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ABSTRACT 

The poles and zeros of a linear transfer function can be studied by means of the 
pole module and the transmission zero module. These algebraic constructions yield 
finite dimensional vector spaces whose dimensions are the number of poles and the 
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number of multivariable zeros of the transfer function. In addition, these spaces carry 
the structure of a module over a ring of polynomials, which gives them a dynamical or 
state space structure. The analogous theory at infinity gives finite dimensional spaces 
which are modules over the valuation ring of proper rational functions. Following 
ideas of Wedderbum and Fomey, we introduce new finite dimensional vector spaces 
which measure generic zeros which arise when a transfer function fails to be injective 
or surjective. A new exact sequence relates the global spaces of zeros, the global 
spaces of poles, and the new generic zero spaces. This sequence gives a structural 
result which can be summarized as follows: “The number of zeros of any transfer 
function is equal to the number of poles (when everything is counted appropriately).” 
The same result unifies and extends a number of results of geometric control theory 
by relating global poles and zeros of general (possibly improper) transfer functions to 
controlled invariant and controllability subspaces (including such spaces at infinity). 

1. INTRODUCTION 

In this paper we show that two problems in the foundations of linear 
system theory are surprisingly closely related, and we present a common 
solution. The two problems we have in mind can be summarized as “guiding 
principles,” or perhaps “fond hopes,” as follows: 

(A) The number of zeros of a transfer function is equal to the number of 
poles. 

(B) The zeros of a transfer function appear as unavoidable poles in 
feedback problems with constraints. 

In this form, these principles seem vague, or wrong, or both. The first goal 
of our work must be to make sense out of these statements, deciding what to 
count as zeros and poles, and in what sense zeros appear as poles. Further- 
more, since our point of view is algebraic and structural, rather than 
computational, we will be seeking isomorphisms of algebraic objects, rather 
than just equality of dimensions or eigenvalues, for example. 

It is known that in general the number of poles of a transfer function 
G(Z) (counting both the finite poles and the poles at infinity) may be greater 
than the number of zeros (so counted). The difference has been called the 
“defect” of the transfer function [6; 11, p. 4601. So what hope is there for 
guiding principle (A)? In fact, the defect has been calculated in terms of 
“Kronecker indices” or “ Wedderbum numbers” [6; 22; 11, Theorem 6.5-11, 
p. 4611. We maintain that these Wedderbum numbers are in fact the 
dimensions of new finite dimensional vector spaces which measure the size of 
two sorts of “generic zeros”: those arising from the failure of G(z) to be 
injective, and from the failure of G(z) to be surjective. Furthermore, the 
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number of ordinary “lumped” zeros is best viewed as the dimension of a zero 
module (either finite or at infinity) [2; 1820; 25-29; 12, p. 1131, and of course 
the number of poles is the dimension of the pole module, or minimal 
realization state space (possibly at infinity) [2; 8; 9, Chapter 10; 161. Guiding 
principle (A) becomes an exact sequence relating the usual pole modules, the 
lumped zero modules, and the new generic zero modules. 

Next we turn to study of feedback in the presence of constraints, which is 
just one view of the Geometric Control Theory of Wonham, Morse, Basile, 
and Marro [23]. Consider a linear system with state space X, input space U, 
output space Y, dynamics map A: X + X, and input and output maps 
B : U + X, C: X + Y. We consider subspaces of the output kernel ker C, 
thinking of Cx = 0 as a linear constraint on the state space. In the geometric 
theory we seek feedbacks F : X -+ U such that the space ker C is (A + BF> 
invariant. If this is not achievable, at least we can find the maximal controlled 
invariant space V* c ker C which does admit such an F. That is, V* is the 
largest space admitting feedbacks which preserve the constraints given by C. 
Within V* there is the maximal controllability subspace R* within which 
poles can be moved at will using “friendly feedbacks”: those which preserve 
the constraints. That is, the factor space V*/R* measures poles of the 
original system which cannot be moved using friendly feedbacks. (The expert 
will recognize immediately that we are omitting many details). It has been 
known for a long time that these immovable poles coincide numerically with 
multivariable zeros [23, pp. 112%1131, and in a paper in this journal [26] this 
numerical fact was converted into an explicit module isomorphism. To 
summarize, let G(Z) be a strictly proper transfer function with transmission 
zero module Z(G), and let X be the pole module. Then there is a natural 
polynomial module isomorphism between Z(G) and the space V*/R* associ- 
ated to the minimal realization of G(z). 

Since the isomorphism of [26] depends very strongly on the fact that 
G(x) is strictly proper, it is reasonable to seek a corresponding result for 
improper transfer functions. Inspired by known connections between zeros at 
infinity and geometric control theory [l], the note 1191 gave some preliminary 
results and conjectures relating zeros and poles in the improper case. The 
present paper reorganizes and completes these ideas by using the new 
generic zero spaces to establish an explicit relationship between zeros and 
poles for general transfer functions. In this way we generalize the earlier 
connections with geometric control theory and give substance to guiding 
principle (B). In the end, it turns out that our two guiding principles 
coincide, giving one theorem. 

