
Theoretical Computer Science 370 (2007) 19–33
www.elsevier.com/locate/tcs

An efficient alignment algorithm for masked sequencesI

Jin Wook Kim, Kunsoo Park∗

School of Computer Science and Engineering, Seoul National University, Seoul, 151-742, Republic of Korea

Received 31 January 2005; received in revised form 23 November 2005; accepted 9 October 2006

Communicated by M. Crochemore

Abstract

We consider the alignment problem where sequences may have masked regions. The bases in masked regions are either
unspecified or unknown, and they will be denoted by N. We present an efficient algorithm that finds an optimal local alignment by
skipping such masked regions of sequences. Our algorithm works for both the affine gap penalty model and the linear gap penalty
model. The time complexity of our algorithm is O((n − T)(m − S) + vm + wn) time, where n and m are the lengths of given
sequences A and B, T and S are the numbers of base N in A and B, and v and w are the numbers of masked regions in A and B,
respectively.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Local alignment; Global alignment; Affine gap penalty; Masked sequence

1. Introduction

A local alignment algorithm finds substrings α and β of sequences A and B, respectively, where α is similar to
β [9]. Local alignment algorithms are used in many applications such as DNA sequencing programs. For when the
lengths of A and B are n and m, respectively, Smith and Waterman [16] gave a well-known O(n2m) time local
alignment algorithm for the affine gap penalty model and Gotoh [7] improved it to O(nm) time. Crochemore et al. [3]
gave a subquadratic time algorithm but it considers only a linear gap penalty model.

In DNA sequencing [1,8,10,11,17], some bases of fragments lose their information for various reasons.
RepeatMasker [15] screens DNA sequences for interspersed repeats and low complexity DNA sequences. Low
quality bases of DNA sequences are also screened by vector screening [1,8,11]. Some bases of fragments may not be
determined by a base caller [4]. These unspecified or unknown bases will be denoted by N in this paper. Since masked
regions lose their base information, alignments with masked regions are meaningless.

In this paper we present an efficient algorithm that finds an optimal local alignment by skipping such masked
regions of sequences. In spite of skipping masked regions, the local alignment that our algorithm finds is the same
as the one that the Smith–Waterman–Gotoh algorithm finds by computing all entries. To skip masked regions, we

I This work was supported by the MOST grant FPR05A2-341.
∗ Corresponding author. Tel.: +82 2 880 8381; fax: +82 2 885 3141.

E-mail address: kpark@theory.snu.ac.kr (K. Park).

0304-3975/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.10.003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82723561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:kpark@theory.snu.ac.kr
http://dx.doi.org/10.1016/j.tcs.2006.10.003

20 J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33

first give a new recurrence for insignificant entries in a dynamic programming table, and then develop an efficient
algorithm based on the new recurrence. Our algorithm runs in O((n − T)(m − S)+ vm + wn) time, where T and S
are the numbers of base N in A and B, and v and w are the numbers of masked regions in A and B, respectively. We
also present an O((n − T)(m − S)+ vm + wn) time global alignment algorithm.

The remainder of the paper is organized as follows. In Section 2, we describe the local alignment algorithm due
to Smith, Waterman, and Gotoh, and we extend it to include base N. In Section 3, we present a new local alignment
algorithm for the affine gap penalty model. In Section 4, we present a new global alignment algorithm and we conclude
in Section 5.

2. Preliminaries

We first give some definitions and notation that will be used in our algorithm. A string or a sequence is
concatenations of zero or more characters from an alphabet Σ . A space is denoted by ∆ /∈ Σ ; we regard ∆ as a
character for convenience. The length of a string A is denoted by |A|. Let ai denote the i th character of a string A
and A[i.. j] denote a substring ai ai+1 . . . a j of A. When a sequence α is a substring of a sequence A, we denote it by
α ≺ A. Given two strings A = a1a2 . . . an and B = b1b2 . . . bm , an alignment of A and B is A∗ = a∗1a∗2 . . . a∗l and
B∗ = b∗1b∗2 . . . b∗l constructed by inserting zero or more ∆s into A and B so that each a∗i maps to b∗i for 1 ≤ i ≤ l.
There are three kinds of mappings in a∗ and b∗ according to the characters of a∗i and b∗i :

• match : a∗i = b∗i 6= ∆,
• mismatch : (a∗i 6= b∗i) and (a∗i , b∗i 6= ∆),
• insertion or deletion (indel for short) : either a∗i or b∗i is ∆.

