + y = xy/p + 0. Since x = p, 
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p+=ycy+8 and hence xc& Since kcr, 

e_(k--lNA-II 
r-l 

+l<A--H-1-A 

and so x < A. Note, again using the above equation, that since y > CL, x + y > x + 8 
and thus y > 8. It follows that (k - y)(A - y)< y(y - 1). If y # k, then A - y < y2- y 
or A < y*. If y = k, then by Proposition 17, 

kh yh 
x=k+A=y+A. 

‘Phercforc A = xy/( y - x)~ xy < y2, so that in either case, A < y2. q 

Nthtrugh we shall utilize Proposition 18 as stated, we should also note the 
following result of Bose, Shrikhande and Singhi [4]: If k > 2A ’ -4A”+4A - 2 in a 
QKQS design, then y 6 A. 

We can now complete our answers to questions ( 1) and (2) albow. 

19. For a fixed value of A 2 3, there are onl\~ a finite number of QRQS 

By Proposition 18, x < A. If x = 0, then by Lemma 1 O(c) and Corollary 11, 
y can take only finitely many values each fixing the value ot n, and hence by 
1 .cmma 1 W a) for each such value there is at most one value of k and therefore 
or-d) one possible set of design parameters. If x = 1, then by Lemma 8, there is 
only one design if A = 3 and none if A > 3. 

‘1 he remaining case is 2 s x s A - 1. Since y -x 1 x, there are finitely many y for 
cinch A. If y = A, then by Proposition 14, there is at most one value of k and 
therefore [Jnly one possible parameter set. If y # A, then by Proposition 15, there 
i4 at most one value of k and therefore only one possible parameter set. If y # A, 
Oxn by Proposition 15, there are at most two values of k, yielding two parameter 
sets. 

heorem 20. t-or fixed (x, y J wCzere x = 0 arzd y 2 2, there are only a finite number 
of ORQS designs. 

@of. By Lemma IOlc! and Cortii!sry 1 I, h can take only finitely many values, 
fixing the v;llue of n, and hence by Lztrll\ma 10(a) for each such value there is 

e value of k, giving only one paran;5er set. Cl 

hearem 2i. For fixed x 2 2 there are finitzly many possible wlues of y and for 
air (x. y ) there are only a finite number of QRQS deqp. 

*I T )’ - x 1 X. tlfere are finitely many y for each x. By Propc,4tion 18, 
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x <A c y2. Hence there are finitely many values for A. Also, A a 3. If y = A: then 
by Proposition 3 4 there is at most one value of k and therefore only one possible 
parameter set. If y # A, then by Proposition 17, there are at most two values of k, 
yielding two parameter sets. q 

It should be noted that the results of this section make it possible to construct 
an algorithm which will generate a comprehensive listing of possible parameter 
sets for QRQS designs. We have, in fact, generated such a listing with the aid of a 
computer. Of course for many of these designs, the question of actual existence 

remains unanswered. 

2. Projective and afbe designs 

Let D = (9,652) be an arbitrary design. An equivalence relation 11 on 93 is a 
parallelism if it satisfies the “Euclidean Axiom”: 

“For all p E 9 and B E 9, there is a unique C E 93 with p E C and e 11 C.” 

A resolvable design is a design which admits a parallelism. We note that in a 
resolvable design, if B II C, then B = C or B n C =@. An afine design is a 
resolvable design satisfying the following condition: 

“There is an integer y > 0 such that if p3 1 C, then If3 n Cl = y.” 

The following basic result is due to Bose [l]. 

Theorem 22. If D is CE molvable design, then D is quasiresidual if and orlly if D is 
afine. 

Our next result characterizes affine designs: 

Theorem 23. A, design D is affine if and only if D is QRQS with ): = 0. 

roof. Note that if D is affine, then D is QS with x = 0 and is QR by Theorem 
22. For the converse, suppose that D is QRQS with x = 0. We define the relation 
II on the blocks by: 

‘9 II C if and only if B = C or ?3 n C = (4” 

Clearly the relation II is reflexive and symmetric. Suppo!;e A 11 B and B 11 C. If 
any two of A, B, C are identical, then A II C trivially. so we may suppose thev arc 
all distinct. For contradiction, assulme that A 1 #Y, i.e., A and C intersect in y 
points. We let a denote the number of blocks intersecting A and d the number of 
blocks intersecting both , i and B. By straightforward counting arguments YC have 