The present paper is organized as follows: Section 1’ is a second introduc- 
tion which discusses the algebraic methodology of the paper, inspired by the 
referee of an earlier version. Section 2 recalls basic notation and definitions of 
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the standard zero and pole modules. Section 3 presents the Wedderbum- 
Forney construction which leads to the spaces of generic zeros mentioned 
above. Section 4 discusses generic zeros arising from the kernel of a transfer 
function, and gives some relationships with the geometric theory. Section 5 
contains the fundamental exact sequence which is the main result of this 
paper. Section 6 relates the global zero space and the Wedderbum-Fomey 
construction to the theory of minimal bases and dynamical indices. Section 7 
includes a few comments about the connection between Wedderbum-Fomey 
spaces and modules of generic zeros. 

1’. ALGEBRAIC INTRODUCTION 

Our methods in this paper differ substantially from the usual methods of 
system theory in that we use routinely the methods and ideas of number 
theory and commutative algebra. We begin by assuming an arbitrary field k 
of coefficients, having in mind widely differing applications such as control 
systems (with k real or complex) or convolutional coding theory (with k 
finite). On the other hand, the present paper does not stress applications at 
all, but rather emphasizes the deep algebraic structure underlying k( z)-linear 
transformations. Here, we downplay our conviction that control engineering 
and coding theory (rather than pure algebra) have motivated the “correct” 
definitions of poles and zeros of matrices. 

If k is an arbitrary field, then the choice of domain and range sets for the 
rational functions in k(z) is a little involved. In the complex theory, such 
functions are defined on, and take values in, the Riemann sphere. Given any 
complex rational function, we can count the multiplicity of pole or zero of 
that function at each point on the sphere. Such a counting function is called a 
valuation, and the idea of valuation extends to k(z) for any field k of scalars 
[13; 3; 6, Appendix)]. In a brief but very interesting note ([lo]; see also 
[ll, p. 4611) Kung and Kailath used valuations to study zeros of a matrix of 
rational functions. Although [lo] emphasized determinants, this paper was 
one of the inspirations for the original zero module definition in [25]. For 
more about the relationship of [lo] with the local theory of poles and zeros in 
Section 6 below, see [30, Section 41. Valuations of k(z) are given by all 
irreducible polynomials, together with the “point at infinity.” The new 
wrinkle is that there are irreducible polynomials over k which are not linear. 
Furthermore, the “value of a function at a point” (we identify a “point” with 
a valuation) need not be a member of the scalar field k, but rather lies in an 
extension of k, called a residue class field, defined by the corresponding 
polynomial. This theory applies to the real case, of course, but the full power 
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of the language can be avoided in that case by identifying the “complex 
valuations” with pairs of complex numbers. However, attention to the residue 
class fields is crucial for general fields, including finite fields. In particular, 
much of the classical polynomial matrix theory is involved with “rank drops” 
of matrices when functions are evaluated at a point. In general, evaluation of 
matrices of functions is done by factoring out the maximal ideal of a valuation 
ring to construct the residue class field. Lemmas 6.1 and 6.2 below deal with 
the rank drop issue, which was well understood from an algorithmic point of 
view. 

Finally we would like to say a few words about the module theoretic 
approach to pole-zero theory. From the most naive point of view, a pole of a 
transfer function matrix is a pole of any of its coefficients, but this approach 
neglects the problem of assigning multiplicities and misses the possibility of 
numerically coincident poles and zeros which do not cancel. Some sophisti- 
cated approach is needed, and we settled on the pole module, or state space 
of the minimal realization. In our view, the dynamics of the system is 
captured by the action of a polynomial ring (or possibly a more general ring) 
on the state space. The module action is the dynamics. For polynomials, the 
module action is given by multiplication by the variable z, which gives a 
dynamics matrix A, whose eigenvalues are, in turn, the naive poles. The 
point at infinity has its own ring, and the study of modules over this 
ring leads to a clear understanding of generalized state space systems 
[16, 17, 2, 181. The multivariable zero module, defined in the next section, 
gives a state space object with its own dynamics (that is, its own module 
action) which, in the polynomial case, gives again eigenvalues which are the 
naive numerical zeros. We have argued at length elsewhere that the zero 
module is the “correct” embodiment of the (lumped, or finite dimensional) 
zeros. The present paper is a first attempt to understand the more compli- 
cated “generic” zeros using the Wedderbum-Forney construction. 

2. NOTATION AND BASIC DEFINITIONS 

Let k be a field, let k[ z] denote the ring of polynomials, and let k(z) 
denote the field of rational functions in the variable z. Denote by 0m the 
valuation ring at infinity of proper rational functions in k(z). If V is any 
finite dimensional vector space, write V(z) = V@ k( z), a vector space over 
k(z); fiV=V@k[z], a free module over k[z]; and s2,V=V@om, a free 
module over 0,. All tensor products are taken over the scalar field k. We will 
frequently also use the module of strictly proper vectors Z- l&V, and write 
V(Z) = 0V@zP’Q2,V. We denote the k-linear projections out of V(z) by 
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7~+ : V(z) + OV (polynomial part), and n_ : V(Z) + z-‘!J2,V (strictly proper 
part). A transfer finction is a k( z)-linear transformation G(Z) : U(z) + Y(Z). 