Note that we do not allow the case of a∗i = b∗i = ∆.

2.1. Local alignments

Given two sequences A and B, a local alignment of A and B is an alignment of two strings α and β such α ≺ A
and β ≺ B, and an optimal local alignment of A and B is a local alignment of A and B that has the highest similarity
among all local alignments of A and B. We denote the similarity of an optimal local alignment by SL(A, B).

A well-known algorithm for finding an optimal local alignment was given by Smith and Waterman [16], and
Gotoh [7], and will be called the Smith–Waterman–Gotoh algorithm (SWG algorithm for short) [16,18,7]. Given
two sequences A and B where |A| = n and |B| = m, the SWG algorithm computes SL(A, B) using a dynamic
programming table (called the H table) of size (n + 1)(m + 1). Let Hi j for 0 ≤ i ≤ n and 0 ≤ j ≤ m denote
SL(A[1..i], B[1.. j]). Then, Hi j can be computed by the following recurrence:

Hi,0 = H0, j = 0 for 0 ≤ i ≤ n, 0 ≤ j ≤ m
Hi j = max

{
Hi−1, j−1 + s(ai , b j), Ci j , Ri j , 0

}
for 1 ≤ i ≤ n, 1 ≤ j ≤ m

(1)

where s(ai , b j) is the similarity score of elements ai and b j such that

s(ai , b j) =

{
1 if ai = b j
−δ if ai 6= b j

where δ is a non-negative constant, and Ci j (or Ri j) is the highest similarity among local alignments of A[1..i] and
B[1.. j] such that the last mapping is insertion (or deletion). Ci j and Ri j are computed by the following recurrence:

C0, j = Ri,0 = −∞ for 0 ≤ i ≤ n, 0 ≤ j ≤ m

Ci j = max
{

Hi−1, j − g1, Ci−1, j − µ
}

for 1 ≤ i ≤ n, 1 ≤ j ≤ m

Ri j = max
{

Hi, j−1 − g1, Ri, j−1 − µ
}

for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

(2)

where gk is the gap penalty for an indel of k ≥ 1 bases. Among all Hi j for 0 ≤ i ≤ n and 0 ≤ j ≤ m, the highest
value is SL(A, B), and the SWG algorithm takes O(nm) time to compute it [7].

The gap penalty gk for an indel of k ≥ 1 bases is defined as gk = γ+kµ where γ and µ are non-negative constants.
This is called the affine gap penalty model, where γ is the gap initiation penalty and µ is the gap extension penalty.
When there is no gap initiation penalty, i.e., gk = kµ, we call it the linear gap penalty model.

J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33 21

Table 1
Long sequences

Organism A. Length B. No. of base N C. No. of masked
of seq. (B/A) regions (avg. length

of region: B/C)

Homo sapiens cDNA 2,027 702 (34.6%) 5 (140.4bp)
elastase 2 6,672 2,451 (36.7%) 15 (163.4bp)
chrom. Y 813,231 376,139 (46.3%) 850 (442.5bp)

Apis mellifera chrom. MT 16,343 1,660 (10.2%) 16 (103.8bp)
chrom. LG15 1,349,409 87,706 (6.5%) 1443 (60.8bp)

Oryza sativa chrom. 3 736,097 16,010 (2.2%) 313 (51.2bp)
chrom. 12 2,853,905 69,928 (2.5%) 1326 (52.7bp)

Sequences are parts of an organism.

Table 2
Fragments sets

Organism No. of % Frag. A. Avg. B. Avg. no. C. Avg. no.
frag. contain. length of base N of regions

N of seq. (B/A) (B/C)

Bison bison 10,310 54.7% 1029.8 262.0 (25.4%) 1.6 (163.8bp)

Alligator mississippiensis 39,004 88.1% 1015.3 96.6 (9.1%) 4.6 (21.0bp)

Mus musculus 277,490 79.5% 809.1 235.9 (29.2%) 3.6 (65.5bp)

A, B and C are computed over the fragments containing N.

2.2. Global alignments

Given two sequences A and B, an optimal global alignment of A and B is an alignment of A and B that has the
highest similarity. We denote the similarity of an optimal global alignment by SG(A, B).

