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PURE SEMISIMPLE CATEGORIES 

Let A be a locally finitely presented Grothendieck category and let P.gl.dim 
A denote the pure global dimension of A (see [12]). A is pure semisimple if 
P.gl.dim A = 0, or, equivalently, if each object in A is a coproduct of Noetherian 
subobjects (see [I I]). A ring R is left pure semisimple if the category R-Mod of 
all left R-modules is pure semisimple. Recall also that a ring R is said to be of 
finite representation type if it is left Artinian and up to isomorphism there is 
only a finite number of indecomposable finitely generated left R-modules. By 
[5] this property is left-right symmetric. 

It is known (see [6]) that a ring R is of finite representation type if and only if 
R is both left and right pure semisimple. The problem is whether the left pure 
semisimplicity of R implies that R is of finite representation type. This problem 
was studied in [3, 7, 131. A positive solution for Artin algebras is given by 
Auslander [2]. In this paper a more general categorical problem is solved on the 
basis of the results in [7, 131. Our main result is that any pure semisimple 
category which has only finitely many isomorphism types of simple objects is 
equivalent to the category of all left modules over a ring of finite representation 

type. 
We have divided the paper in two sections. In Section 1 we recall some defi- 

nitions and results from [4, 10, 12, 131 w ic h h we use in the paper. In Section 2 
we show that when a ring R is both left and right perfect then R is left pure semi- 
simple if and only if the functor category fp,-Mod is perfect, where fpR denotes 
the category of all finitely presented right R-modules. This is used in the proof 
of the main theorem stated above. 

1. PRELIMINARIES 

We start by recalling some definitions and results from [4, 10, 121. By an 
additive category we mean a category together with an Abelian group structure 
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on each of its Horn sets such that the composition is bilinear. A category C is 
skeletally small if the isomorphism classes of objects of C form a set. We say that 
in the category C idempotents split if each idempotent endomorphism of an 
object in C has a kernel in C. 

Let C be an additive category. A two-sided ideal I in C is a subfunctor of the 
two-variable functor Home : COP x C + Ab. If I is a two-sided ideal in C one 
can form a quotient category C/I which has the same objects as C and 
Hom,,,(X, I’) = Hom,(X, Y)/I(X, Y). A n important example of a two-sided 
ideal in an arbitrary additive category C is the Jacobson radical J = J(C) 
defined by 

J(K 1’) = If E HomdX, Y), IX - gf h as a two-sided inverse for every g}. 

Observe that J(X, X) is the Jacobson radical of the endomorphism ring End X. 
Moreover the following lemma holds. 

LEMMA 1.1. (a) Let C = C, @ .*. @ C, , C’ = C’, @ ... @ c’, be objects 
of an additive category C and let f = (fij): C-+ C’ be a morphism in C with 
fij : Cj - Cfi . Then f E J(C, C’) if and only iffij E J(C, , C,‘) for all i and j. 

(b) Suppose that C is an additive category in which idempotents split and let 
X, Y be indecomposable objects in C. If End X is a local ring then J(X, Y) is the set 
of all nonisomorphisms from X to Y. 

The proof is left to the reader. 
Another important example of a two-sided ideal in an abitrary additive 

category C is the ideal P defined as follows. For each pair of objects A and B in 
C we define P(A, B) to be the subset of Horn&, B) consisting of all morphisms 
from A to B which factors through projective objects. The quotient category 
C/P is denoted by C and the natural residue functor by _ : C --f C. 

We now prove the following useful lemma which is essentially due to 
Auslander [ 11. 

LEMMA 1.2. Let C be an additive category in which idempotents split. Suppose 
each object in C is aJinite direct sum of indecomposable objects and that each inde- 
composable projective object in C has a local endomorphism ring. If an object X in C 
has no nonzero projective summands then the kernel of the natural ring epimorphism 
End X + End &’ is contained in J(X, X). 

Proof. Let X = X1 @ ... @ X, where X, ,..., X,L are nonprojective inde- 
composable. If f E End X andf = 0 then f is a composition X -+t P -0 X with 
P projective. Applying Lemma 1.1 we easily conclude that g E J(P, X) and 
hence f E J(X, X). 

As an immediate consequence we have 
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COROLLARY 1.3. Let C be as in Lemma 1.2 and suppose that A and B are 

objects in C with no nonzero projective summands. Then 

(a) a morphism f: A ---f B in C is an isomorphism if and only if the morphism 

f: 4 -+ B is an isomorphism in C. 

(b) A is indecomposable r.. and only if 4 is indecomposable. 

For any ring R let us denote by fpR (resp. Rfp) the category of all finitely 
presented right (resp., left) R-modules. If R is semiperfect then the categories 
sfp and fpR satisfy the conditions in Lemma 1.2. 