Given a transfer function G(z): U(Z) + Y(Z), we define the pole module 

X(G), the transmission zero module Z(G) (which are modules over k [ z]) and 
their analogs at infinity X,(G) and Z,(G) (modules over 0,) as follows: 

Z(G) = 
G-‘(QY)+ !-NJ 

kerG(z)+ QU ’ 

GAG> = 
G-l&Y)+ QJJ 

kerG(z)+O,U ’ 

The definitions of the pole and zero modules have been given in earlier 
work [2, 8, 18, 251. They are all finite dimensional vector spaces over k. The 
zero and pole modules can be combined to form global pole and zero spaces 
which are given by 

T(G) = X(G)@%,(G), 2(G) = Z(G)@Z,(G). 

The two global spaces are finite dimensional vector spaces over k with no 
additional module structure. 

3. THE WEDDERBURN-FORNEY CONSTRUCTION 

In this section we present a construction mentioned by Forney in notes 
[5] written at Stanford in 1972. Since it is closely associated with earlier work 
of Wedderburn, we call it the Wedderburn-Forney construction. Let % be 
any subspace of V(Z), where V is finite dimensional over k. By choosing a 
basis of V over k and using it as a basis of V(Z) over k(.z), we can identify 
V(Z) as a space of column vectors with coefficients in k(z). A vector in V(z) 
is polynomial (that is, in QV) or proper (in !&V) if its coefficients lie in k[ Z] 
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or om. With these conventions, the maps a, and n_ act coordinatewise. We 
define the Wedderbum-Fomey space associated to % by 

That is, w(%‘) consists of the set of vectors which are strictly proper parts of 
vectors in %?, modulo the set of vectors of V which are themselves strictly 
proper. It is clear that w(U) is a vector space over k. The question of 
module structures on %‘“(V) is a subtle and confusing question. For example, 
we will establish later that the choice of a minimal polynomial basis for V 
yields a structure for %‘“(V) as a finitely generated torsion module over 0m 
whose invariant factors are exactly the dynamical indices for 9?. Although all 
such structures are isomorphic, there is no “natural” or :‘canonical” 0m 
structure on w(9). See Section 6 below for further details. Right now we are 
content with the following modest result. 

LEMMA 3.1. For any subspace 9, W(W) is finite dimensional over k. 

Proof. Choose a k( z )-basis { ui( z), . . , ur( z)} of % consisting of polyno- 
mial vectors. For i = 1,. . . , r, let d, be the maximum degree of the coeffi- 
cients of u,(z). Let 9’ be the set of strictly proper vectors given by 
{a_(~-‘uj(z)): i = 1,2 ,..., dj}. Th en the equivalence classes of the mem- 
bers of 9’ in w(V) span w(V). To see this, consider U(Z) = Ca j(z)uj(z) 

in %?, with a&z) in k(z). Then ~T_u(z) = a_(Ca_(aj(z))uj(z)), since for 
each j, uj(z) is polynomial and so is r+(ai(z))uj(.z). Expand r_(aj(z)) in 
powers of z- ‘, say rp(aj(z)) =Efxl_lbiz-’ + b(z)zp”-l, with d = dj and 
b( z ) proper. Now .z -“- ‘uj( z) is strictly proper [since d is the maximum 
degree in uj( z )], so it is clear that only terms up to z-%~( z ) are needed to 
cover 71~ (a j( z ))uj( z )). This argument shows that the dimension of ZJV( %‘) is 
bounded above by Cl= ,d i. w 

4. NULLSPACES AND CONTROLLABILITY SPACES 

Suppose given a k( z )-linear transformation G( .z) : U(z) + Y(z) with 
nullspace ker G( z) c U(z). We establish in this section that #‘-(ker G( 2)) can 
be identified as a subspace of the global pole space r(G) which is closely 
related to the controllability subspaces of geometric control theory. The 
mappings given here are inspired by those in [25, 191. 
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Note that since G(z) is k(z)-linear, we can write the definitions of the 
pole and zero modules at infinity in a way that uses strictly proper rather 
than proper inputs and outputs. This reformulation will simplify our later 
calculations. 

LEMMA 4.1. For any transfer function G(z) we have O,-module isomor- 
phisms 

Z,(G) iz 
G-I( z-‘G~Y) + z-‘C2JJ 

kerG(z)+ z-‘L12,U ’ 

Proof. These isomorphisms are immediate consequences of the O,-mod- 
ule isomorphisms QJ E z- ‘C&V for any V. n 

THEOREM 4.2. There is a k-linear rnonic map 1: w(ker G( z)) -+ .5?(G) 
induced from the mapping ~~u(~)H(~+u(z),~~u(z)) jbm kerG(z) to 
LxJ03z-‘~JL 

Proof. Recall that 

w(ker G( z)) = 
r_(kerG(z)) 

kerG(z)r\l z-‘f&U’ 

An element w of %‘-(ker G( z)) is an equivalence class which has a represen- 
tative of the form r_ u(z), u(z) E ker G(z). We attempt to define a map by 
+rr ~ u(z) ++ (r + u( z), 7~ _ u(z)), where the first coordinate must be interpreted 
modulo G-r(QY) n G?U and the second coordinate must be interpreted 
modulo G-r(z-lQ,Y)n zPIL$JJ. 