SG(A, B) also can be computed using the H table. The initial conditions are Hi,0 = −gi for 0 ≤ i ≤ n
and H0, j = −g j for 0 ≤ j ≤ m, and the recurrence for Hi j is Hi j = max{Hi−1, j−1 + s(ai , b j), Ci j , Ri j } for
1 ≤ i ≤ n, 1 ≤ j ≤ m. Then the value Hnm is SG(A, B) and it is computed in O(nm) time.

2.3. Scoring matrix

In case of DNA sequences, there are four bases, A, C, G, and T. In addition, IUB ambiguity codes [12] show several
other bases which are for incompletely specified bases. In practice, however, only bases N and X are used. N means
‘unspecified’ and X means ‘unknown’. These bases are used when the original bases are screened by repeat masking
or vector screening, or when the original bases are not determined by a base caller. In this paper we will use only N
for an unspecified or unknown base.

Tables 1 and 2 show the distributions of base N in DNA sequences. We obtained sequences randomly from NCBI
[13,14] and they are screened out using RepeatMasker [15]. The ratio of the number of base N to the length of a
sequence is various: from 2.2% up to 46.3%. The average length of each masked region is also various: from 21.0bp
up to 442.5bp. In general, the ratio of base N to a sequence is significant, and the number of masked regions is quite
small.

We extend the definition of similarity score s(ai , b j). Because N might be any base, it is impossible to determine
whether an alignment with N is a match or a mismatch. Hence, similarity score s(ai , b j) is newly defined as follows:

s(ai , b j) =

1 if ai = b j 6= N
−δ if ai 6= b j and ai , b j 6= N
σ if either ai or bi is N

22 J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33

Fig. 1. Scoring matrix for a DNA sequence where δ = 2 and σ = 0.

Fig. 2. Proof of Lemma 1.

where σ is a constant (which may not be 0) [6,8]. Fig. 1 shows an example of the similarity score (also known as the
scoring matrix) for DNA sequence alignments where δ = 2 and σ = 0. We call an entry Hi j where ai = N or b j = N
an insignificant entry.

3. Local alignment algorithm

In this section we present an algorithm that finds an optimal local alignment without computing insignificant
entries. We first give a new recurrence for insignificant entries, and then present a new local alignment algorithm for
the affine gap penalty model that is based on the new recurrence. We also describe a simpler algorithm for the linear
gap penalty model.

3.1. New recurrence for an insignificant entry

Now we present a new recurrence for an insignificant entry Hi j . It can be defined as the maximum of all the paths
from all its previously defined entries to Hi j . Our goal is to select the smallest possible number of entries that must be
considered to compute Hi j and define a new recurrence using only these entries.

We begin with some lemmas that are needed to get the new recurrence. Lemma 1 provides a relationship between
an insignificant entry Hi j and its previously defined entries and Lemmas 2–9 provide the range of entries that must be
considered in the new recurrence based on Lemma 1.

Let A and B be two DNA sequences where |A| = n and |B| = m. We define C0 j = Ri0 = −∞ for 1 ≤ i ≤ n and
1 ≤ j ≤ m and define g0 = 0. Suppose that A[i−t+1..i] is a masked region of length t , i.e., A[i−t+1..i] = NN . . . N.

Lemma 1. Hi j ≥ Hi−x, j−y − gy−z + zσ − gx−z for some constants x, y and z such that 0 ≤ x ≤ t , 0 ≤ y ≤ j , and
0 ≤ z ≤ min{x, y}.

Proof. From recurrence (1), Hi j is larger than or equal to Ci j , and Ci j is larger than or equal to Hi−x, j − gx for
0 ≤ x ≤ t . Thus Hi j ≥ Hi−x, j − gx . Similarly, we can obtain that Hi j ≥ Hi, j−y − gy for 0 ≤ y ≤ j . On the other
hand, from recurrence (1), Hi j is larger than or equal to Hi−1, j−1 + s(ai , b j). Because ai is N, it is rewritten that
Hi j ≥ Hi−1, j−1 + σ and it can be easily expanded as Hi j ≥ Hi−z, j−z + zσ for 0 ≤ z ≤ min{ j, t}. From these three
inequalities, we can deduce that Hi j ≥ Hi−x, j−y − gy−z + zσ − gx−z . See Fig. 2. �

The above lemma provides a relation between Hi j and its previously defined entries. Note that Lemma 1 is true
when x− z = 0 or y− z = 0. If equality holds in Lemma 1, we say that Hi j comes from Hi−x, j−y . We will use ‘come
from’ for some more cases.