We denote by R-Mod (resp., Mod-R) the category of all left (resp., right) 

R-modules. The category of all covariant additive functors from a skeletally 

small additive category C to Abelian groups is denoted by C-Mod. If A is a 
locally finitely presented Grothendieck category we denote by fp(A) its full 

subcategory consisting of all finitely presented objects. A category C-Mod is said 
to be perfect if each object in C-Mod has a projective cover. A discussion of 

perfect functor categories and pure semisimple Grothendieck categories can be 

found in the author’s notes [ll-131. In particular, in [12](see also [ll]), the 

following result, which is frequently used in the paper, is proved. Let A be a 
locally finitely presented Grothendieck category. Then A is pure semisimple if 
and only if fp(A)On-Mod is perfect or, equivalently, if fp(A)-Mod is locally 
Artinian. 

2. MAIN RESULTS 

We start by giving the following useful result. 

PROPOSITION 2.1. (a) If R is a right perfect ring then fpi*-Mod is perfect if 

and only if fpip-Mod is perfect. 

(b) If R is a left perfect ring then fp,-Mod is perfect if and only if fps-Mod - 
is perfect. 

Proof. By [12, Theorem 5.41, COP-Mod is perfect if and only if C/J(C) is 
semisimple and J(C) is right T-nilpotent or, equivalently, if given any sequence 

in C, there are an integer n and a morphism g: Cn+i -+ C, such that fn .*- fi = 
gfn+lfn ...fi . It follows that if Con-Mod is perfect then (C/l)o*-Mod is perfect 
for any two-sided ideal I in C. 

(a). Let us assume that R is a right perfect ring and fpip-Mod is perfect. 
If D is the full subcategory of fps consisting of all indecomposable modules 
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then we have an equivalence fp, ‘“-Mod = DOP-Mod. In view of the discussion 
above it is sufficient to show that 

(i) J(D) is right T-nilpotent and 

(ii) D/J(D) is semisimple. 

To prove (i) suppose we are given a sequence 

D,f'-D,---t...-D, -k D,+,-+ a-- 

in J(D) and consider the sequence 

in J&R). Since J&R) is right T-nilpotent then there are 1 < n, < ne < *** and 
commutative diagrams 

with projective modules PI , Pz , P3 ,.., and gi = fmr+l-l ... fn,+l . 
Let us denote by prs (resp. spr the category of all finitely generated projective 

right (resp. left) R-modules. Since f,, belongs to J(fps) then h, = sifn6ti belongs 
to J(prs). Since there is an equivalence prip-Mod = Mod-R and R is right 
perfect then J(prs) is right T-nilpotent. Hence there is an integer j such that 

5 *.. hl = 0 and thus we have fn,+, ..* fi = 0. This proves part (i). 
We now prove (ii). Let X be an object in D. If X is projective then we know 

that End X is a local ring because R is right perfect. Assume that X is not 
projective. Then by Lemma 1.2 we know that there is a ring epimorphism End 
$ -+ End X/J(X, X). S ince fpgp-Mod is perfect it follows from [12, Corollary 
5.2](see also [I 1, Proposition 2.21) that the ring End X is right perfect. Hence 
End WJ(X X) is semisimple. But by (i) we know that J(X, X) is right T- 
nilpotent, then End X must be a local ring because X is indecomposable. Con- 
sequently each object in D has a local endomorphism ring. Then by Lemma 1.1 
we know that J(C, C’) = H om,(C, C’) for any pair of nonisomorphic objects C 
and c’ in D. Hence Hom,,J(X, Y) is a division ring if X z Y, and it is zero in 
the opposite case. It follows that the category (D/J>“p-Mod is equivalent to the 
product of categories Mod-Kx where Kx = End X/J(X, X) is a division ring 
and X runs through a fixed set of representatives of isomorphy classes of objects 
in D. This proves that D/J is semisimple, finishing the proof of (a). The proof 
of(b) proceeds in a similar fashion and is left to the reader (use the duality 
PrR = RPflp)- 
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COROLLARY 2.2. Suppose that a ring R is both left and right perfect. Then R is 
left pure semisimple if and only if the category $,-Mod is perfect. 

Proof. By [4] we know that there is a duality fpgp = .fp. Then it follows by 
Proposition 2.1 that fp,-Mod is perfect if and only if .fpOF-Mod is perfect. On 
the other hand by [12, Theorem 6.31 we know that R is left pure semisimple if 
and only if .fpon-Mod is perfect. Hence the corollary follows. 

We are now in a position to establish the main result of the paper. 

THEOREM 2.3. Let A be a locally finitely presented Grothendieck category 
which has only a Jinite number of nonisomorphic simple objects. Then A is pure 
semisimple if and only ;f A is equivalent to the category of all modules over a ring 
of finite representation type. 