The mapping is well defined, since if a-u(z) is trivial in v(ker G(z)) 
then G(z)( 7~~ u(z)) = 0 and so also G( z)( 7~+ u( z)) = 0. Therefore r+ u( z) 
and 7~_ u(z) are both trivial in X(G). That is, we have successfully defined a 
map 1: -W(kerG(z)) + Z(G). 

To see that 1 is one to one, assume that r_ u(z) goes to zero in X(G). 
Then T+U(Z) E G-‘(CJY), and a-~(z) E GP’(z-‘fi2,Y). But G(z)u(z) = 0, 
so that G(z)n_u(z)= - G(z)n+u(z), and Gnu lies in QY n 
z -‘Q2,Y = (0). That is, r-U(z)6 kerG(z)n z-‘&Y and is trivial in 
%‘-(ker G(z)). n 
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The map L is closely related to the spaces of geometric control theory. If 
we assume the “classical case” of a strictly proper G(z), then x(G) is just 
X(G), the usual pole module. In this case, the image of 1 is precisely R*, the 
maximal controllability subspace in the output kernel of X(G). This fact 
follows fairly easily from the results of [26]. (See especially the map p, in 
Figure 1, p. 628.) 

In general, we let p,: 5(G)+ X(G) and p,: T(G)+ X,(G) be the 
canonical projections. Define the spaces R* = image(p,i) c X, Rz = 
image( p,h) C X,. These are reasonable analogs of the classical controllability 
space. If we identify W(ker G(z)) with its image in .%(G), we have the 
following easy lemma. 

LEMMA 4.3. There is an isomorphism of vector spaces over k: 

x(G) X(G) X,(G) 
W(kerG(x)) Z R* @ Rz ’ 

Proof. Consider the map 

X(G) X,(G) 
.F(G)+F@- 

RZ 

induced from (~r(~),z+(~))+(~i(z)modR*, U,(z)modRz) with Us in 
L?U and us(z) in z-%&U. The class (u,(z), ~~(5)) goes to zero if both ur(.z) 
and us(z) lie in ker G(z). Then so does the sum V(Z) = ui(z) + u,(z), and 
(u r( z), us(z)) is exactly the image under 1 of 7~ _ v( z). That is, the kernel of 
our map is precisely W(ker G(Z)) as required. W 

5. THE MAIN EXACT SEQUENCE 

The main result of this paper is given by the following theorem. 

MAIN THEOREM 5.1. Let G(z) be a transfer function. Then there is an 
exact sequence of finite dimensional vector spaces over k, 
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where 

S“(G) is the global space of zeros of G(z); 
S(G) is the global space of poles of G(z); 
YV( ) is the “ Wedderburn-Forney ” construction. 

Proof. We start with the map 

To begin with, define a new space 27”,(G) (compare [14]) by 

G-‘(QY)+ iHJ 
T”,(G)= au 

~ G-1(z-‘i22,Y) + z-‘!&U 

2 cc -% u 

A typical element of %Or(G) has a representative of the form (u(z), o(z)), 
with G(z)u(z)~fIY and G(z)u(z)E zP’Q2,Y. The map we want will be 
induced from (u(z),D(z))~(~+(u(z)+ o(z)),~(u(z)+ v(z))) where the 
image shown gives a member of S?(G). This turns out to give a well-defined 
map from Zr(G) to X(G). Now, 2(G) comes from S!‘r(G) by “factoring 
out ker G( z),” and the map shown sends this kernel to W(ker G( z)) consid- 
ered as a subspace of 2”(G). The upshot is that we have a well-defined 
injective map CY as required. To see this, consider the map 

given by (u(z),D(z))~(~T+(u(z)+~(z)),~_(u(z)+w(z))). First we need 
to examine the effect of this map on vectors of the form (u(z),O), u(z) E 
G-‘(OY)f?QU, and (O,v(z)),v(z)~G-1(z-'~2,Y)nz~'~2,U. But accord- 
ing to the formula, (u(z),O) ++ (u( z),O), which is trivial in X(G), and 
(0, v(z)) c, (0, v(z)), trivial in X,(G). That is, the map shown gives a 
welldefined map (or: S’r(G) + a(G). To obtain S!‘“(G) from S“r(G), we 
must factor out the submodule of classes represented by vectors of the form 
(u(z), u(z)) where both u(z) and u( z ieinkerG(z).Thenalsou(z)+u(z) ) 1 
lies in kerG(z), so (u(z),v(z)) goes to (P+(u(z)+ u(z)),‘TI_(u(z)+ v(z))), 



ZEROS AND POLES OF A TRANSFER FUNCTION 133 

kerG(z)@kerG(z)&Y(kerC(;.)) 