(i) ay = k(r-- l), and 
(ii) dy2 = k”A. 
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From (i), (ii) and Lemma 10(b), it follows that a = d. Hence each block which 
into: rsects A also intersects B so that C intersects B, contradicting B 11 C. Thus 

C and 11 is an equivalence relation. 
o see that the Euclidean Axiom is satisfied, let p be a point, B a block and B 

the equivalence class of B. Suppose for all C E 6, p 4 C. Then for all C such that 
C, iI3 n Cl = y. Counting the number of pairs (q, C) where q E B n C and p E C, 

we have kh = ry. Since a = d, we have ay’= k2A from (ii) above and thus 
= kry or ay = kr. This contradicts (i) above and hence for some CE B we have 
C. This block C is unique since blocks in the same equivalence class are 

disjoint. Since I] is a parallelism, it follows that 13 is affinc;. 0 

We wish to note that the fact that a QRQS design with x = 0 is affine can be 
determined independel:tly from results of Bose and Shrikhande [3]. For if D is 
QS with x = 0, then the dual of D is a 2 class partially balanced incomplete block 
design (PBIB) as defined in [3]. Bose and 3hrikhande show that each such PBIB is 
a special PBIB and it can be determined from this (using Lemma 10) that D is 
afhnc. In B )se, Bridges and Shrikhande [2] special PBIB’s are shown to be 
equivalent to partial geomelric designs satisfyinK certain conditions. 

Let GFfq) be the finite field with q = p’ elements and let V be the vector space 
of dimension d + 1 over GF(q). A projective geometry PG(d, q) of dimension d 
over GF(4) is the system of subspaces of V. P’(d, q) denotes the block design 
obtained from PG(d, q) by taking the O-dimensional subspaces as points and the 
hypcrplanes ((d - I)-dimensional subspaces) as blocks. It can be verified that 
PM, 4) is a symmetric 

( 4 
CIYLl 4”_l 4” ‘-1 

--- ___ 

5 4-l ’ q--l’ 4-l 
design. 

PC!. y) has p arameters (q* + 4 + 1, q + 1, 1) and is called a projective pIane or order 
4. WC will allow P(2, q) to denote any design with these parameters, not just 
those based on GF( q). 

An afhne (or Euclidean) geometry AG(d, q) is the system of point sets 
S - ( H n S) where S ranges over all the subspaces of PG(d, q) and H is a fixed 
hyperplane. Thus an affine geometry is obtained from a projective geometry by 
rcmovinq a hyperplane and all of its poirrts. A(d, q) denotes the residual of 
Rd. 4 I with respect to a block H. Thus Aid, q) is a (qd, qd-‘, qd-*) design. It is 

own that every A (d, 4) is an affine design. A(2,4) is called an afine plane of 
or&r 4. 

Dembowski uses the term “projective design” as a synonym for “syrn- 
metric design” because these designs are generalizations of clesigns derived from 
projective geometries. However, the relationship between a P(d, q) and an 

Id, 4) i\ much closer than that between a sy:mmetric design (Dembowski’s 
t\ c csign”) and an affine design. Every fT(d, q) has a sesiduai which is an 

etric design does not always have an affine residual. The term 
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“projective design” has fallen into disuse since Dembowski’s usage, and this 
prompts us to revive the term under a different definition. A symmetric (u, k, A) 
design is projective if there exists a nonnegative integer A’ and a block B such that 
for every pair of blocks B1, B2 difierent from B and from each other, B n B1 fl B2 
has either h or A’ points. 

If D = (9,9$) is a design and B a block of D, we denote by DB the residual of 
D with respect to B as previously defined. We alao define the block-deriuate of D 
with respect to B to be the structure DB = (9’, 23’) where 

P=B and Sl’={B’nB 1 B’E~ and B’f B}. 

If D is a symmetric (u, k, A) design, then DB is again a design, with parameters 
(k, 2, - 1, k - 1, A, A - 1). If p is a point of D, the point-deriuate of 0 with respect 

to p is the structure DP = (P’, 93”) where 

??“=P-{p} and %“={B-{p}lp~B and BE%}. 

Proposition 24. Let D be a symmetric design. Then D is projective if and only if 
D B is afine for some block B of D. 