J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33 23

Fig. 3. Three cases of ‘come from’.

• We say that Ci j comes from Hi−x, j−y if there exists Hi−k, j for 1 ≤ k ≤ x such that Ci j = Hi−k, j − gk and Hi−k, j
comes from Hi−x, j−y . See Fig. 3(a).
• We say that Hi j comes from Ci−x, j−y if there exists Hi−x−k, j−y for k ≥ 1 such that Ci−x, j−y = Hi−x−k, j−y − gk

and Hi j comes from Hi−x−k, j−y via entry (i − x, j − y), i.e., the path from Hi−x−k, j−y to Hi j passes entry
(i − x, j − y). See Fig. 3(b). Unlike the case where Ci j comes from Hi−x, j−y , the intermediate entry Hi−x−k, j−y
of the case where Hi j comes from Ci−x, j−y does not lie between Ci−x, j−y and Hi j .
• We say that Ci j comes from Ci−x, j−y if there exists Hi−k, j for 1 ≤ k ≤ x such that Ci j = Hi−k, j − gk and Hi−k, j

comes from Ci−x, j−y . See Fig. 3(c).

The following lemmas provide the range of entries of row i − t which Hi j can come from.

Lemma 2. If Hi j comes from Hi−t, j−u for u ≥ 0, there exists at least one Hi−t, j−s which Hi j comes from for some
constant 0 ≤ s ≤ t .

Proof. If u ≤ t , we are done. We give a proof for u > t . See Fig. 4(a). Because Hi j comes from Hi−t, j−u ,
Hi j = Hi−t, j−u − gu−s + sσ − gt−s for some constant 0 ≤ s ≤ t by the equality case of Lemma 1. Since
Hi−t, j−u+(u−s) ≥ Hi−t, j−u − gu−s by Lemma 1, Hi j ≤ Hi−t, j−s + sσ − gt−s . On the other hand, Hi j ≥

Hi−t, j−s + sσ − gt−s by Lemma 1. Hence, Hi j = Hi−t, j−s + sσ − gt−s , which means that Hi j comes from
Hi−t, j−s . �

Lemma 3. If Hi j comes from Ci−t, j−u for u ≥ 0, there exists at least one Ci−t, j−s which Hi j comes from for some
constant 0 ≤ s ≤ t − 1.

Proof. If u < t , we are done. We give a proof for u ≥ t . See Fig. 4(b). Because Hi j comes from Ci−t, j−u , there exists
Hi−t−k, j−u for k ≥ 1 such that Ci−t, j−u = Hi−t−k, j−u − gk and Hi j comes from Hi−t−k, j−u via entry (i − t, j − u).
Let s be the number of σ s in the path from Hi−t−k, j−u to Hi j . Note that 0 ≤ s ≤ t − 1. First we will show that Hi j
comes from Hi−t−k, j−s and then show that Hi j comes from Ci−t, j−s .

Since Hi j comes from Hi−t−k, j−u and there are s σ s in the path, Hi j = Hi−t−k, j−u − gk+t−s + sσ − gu−s .
Since Hi−t−k, j−s ≥ Hi−t−k, j−u − gu−s by Lemma 1, Hi j ≤ Hi−t−k, j−s − gk+t−s + sσ . On the other hand,
Hi j ≥ Hi−t−k, j−s − gk+t−s + sσ by Lemma 1. Hence, Hi j = Hi−t−k, j−s − gk+t−s + sσ . That is, Hi j comes
from Hi−t−k, j−s .

Now we will show that Hi j comes from Ci−t, j−s . To do this, we need to show that Ci−t, j−s = Hi−t−k, j−s − gk
and that Hi j comes from Hi−t−k, j−s via entry (i − t, j − s). By definition, Ci−t, j−s ≥ Hi−t−k, j−s − gk . Suppose
that Ci−t, j−s > Hi−t−k, j−s − gk . Then, there exists Hi−t−q, j−s for q 6= k such that Ci−t, j−s = Hi−t−q, j−s − gq .
By Lemma 1, Hi j ≥ Hi−t−q, j−s − gq+t−s + sσ . Because Hi j = Hi−t−k, j−s − gk+t−s + sσ , Hi−t−k, j−s − gk+t−s ≥

Hi−t−q, j−s − gq+t−s . Since gk+t−s = γ + (k + t − s)µ = gk + (t − s)µ and gq+t−s = gq + (t − s)µ, we get

Hi−t−k, j−s − gk ≥ Hi−t−q, j−s − gq . (3)

24 J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33

Fig. 4. Proofs of Lemmas 2–5.