i0 
I 

Tr(G) a’ 
Ii 

,X(G) 

PO 

I I 

P 

I(G)-------~-----,~(G)/~(kerG(;)) 

FIG. 1. 

which according to Lemma 4.2 lies in W(ker G( z)) considered as a submod- 
ule of 3(G). This situation is shown in Figure 1 and gives a welldefined map 

To show that (Y is one to one, suppose (U(Z), u(z)) represents a member of 

9’(G) which goes to zero in W(kerG(z)). Then r+(u(z)+ o(z)) and 

a_(u(z)+u(z)) both lie in kerG(z), so that u(z)+u(z) also lies in 
ker G( z). In other words, G(x)u(z) = - G(.z)v(z). On the other hand, 
G( x)u( Z) E &?Y is polynomial, and G( Z)V( Z) E z-‘Q_,,Y is strictly proper, so 
the only way for this to happen is for both u(z) and V(Z) to be in ker G(z). 
Therefore (u( z ), v(z)) is trivial in S(G) as required. 

To define the right hand map 

T’(G) 
P: v(kerG(z)) + ~(imG(4) 

in the sequence, consider a representative of a member of 3(G) given as 
(u+(z), u_(z)) with U+(Z) in OU and U-(Z) in zP’Q2,U. Map this vector to 
~G(z)(u+(z) + K(Z)). If (U+(Z), V_(Z)) represents a member of 
W(ker G( z)), then u+(z) + u_(z) lies in the kernel of G( .z) and goes to 
zero, so p is well defined. Every vector in im G( Z) is obtainable in this way, 
by splitting its preimage into polynomial and strictly proper parts, so p is 
sujective. 

For exactness in the middle, first we have to verify that /3& is the zero 
map. A class { in 5(G) is represented by a vector of the form (U(Z), U(Z)) 
with G(z)u(z) E OY and G(z)v(z) E zP1&Y. Chasing through gives 
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Pa(b)= ~G(z)r_$z) in w(imG(z)), which is zero, since G(z)u(s) is 
strictly proper, by the definition of the Wedderburn-Fomey construction. 

Finally, we need to show that if ,8 kills a member of 
X(G) 

w(kerG(.zll ’ 
then 

\ 
that member lies in the image of (Y. Suppose given, then,‘a class having a 
representative (U +(z), z, _ (z)) with U+(Z) polynomial and o (z) strictly 
proper, killed by /?. Define r(z) = U+(Z) + v _(a). Then G( z)( r( z)) is strictly 

proper, so (0, r(z)) represents a member of E.?“(G). But a((0, r(z)) = 
(7~+(r(~)),~_(r(~)))=(~+(~),n_(~)),sowearedone. n 

This theorem has the following numerical corollary which inspired much 
of the development. 

COROLLARY 5.2. Let G(z) be a transfer function. Then dim X(G) = 
dim z(G) + dim w(ker G(z)) + dim W(im G( z)). 

This corollary, which follows immediately by counting dimensions, should 
be interpreted as stating that “the number of poles of a matrix of rational 
functions equals the number of zeros.” That is, the right hand side of the 
equation is a reasonable accounting of the total number of zeros of G(z). 

We conclude this section by discussing the relationships between the 
main exact sequence and geometric control theory, following primarily 
[26, 191. Let us examine the injective map (Y using the notation of Lemma 
4.3: Consider 

X(G) X,(G) 
a:Z(G)~Zm(G)+R,@+-- 

Rz ’ 

This map (Y yields four maps when composed with the various inclusions and 
projections, of which the more important are 

X(G) 
afin: Z(G) + 7 and 

X,(G) 
(Y,: Z,(G) + ~ 

R; ’ 

The map efin was discussed in detail in [26] for strictly proper G(Z), and it 
was proved there that the image of ofi,, is exactly V*/R*, where V* is the 
maximal controlled invariant subspace of the output kernel. For arbitrary 
G(z), efiu gives a reasonable definition of a space V*. If we name the kernel 
of efi,, S(G), we have an exact sequence from [I91 

O-,S(G)+Z(G)+V*/R*+O, 
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and recalling that (Y itself is injective, it is easy to identify S(G) as a subspace 
of Z,(G). Analogous remarks apply to Q, but rather than give details here, 
we refer the reader to [19] for a summary and promise to give an elaborate 
treatment in a later paper. 

6. MINIMAL INDICES AND WEDDERBURN-FORNEY SPACES 

In this section we study the Wedderburn-Forney spaces w(%?) for 
subspaces % of spaces of the form V(Z). Our goal is to recall earlier work on 
minimal indices and minimal polynomial bases, and use the main Theorem to 
give a unified approach to these issues. Our point of departure is Fomey’s 
seminal paper [6], although some of the main ideas were already done by 
Wedderbum and Kronecker [22; 12, p. 95-991. 