Proof. Suppose D is projective. Let C,, C2 be two blocks of DR corresponding to 
B1, B2 in D. If (S fV?, fV3,I = A, then (C, 17 C21 =O. If (B n B, n B21 = A’; then 
IC, n C21 = A -A’. Hence the residual DB is quasi-symmetric with x = 0, y = 
A -A’. Conversely, if III3 is affine, then any triple intersection of B with BI, B2 

has either A or A’ = A - ‘y points. 0 

Note that the equation A’= A - y enables us to calculate A’. LJsing the rela- 
tionship between the parameters of D and D” together with Lemma 10(b) we get 
A’=A(A-l)/(k--1). 

In [5], Dembowski shows thal the designs P(d, q) are characterized by the fact 
that we get an affine residual no matter which block is chosen. (This is not true for 
projective designs in general.) 

A t-design is a design in which every set of t points is containt in exactly the 
same number, A,, of blocks. The following result is implicit in Dembowski [.5]: 

OR 25. Let D be (1 symmetric (u, ,%, A) block design will1 13 - 1 > k. TCten D 
is not a 3-design. 

Thus for a nontrivial symmetric design, the number of blocks containing three 
points assumes at least two values. We now consider the simplest case of the two 
values, which happens to reduce to the class of designs P(d, q). III a design D, 53 
line through two distinct points p, 4 is the intersection of all blocks containing p 
and q. D is called smooth if any three non-collinear points are contained in the 
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same number of blocks. Note that any three collinear points must be in A blocks. 

We call a (u, b, r, k., A) design a near-3-design if the number of blocks containing 
three distinct points takes exactly two values, one of which is A. 

Pzopition 26. Let D be any design with parumeters (u, 6, r, k, A). 
7%e11 D is smooth if and only if D is a 3-design or a near-3-design. 

Proof. If D is smooth then any 3 collinear points are in A blocks and any 3 
non-collinear points are in A’ blocks. Conversely, if D is a 3-design, D is 
obviously smooth. 

Suppose D is a near-3-design with three distinct points contained in either A or 
A’ blocks. Let pI, p2, pS be three distinct points contained in A blocks. A fortiori, 
each of these A blocks contain pl, p2. But in all, there are only A blocks 
containing pl, p2. Hence every block containing pl, r 5so contains p3. Therefore 
pt is on the line through p,, p2. Hence any three non-collinear points must be 
contained in A’ blocks, i.e., D is smooth. q 

An intrinsic characterization of the designs P(d, q) is given by Dembowski and 
Wagner [6J: 

Theorem 27. Let D be an arbitrary design. Then D is a P(d, q) if and only if D is 
symmetric and smooth. 

Since P(d, q) is never a 3-design, we can refine the preceding Theorem as 
follows: 

Theorem 28. D is a P (d, q) if and only if D is a sym.metric near-3-design. 

Our Gnal group of theorems develop some results on the structural interrela- 
tionships between projective and affine designs. In these theorems, we use IIf* to 
denote the dual of the derivate of DH with respect to the point p of D”. (The 
dual of a structure is obtained by interchanging “points” and “blocks”. This 
interchlinge is known as an “anti-isomorphism”.) 

Theorem 29. Let D be a symmetric (u, k, A) design with A > 1 and let B be a hk~k. 

The foilowing are equivalent: 

( 1 ,I LY’ is afine. 

(21 Drz is a multiple of a symmetric design. 
(13) 0;” --. 1.3 a m4ltipk of a symmetric design ~OF every point p of DB. 

( 1) implies (2) and (3): Since DB k afhne, n = (U - k)/(k - A) = (k -- 1)/A is 
an intcctsr 32. Let A’= A(A - l)/(k - 1). 
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D : (u, v, k, k, A) 

D,:(k,v-lx-I,A,A-1) 

= (k, nk, nh, A, nh’) 
x=A’,y=A 

Be. D, . k c k(k-A-l) 
h ,k-A-l,A, 

(k-A-I)(A-1) 
k 1 - 

= (k, (n - l)k, (n - l)A, A, (n - 1)A’) 
x = A’, y = A 

D2 : (k, k, A, A, A’) D, : (k, k, A, A, A’) 

It can be verified that DB, DB and DF* are quasi-symmetric designs with 
parameters and intersection numbers as shown. By froposition 16, D13 is a 
multiple of a symmetric (k, A, A’) design D1, and DF* is a multiple of a symmetric 
( k, A, A’) design D2. 