By our hypothesis Ci−t, j−s > Hi−t−k, j−s − gk and the right hand side of (3) is Ci−t, j−s . Therefore Ci−t, j−s >

Ci−t, j−s , a contradiction. Hence, Ci−t, j−s = Hi−t−k, j−s − gk . Since Hi j comes from Hi−t−k, j−s via entry
(i − t, j − s), Hi j comes from Ci−t, j−s . �

Note that s in Lemma 3 is the number of σ s in the path from Ci−t, j−u to Hi j . The following lemmas provide the
range of entries of row i − t which Ci j can come from.

Lemma 4. If Ci j comes from Hi−t, j−u for u ≥ 0, there exists at least one Hi−t, j−s which Ci j comes from for some
constant 0 ≤ s ≤ t − 1.

Proof. See Fig. 4(c). Because Ci j comes from Hi−t, j−u , there exists Hi−k, j for 1 ≤ k ≤ t such that Ci j = Hi−k, j−gk
and Hi−k, j comes from Hi−t, j−u . By Lemma 2, there exists at least one Hi−t, j−s which Hi−k, j comes from for some
constant 0 ≤ s ≤ t − k ≤ t − 1. Thus, Ci j comes from Hi−t, j−s for 0 ≤ s ≤ t − 1. �

Lemma 5. If Ci j comes from Ci−t, j−u for u ≥ 1, there exists at least one Hi−t, j−s which Ci j comes from for some
constant 0 ≤ s ≤ t − 2.

Proof. See Fig. 4(d). Because Ci j comes from Ci−t, j−u , there exists Hi−k, j for 1 ≤ k ≤ t such that Ci j = Hi−k, j−gk
and Hi−k, j comes from Ci−t, j−u . Let s be the number of σ s in the path from Ci−t, j−u to Hi−k, j . Note that
0 ≤ s ≤ t − 2. First we will show that Ci j comes from Ci−t, j−s and then show that Ci j comes from Hi−t, j−s .

Since Hi−k, j comes from Ci−t, j−u and there are s σ s in the path from Ci−t, j−u to Hi−k, j , Hi−k, j comes from
Ci−t, j−s by Lemma 3. Since Ci j comes from Hi−k, j (i.e., Ci j = Hi−k, j − gk), Ci j comes from Ci−t, j−s .

Now we will show that Ci j comes from Hi−t, j−s . To do this, we need to show that Ci j comes from Hi−t+s, j and
that Hi−t+s, j comes from Hi−t, j−s . Since Hi−k, j comes from Ci−t, j−s , there exists Hi−t−p, j−s for p ≥ 1 such that

J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33 25

Fig. 5. Proof of Lemma 6.

Ci−t, j−s = Hi−t−p, j−s − gp and Hi−k, j comes from Hi−t−p, j−s via entry (i − t, j − s). Since Ci j = Hi−k, j − gk ,
we get

Ci j = Hi−t−p, j−s − gt+p−k−s + sσ − gk . (4)

On the other hand, by definition, Ci j ≥ Hi−t+s, j − gt−s and Hi−t, j−s ≥ Ci−t, j−s = Hi−t−p, j−s − gp. By Lemma 1,
Hi−t+s, j ≥ Hi−t, j−s + sσ . Thus,

Ci j ≥ Hi−t−p, j−s − gp + sσ − gt−s . (5)

Since gp + gt−s = γ + pµ + γ + (t − s)µ = γ + (t + p − k − s)µ + γ + kµ = gt+p−k−s + gk , the right hand
side of (5) is equal to the right hand side of (4) and thus all inequalities that lead to (5) become equalities. Hence,
Ci j = Hi−t+s, j − gt−s and Hi−t+s, j comes from Hi−t, j−s . Therefore Ci j comes from Hi−t, j−s . �

The following lemmas handle the case where Hi j can come from the leftmost column.