We identify V(Z) as a space of column vectors with coefficients in 
k(x), and our first goal is to define the degree of a vector V(Z) = 
(o,(z),a,(z),..., a,(~))~. Let .!? be the set of all primes of k(z) [that is, the 
valuations of k(z) which are given by irreducible polynomials and the point 
at infinity] [4; 21, p. 133; 13, Chapter 1; 3, Section 11.51. For a prime p in B 
let ord, be the corresponding order function. The “product formula,” which 
is really a sum formula in the present notation [21, Theorem 3.3, p. 134; 61, 
states that C D c,ord,(f(z)) = 9 f or all f(z) in k(z). We extend the defini- 
tion of ord, to V(Z) by ord,v(z)=min{ord,(ai(z)):i=1,2,...,n}. The 
failure of the product formula for vectors is measured by a positive integer 
called the degree (or sometimes the defect) of the vector: deg(u( z)) = 
-c v E B ord J v( z)) [4, p. 5191. The product formula shows immediately that 
the degree of a vector is a homogeneous invariant: that is, deg(a(x)v( z)) = 
deg( u(z)) for any nonzero u(z) in k(z). It is frequently convenient to 
multiply V(Z) by a least common denominator of its coefficients, and then to 
divide it by any common polynomial factor of those coefficients, thereby 
replacing it by a vector of polynomials with no common factor. In this case, 
calculation of the sum shows that the degree of u(z) is precisely the 
maximum of the degrees of the polynomial coefficients. This number can also 
be viewed as the degree of the curve in projective space defined by v(z) and 
as such is closely related to work of Hermann and Martin [21, Theorem 5.2, 
p. 139; 71. 

Now, following Wedderbum and Forney, we are ready to use the degree 
function to describe a minimal basis of a subspace %? of V(x). If % = 0, stop. 
Otherwise, choose a vector cl(z) in q of least degree. Among the vectors of % 
linearly independent of cl(z), if any, choose a vector ca( z) of least degree, 
and continue until a basis is found. Such a basis is called a minimal basis. It 
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is not uniquely determined by %, but the numbers e, < e2 < . . . < e, ob- 
tained as the degrees of the basis vectors chosen are uniquely determined by 
9? and are called the minimal indices of %?. If denominators are cleared from 
the vectors in a minimal basis, and common polynomial factors are divided 
out, the resulting set is called a minimal polynomial basis. The relationship 
between these ideas and the main exact sequence above will follow from 
Theorem 6.1 below, but first we need to recall some facts about reducing 
matrices modulo a prime. 

Let p be a (finite) valuation corresponding to an irreducible polynomial 
p(z) in k [ z]. Let Ou be the valuation ring of n, and let K( 0) be its residue 
class field. If G(z) is a matrix with coefficients in Lo,,, for example a 
polynomial matrix, denote by G, the reduction of G(z) modulo n, a matrix 
with coefficients in K(P). If x is a root of p(z) in K( $I), then G, is essentially 
the same as G(A). 

LEMMA 6.1. With the notation given above, rank.(,, G(z) < 
rankkC_, G( z), with strict inequality exactly when the (finite) zero module 
Z(G) has nontrivial p( z )-torsion. 

Proof. The weak rank inequality is easy, since any k(z)-linear depen- 
dence on the columns of G(z) gives a dependence over O$, by clearing 
denominators, and a K( $I) dependence by reduction. For the strict inequality 
case, write r =rank,(,,G(z) and r(p)=rank,(,,G(z). Since G(z) is a 
matrix over O,, by [18; 25, Theorem 1, p. 1151 we have an exact sequence 

where the first map is given by G(z) and the subscripts indicate the local 
theory at p. Thus Z,(G) is the p( z>torsion part of the finite zero module 
Z(G). This is really just the statement that the zero module is the torsion part 
of the cokemel of G(z), with some technicalities which arise because k is 
arbitrary and p may have arbitrary degree. If now we tensor through by 
K(Q), we get by right exactness an exact sequence of K( @)-spaces 

where m is the dimension of U, p is the dimension of Y, j is the number of 
invariant factors of Z,(G) [which is related to the number of Jordan blocks of 
a suitable zero-dynamics matrix over K(#)], and the rightmost map is the 
reduction of G(z) modulo p. It follows that j + p - r = p - r( 0). Therefore, 
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r - r(p) = j, and we see that a rank drop occurs if and only if j > 0. Now 
j > 0 exactly when Z,(G) does not vanish, and we have established a 
quantitative form of the lemma. w 

It remains to handle the point at infinity. To this end, write 

G(z)= [gl(z),g,(z),...,g,(z)l, 

where the g i( z ) are polynomial column vectors. Let f; be the degree of 
g,(z). Let 

D(z) =Diag[l/zf’,...,l/~~], 

and 

Thus, D(z) and N(z) are both matrices with coefficients in 0%, D(z) 
vanishes at infinity, and N(co) is exactly the high-order coefficient matrix of 
G(z) [4, 241. Now, N(m) is a matrix with coefficients in k, and rankk N(cc) 
< rankkCz)G(z). The matrix G(z) is called column proper if equality holds. 
It follows easily from matrix fraction theory that N(z)D-‘(z) is a right 
coprime 0m matrix fraction decomposition if, and only if, G(z) is column 
proper. In this case, the pole module at infinity, X,(G), is just the cokemel 
of D(z), which is a finitely generated torsion Um module with invariant 
factors f,, fi,. . . , f,. Furthermore, the zero module at infinity Z,(G) is just 
the cokernel of N(z), which is trivial exactly in the column proper case by an 
argument similar to the calculations for Lemma 6.1. We can summarize this 
discussion as follows: 

LEMMA 6.2. Let G(z) be a polynomial matrix with column degrees 

fi>fi,..., f,. Then G(z) is column proper if, and only if, Z,(G) = 0. In this 
case, the column degrees are exactly the (exponents of the) invariant factors 

of X,(G). 