Proof. Suppose A = Mod-R where R is a ring of finite representation type. 
Let X1 ,..., X, be a complete set of nonisomorphic indecomposable finitely 
presented right R-modules. It is clear that there is an equivalence fpip-Mod = 
Mod-S where S is the endomorphism ring of X, @ ... @ X, . Since S is semi- 
primary then by [12, Theorem 6.31 A is pure semisimple. 

Conversely, suppose A is pure semisimple. First we consider the case A = 
R-Mod where R is a ring. By [S] we know that the category fp,-Mod is locally 
Noetherian. Moreover every object in Rfp satisfies the condition (*) in [7] 
because by [13, Corollary 2.31 we know that the ring R is both left and right 
Artinian. Then it follows by [7, Corollary] that fp,-Mod is locally finite. Hence 
by [2, Theorem 3.11 we know that R is of finite representation type. 

Now we consider the general case. Let S, ,..., S, be a complete set of non- 
isomorphic simple objects in A and let A be the endomorphism ring of the 
injective envelope of S, @ ... @ S, in A. We know by [13] that A is left Artinian, 
nfp-Mod is perfect and that there is a duality fp(A)on = nfp. Then according to 
Corollary 2.2 A is right pure semisimple and hence it is of finite representation 
type. It follows that nfp is closed under injective envelopes and thus fp(A) has 
a projective generator P. Then there is an equivalence A = Mod-End P and the 
proof of the theorem is complete. 

Recall that an Abelian category C is a length category if each object in C is 
both Noetherian and Artinian. An Abelian category is of finite representation 
type if it has only a finite number of nonisomorphic indecomposable objects. 
In the terminology of Auslander [2] a family of morphisms is called Noetherian 
in case, for each sequence of nonisomorphisms JJO -+fo MI -+fl Mz + ... in the 
family, there exists an n such that fn ... fO = 0. The family is co-Noetherian if it 
satisfies the obvious dual condition. 

We now apply Theorem 2.3 to establish the following completion of [2, 
Theorem 3.11. 

THEOREM 2.4. Let C be a skeletally small Abelian category which has only a 
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finite number of nonisomorphic simple objects. Then the following conditions are 
equivalent: 

(1) C-Mod is locally $nite. 

(2) C-Mod is locally Artinian. 

(3) C-Mod is perfect. 

(4) C-Mod is semi-Artinian and C is Noetherian. 

(5) C is a length category and the family of monomorphisms between indecom- 
posable objects in C is Noetherian. 

(6) C is a length category and the family of epimorphisms between indecom- 
posable objects is co-Noetherian. 

(7) C is a length category of jinite representation type. 

Proof. Let us denote by (n’) the statement (n) for the category COP. Moreover 
we denote by A the category Lex Con consisting of all contravariant left exact 
functors from C to Abelian groups. Since there is an equivalence fp(A) = C 
then it follows from [12, Theorem 6.31 that (3) and (2’) are equivalent, and that 
A is pure semisimple if and only (3) holds. Then from Theorem 2.3 we conclude 
that (3) implies (7). Since we know by [2, Theorem 3.11 that the statements (I), 
(l’), and (7) are equivalent, then all statements (l), (2), (3), (7), (l’), (2’), (3’) are 
equivalent. The implications (7) + (5) + (6’) are obvious and (6’) --f (4) follows 
from the proof of [2, Theorem 3.11. Finally, (4) + (2) is an immediate conse- 
quence of [13, Theorem 1.91. Since similarly we get (7) -+ (5’) ---f (6) --j (4’) + (2’) 
then the theorem is proved. 

Remarks. (1) Fuller [6] h as p roved that a ring R is right pure semisimple if 
and only if every direct product of projective objects in fpO,-Mod is projective. 
Then it follows from [12, Corollaries 2.9, and 2.111 that R is right pure semi- 
simple if and only if every direct product of pure-projective right R-modules is 
pure-projective. 

(2) Since we know that l.P.gl.dim R = 0 if and only if R is of finite repre- 
sentation type then the l.P.gl.dim R measures how far R is from being of finite 
representation type. It was already established in [9] that l.P.gl.dim R < n f 1 
whenever 1 R ) < K, , n > 0. Hence l.P.gl.dim R = 1 for any countable ring R 
which is not of finite representation type. 

(3) It would be interesting to know if stably equivalent Artinian rings have 
the same left pure global dimensions. 

Note added in proof. It is possible to give another and easier proof of Theorem 2.3 
for A = R-mod. Suppose R is left pure semisimple. Then R is Morita dual to some left 
Artinian ring S, i.e., Rfp = sfp”P. By Corollary 2.2 S is right pure semisimple. In particular 
it is right Artinian. Then by remarks after Corollary in [8] S is of finite representation 
type. 

481/48/z-6 
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