Lemma 6. If t < j ≤ m and Hi j comes from Hi−u,0 for 0 ≤ u ≤ t , Hi j comes from Hi−t, j−s for 0 ≤ s ≤ t .

Proof. We prove the lemma in two cases.
(i) Hi j = Hi−u,0 − g j−u + uσ : see Fig. 5(a). Hi j ≥ Hi−t, j−u − gt−u + uσ by Lemma 1 and Hi−u,0 = 0 from

recurrence (1). Hence,−g j−u+uσ ≥ Hi−t, j−u−gt−u+uσ , i.e., 0 ≥ Hi−t, j−u+g j−u−gt−u . However, Hi−t, j−u ≥ 0
and g j−u − gt−u ≥ 0, and thus the equality must hold. Therefore Hi j comes from Hi−t, j−u .

(ii) Hi j = Hi−u,0 − g j − gu : see Fig. 5(b). Hi j ≥ Hi−t, j − gt by Lemma 1 and Hi−u,0 = 0 from recurrence (1).
Hence, −g j − gu ≥ Hi−t, j − gt , i.e., 0 ≥ Hi−t, j + g j + gu − gt . However, Hi−t, j ≥ 0, gu ≥ 0, and g j − gt ≥ 0, and
thus the equality must hold. Therefore Hi j comes from Hi−t, j . �

Lemma 7. If 0 < j ≤ t and Hi j comes from Hi−u,0 for 0 ≤ u ≤ t , Hi j comes from Hi− j,0.

Proof. Similar to the proof of Lemma 6. �

The following lemmas handle the case where Ci j can come from the leftmost column. Since the proofs of Lemmas 8
and 9 are similar to that of Lemma 6, we omit them.

Lemma 8. If t ≤ j ≤ m and Ci j comes from Hi−u,0 for 1 ≤ u ≤ t , Ci j comes from Hi−t, j−s for 0 ≤ s ≤ t − 1.

Lemma 9. If 0 < j < t and Ci j comes from Hi−u,0 for 1 ≤ u ≤ t , Ci j comes from Hi− j−1,0.

By the lemmas above, we derive the following theorem which provides a new recurrence for an insignificant entry
Hi j .

26 J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33

Fig. 6. An example of four cases in the H table. In Case 1, we compute all the entries. In Case 2, we compute only row E1. We compute only
column E2 in Case 3. In Case 4, we compute an entry E3 and compute row E4 and column E5.

Theorem 10. Let A[i−t+1..i] be a masked region of length t. Then Hi j can be computed by the following recurrence:

Ci j =


max

{
max

0≤s≤ j−1
{Hi−t, j−s + sσ − γ − (t − s)µ},

Ci−t, j − tµ, jσ − γ − µ

}
for 1 ≤ j < t

max

{
max

0≤s≤t−1
{Hi−t, j−s + sσ − γ − (t − s)µ},

Ci−t, j − tµ

}
for t ≤ j ≤ m.

Hi j =


max

{
max

1≤s≤ j−1
{Ci−t, j−s + sσ − (t − s)µ},

jσ, Ci j , 0

}
for 1 ≤ j ≤ t

max

{
max

1≤s≤t−1
{Ci−t, j−s + sσ − (t − s)µ},

Hi−t, j−t + tσ, Ci j , 0

}
for t < j ≤ m.

Proof. If t ≤ j ≤ m, Ci j comes from Hi−t, j−s for 0 ≤ s ≤ t − 1 and Ci−t, j by Lemmas 4, 5 and 8. We need to
consider Ci−t, j separately since Lemma 5 does not cover the case where Ci j comes from Ci−t, j . If 1 ≤ j < t , Ci j
comes from Hi−t, j−s for 0 ≤ s ≤ j − 1, Ci−t, j , and Hi− j−1,0 by Lemmas 4, 5 and 9.

If t < j ≤ m, Hi j comes from Hi−t, j−s for 0 ≤ s ≤ t and Ci−t, j−s for 0 ≤ s ≤ t − 1 by Lemmas 2, 3 and 6. In
the recurrence of Hi j , the elements from Hi−t, j−s for 0 ≤ s ≤ t − 1 were replaced by Ci j because the recurrence of
Ci j includes them. If 1 ≤ j ≤ t , Hi j comes from Hi−t, j−s for 0 ≤ s ≤ j − 1, Ci−t, j−s for 0 ≤ s ≤ j − 1, and Hi− j,0
by Lemmas 2, 3 and 7. �

Suppose that B[i − t + 1..i] is a masked region of length t . The symmetric version of the above lemmas and
Theorem 10 hold. In other words, they hold if we replace Hi j by H j i and Ci j by R j i .