Our results on the Wedderbum-Fomey spaces will follow from the next 
theorem. 

THEOREM 6.3. Let V be an n-dimensional vector space over k, and let V 
be an rdimensionul k(z)-subspace of V(z). Let U(z) be rdimensional over 
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k(z), and consider an injective transfer function G(z) : U(z) -+ V(z) with 
image SF?, viewed as an n x r matrix over k(z). Then the columns of G(z) 

form a minimal basis of V if, and only if, the global zero space .3(G) is 
zero. The columns of G(z) form a polynomial basis of % if, and only if, the 
finite pole module X(G) is zero. 

Proof. Since G(z) is injective with image %?, then the columns of G(z) 
surely form a basis of %. Also, G(z) is a polynomial matrix if and only if all 
the poles of G(z) occur at infinity, so the second statement of the theorem is 
obvious. The first statement of the theorem follows Fomey’s “Main Theorem” 
[4, pp. 495, 5191. According to Fomey, if G(z) is injective and polynomial, 
the columns of G( z ) give a minimal polynomial basis if and only if G(z) does 
not lose rank at any valuation (including co). However, according to Lemmas 
6.1 and 6.2 this condition precisely coincides with the vanishing of %“( G ). n 

This result, together with the main exact sequence of the present paper, 
gives us very precise information about the Wedderbum-Fomey spaces. 

COROLLARY 6.4. Suppose V is a subspace of V(z), and let G(z) be an 
injective transfer function whose columns provide a minimal polynomial 

basis for 97. Then W(V) is isomorphic as a vector space to X,(G), the pole 
module at infinity for G(z). 

Proof. Consider the exact sequence from Section 5 

In this case, T(G)=O, %(G)=X,(G), kerG(z )=O, and imG(z)=V, so 
that the result follows immediately. n 

We conclude this section with a discussion of various possible structures 
on “w( Q?). Of course, we know that w(U) is a finite dimensional vector 
space over the field k of scalars. According to Corollary 6.4, we now know 
that $Y(Q?) = X,(G). In particular, w(U) can be given the structure of an 
Lo,-module whose invariant factors are given by the column indices of G(z). 
According to Wedderbum, these numbers (called “dynamical indices” in the 
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control literature) are uniquely determined by %2. We can restate the last 

corollary as follows: 

COROLLARY 6.5. Suppose %? is a subs-pace of V(z). The dimension of 

W(V) is exactly the sum of the dynamical indices of 5%‘. For every minimal 
basis matrix G(z), W(g) can be given an Co,-module structure correspond- 

ing to Xm( G), the pole module at infinity for G(z). All of these CO,-module 

structures are isomorphic. 

The proof of this lemma was done by appeal to Wedderbum. We do not 
know a “natural proof,” and in fact, we claim that there is no natural Oa 

module structure on Y+‘-(V). Of course, we cannot prove such a statement 
without a rigorous definition of “natural structure,” but we present here an 
example to show what we have in mind. 

EXAMPLE 6.6. Let 

Then both G,(z) and G,(z) give minimal polynomial bases for the same 
subspace $7 of k( z)~. By Corollary 6.5 we can give w( %’ ) an I0,-structure by 
declaring that the isomorphism /3: X,(G,) + %‘“(%?) is an Lo,o-isomorphism. 
This amounts to the following definition: let 

Then { w r, w2, ws } gives a basis for YY( +?), and the 0S3-structure inherited 
from G,(z) demands zP1ol = 0, z-‘wz = wn, z-‘wa = 0. 

On the other hand, the map & : X,(G,) + YY( F), which is a vector 
space isomorphism, is not an 0,-module isomorphism if the standard struc- 
ture is put on the infinite pole module of G2( z) and the Gr(z) structure is 
put on YV(%?). To verify this fact, let 
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and consider &( u( z)) and &,( z- ‘u( z)). It is in this sense that we say that the 
Om-structure on w(V) is not a natural one. 

Suppose given a space V as above. So far we have emphasized minimal 
polynomial bases, but in fact we can equally well consider minimal proper 

bases. Thus, let G(z) be a proper injective transfer function with column 
space V. Consider once again the exact sequence from Section 5 

Now we take 2(G) = 0 as a definition of minimal, and we have x(G) = 
X(G), kerG(z)=O, and imG(.z)=%. It follows that w(V)= X(G) as 
vector spaces over k. For any such G(z), X(G) is a finitely generated torsion 
module over the polynomial ring k [ z]. However, there is no reason to expect 
that different minimal proper basis matrices G(z) will define isomorphic 
module structures on w(U), and the next example gives an easy case where 
nonisomorphic structures actually arise. 