(2) implies (1): DB has block size A. Since it is a multiple of a symmetric design 
it is quasi-symmetric with x = p (say) and y = A. This means that for any pair of 
blocks B1, B2 of D, B n B, n B2 has either A or p points. Hence the residual D” 
is quasi-symmetric with x = 0, y = A - EL. Therefore DB is affine. 

(3) implies (1): DF* has block size A. Let Cl, C2 be two blocks of DB. Suppose 
C, n C2 # $3. Let p E C1 n C2. The anti-isomorphism DF+ DF* maps C, -{p}, 
C,-(p) into points p,, p2 (say). The pair pl, p2 is contained in a fixed number of 
blocks, say v (i.e., u is independent of the choice of Cl, CZ). Hence in DF, 
C1 -{p}, C2 -{p) have v points in common. Therefore, in DB, IC, n C2j = u + 1. 

Since DB is not symmetric, there must be blocks Cl, C2 which are disjoint. 
Hence DB is quasi-symmetric with x = 0, y = v + 1. q 

Theorem 30. Let D be a projective (v, k, A) design with A > 1. Then n = 
(v - k)/(k - A) = (k - 1)/A is an integer >2. Moreooer, there exist a block B and 
symmetric (k, A, A’) designs D1, D2 such that Ds = nD, and DF*=(n - 1)D2. 

Proof. Since D is projective, DB is affine for some block B. Thus the proof is the 
same as the first part of the proof of the previous theorem. q 

The next two theorems are speciatizations of the previous theorem to P(d, q). 

For d 34, we have the additional result that D1 and D2 are isomorphic, and are in 
fact the unique P(d - 1, q). 

Theorem 31. Let D = P(d, q) and E = P(d - 1, q) where d 34. Let B be any block 

of D. Then DB = A(d,q), DB==q=E and D:*=(q-1)X 



80 A. Baartrnans, K. Danhof, Sum-teck Tan 

Proof. Let the parameters of D be (0, k, A). Then 

u=qd+qd-l+*.*+l, k=qd-*+=a=+l, A=qd-2+.**+1_ 

Hence 

o-k k-l 
n=kI-E;=h=q. 

We take 

~‘,A(h-l)= 
k-l ’ 

d-3+. . . +1 9 A”,‘(~‘-~)= 
A-4 q 

d-4+_. . +l . 

It is well known that DB = A(d, q). By Theorem 29, DB =qD1 and Df*= 
rq _ 1 )B, where D,, & are symmetric (k, A, A’) designs. 

It is easily verified that both DI and D2 have the parameters of P(d - 1, q), so it 
only remains to show that the,y are isomorphic to P(d - 1, q)* 

To show D1 = P(d - 1, q): Eect K, L, M, N be four blocks in .D. 

dimKL=dimMN=d-2. 

dim(KL+MN)=d-2,d-1 or d. 

dim KLMN = dim KL + dim MN -dim (KL + MN) 
. =d-4,d-3 or d-2. 

Hence lKLMJVl= A”, A’ or A. 
Since 0 is self-dual, any 4 points are in A”, A’ or A blocks. Therefore any 4 

pints of DH are in A”, A’ or h blocks. It follows that any 3 points of 0: are in A”, 
A’ or A blocks. Hence any 3 blocks of DF* intersect in A”, A’, or A points. If q = 2, 
D :f* = Q, so any 3 blocks can intersect only in A” or A’ points. If q > 2, DF* is a 
marltiple of D, and again any 3 blocks of D1 can intersect only in A” or A’ points. 
Hence in any case, any 3 points of 07 are in A” or A’ blocks. Therefore, Dy is 
smooth and by the Dembowski-Wagner Theorem is the design P(d - 1, q). But 
this design is self-dual, so D, = P( d - 1,q). 

To show D2= P (d - 1, q): Any 3 points of D are in A’ or A blocks (since D is 
self-dual). Hence any 3 points of Ds are in A’- 1 or A - 1 blocks. Since 
DES = q l D,, any 3 points of D2 are in (A’- 1)/q or (A - 1)/q blocks, i.e., A” or A’ 
blocks. Hence O2 is smooth. Therefore II7 2: R(d - 1, q). Cl 

Theorem 32. Let D= P(3, q). Let B be any block of 0. Then DB =A(3, q), 

Drr =q*D, and Of*= (q- 1)=D2, where D1, D2 are projective planes P(2, q). 

BrM. The proof is the same as fhe first part of the proof of the previous 
theorem. We cannot concluJde: D1 = D2 because there may be more than one 
P(2, q) for a given q. c3 
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