EXAMPLE 6.7. Let 

and ga(z) = 

Then gi(z) and gs(z) have the same image V, no global zero spaces, no 
poles at infinity, and non-isomorphic finite pole modules. However, by the 
main theorem, both X(gi) and X(gz) are isomorphic to %‘(%) as vector 
spaces (all three are one dimensional in this case). Thus, we say that w(q) 
does not admit a natural k[ z]-module structure. 

7. WEDDERBURN-FORNEY SPACES AND GENERIC ZEROS 

In this paper we have highlighted the Wedderbum-Forney space w(g), 
which is a finite dimensional vector space over k attached to a vector space %? 
over k(z). Our long term expectation is that these spaces will capture 
important information about k(z) vector spaces in a computable way. Our 
main exact sequence (Theorem 5.1) is the first step in this program. A very 
attractive interpretation of this technical result, leading to guiding principle 
(A) of the introduction, is that the spaces -W(ker G( z)) and %‘“(imG(z)) 
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somehow measure zeros of a transfer function G(z) which are not captured 
by the classical transmission zero modules Z(G) and Z,(G). On the other 
hand, the work in Section 6 emphasized the interpretation of V(imG(z)) as 
a space of poles when certain minimality hypotheses hold. In this brief 
concluding section, we exhibit some connections between the Wedderburn- 
Fomey spaces and certain free or divisible modules of “generic zeros” which 
have proved to be important tools [14, 151. 

We begin with divisible zeros. Let G(z): U(z) + Y(z) be a transfer 
function. We can define three modules of zeros of G(z) by 

G-‘(QY)+ OU 
Z,(G) = QU 

(gamma zeros), 

Z,,(G) = 
kerG(z) + OU 

ou 
(divisible zeros), 

Z(G) = 
G-‘(&Y)+ OU 

kerG(z)+ OU 
(transmission zeros). 

In fact Z,+(G) is the maximal divisible submodule of Z,(G), defining the 
transmission zeros by the exact sequence 

O+Z,,(G)+Z,(G)+Z(G)+O. 

Here, Z,.(G) is a divisible k[ z]-module, of course infinite dimensional over 
k, which describes “generic zeros” associated with the kernel of G(z). This 
module is closely associated with the space w(ker G(z)), according to the 
following lemma. 

LEMMA 7.1. There is a surjective k-linear map Z,,(G) + w(ker G( z)) 
inducedfimn themapu(z)t,~_u(z)foraZZu(z) in kerG(z). 

Proof. We only need to observe that 

Z,iv(G> E 
kerG(z) 

kerG(z)nQU’ 

so that the map is well defined. It is obviously k-linear and sujective. n 
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Next we discuss the space of free zeros. The discussion immediately above 
gave the transmission zero module as a quotient of a general module by a 
divisible one. For another view, consider the modules 

GY 
Z,(G) = 

G(W)nQY 
(omega zeros), 

OY 
LY_w = imG(z)nQY 

(free zeros), 

leading to an exact sequence 

O-,Z(G)+Z,(G)+Z,,,,(G)-0. 

We omit here the verifications that Zfree(G) is, in fact, a free k[ z]-module 
and that the sequence shown is exact (see [lb] for details). Our goal is to 
establish a connection between Z ,,,,(G) and the space w(imG(z)). We 
need two lemmas, the first of which gives an interesting alternative view of 
the Wedderbum-Fomey spaces. 

LEMMA 7.2. Suppose W is a subspace of Y(z). Then as vector spaces 
over k, 

the space of polynomial parts of vectors in T?, module vectors in V which are 
themselves polynomial. 

Proof. Recall the original definition of w(V) as 
d@) 

gn z-‘0,Y’ 
A 

member of this factor space is a class o which has a representative of the 

r+(U) 
form a _ y(z) for some y(z) in ‘8. Map this class to E by w ++ the class 

of 7~+ y(z) modulo %’ n QY. This map is well defined, since if y(z) in % is 
strictly proper, its polynomial part is zero. It is one to one, since if y(z) and 
v + y(x) are both in 59, so is r_ y(z), and it is easy to see that it is onto. n 

The next lemma is an analog for free zeros of the result in Lemma 7.1 for 
divisible zeros. 
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LEMMA 7.3. There is an injective k-linear map w(im G( z )) + Zfree( G ) 
induced fimn the map y(z) ++ T+ y(z) for all y(z) in imG(z). 

Proof. This map is well defined and one to one on w(imG(z)), since 
y( .z) goes to zero in Zfree(G) if, and only if, it is polynomial. n 

Lemmas 7.1 and 7.3 give the promised connection between 
Wedderbum-Fomey spaces and generic zeros. We emphasize that these two 
results are easy and should be viewed as very preliminary. We do not yet 
know to what extent these finite dimensional spaces encapsulate the structure 
of the free and divisible modules of zeros, but we are confident that the 
Wedderbum-Forney spaces will be a rich source of interesting algebraic 
questions. 
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