3.2. New algorithm for the affine gap penalty model

A straightforward method for finding an optimal local alignment of masked sequences A and B where |A| = n
and |B| = m is running the SWG algorithm in O(nm) time. We want to find the local alignment without computing
insignificant entries.

We present an algorithm for the affine gap penalty model. Our algorithm consists of the following four cases:

Case 1: Neither ai nor b j is N. Compute all these entries by the SWG algorithm.
Case 2: Only ai is N. Compute the bottom row of a block of insignificant entries.
Case 3: Only b j is N. Compute the rightmost column of a block of insignificant entries.
Case 4: Both ai and b j are N. Compute the bottom-right corner entry of a block of insignificant entries. In addition,

compute a column to the left of the block and a row on top of the block. See Fig. 6.

J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33 27

Fig. 7. (a) 1 ≤ j ≤ t . To compute Ci j , we need Hi− j−1,0 and Hi−t, j−s for 0 ≤ s ≤ j − 1 and to compute Ci, j+1, we need Hi− j−2,0 = 0
and Hi−t, j+1−s for 0 ≤ s ≤ j . (b) t < j ≤ m. To compute Ci j and Ci, j+1, we need Hi−t, j−s and Hi−t, j+1−s , respectively, for
0 ≤ s ≤ t − 1.

Fig. 6 shows an example of four cases in the H table. We explain our algorithm for Case 2 and for Case 4, since Case
3 is symmetric to Case 2.

3.2.1. Case 2
Let A[i − t + 1..i] be a masked region of length t , i.e., A[i − t + 1..i] = NN . . . N. We will show how to compute

the bottom row Hi, j−q+1.. j of a t × q block in O(q) time. To do this, we first find the relation between two adjacent
insignificant entries. Then, we define a new data structure, MQUEUE, and give an algorithm of O(q) time.

Computing the bottom row without computing other insignificant entries is possible by using the recurrences for an
insignificant entry in Theorem 10. But it still takes O(tq) time for a t × q block because it needs O(t) computations
for each Ci j and Hi j . However, we can reduce the time complexity to O(q) using some properties of the recurrences.

Two adjacent entries of C are very similar. See Fig. 7. For t < j ≤ m, Ci j and Ci, j+1 are computed as

Ci j = max
{

max
0≤s≤t−1

{Hi−t, j−s + sσ − γ − (t − s)µ}, Ci−t, j − tµ
}

,

Ci, j+1 = max
{

max
0≤s≤t−1

{Hi−t, j+1−s + sσ − γ − (t − s)µ}, Ci−t, j+1 − tµ
}

.

The changes from Ci j to Ci, j+1 are that (1) the element Hi−t, j−t+1 + (t − 1)σ − γ − µ is deleted, (2) value σ + µ

is added to all elements except the last of Ci j , (3) a new element Hi−t, j+1 − γ − tµ is inserted, (4) the element
Ci−t, j − tµ is replaced by Ci−t, j+1 − tµ. Thus Ci, j+1 can be rewritten as

Ci, j+1 = max

 max
−1≤s≤t−2

{Hi−t, j−s + sσ − γ − (t − s)µ},

Ci−t, j+1 − σ − (t + 1)µ

+ σ + µ, (6)

where max0≤s≤t−1{Hi−t, j−s + sσ − γ − (t − s)µ} also appears in Ci j . An insignificant entry Hi, j+1 can also be
rewritten as follows:

Hi, j+1 = max

 max
0≤s≤t−2

{Ci−t, j−s + sσ − (t − s)µ},

Hi−t, j+1−t + (t − 1)σ − µ, Ci, j+1 − σ − µ,−σ − µ

+ σ + µ,

where max1≤s≤t−1{Ci−t, j−s + sσ − (t − s)µ} also appears in Hi j . Similarly, for 1 ≤ j ≤ t , we can compute Ci, j+1
and Hi, j+1 using Ci j and Hi j , respectively.

We need a new data structure to find maximum values in amortized O(1) time. Because the element Hi−t, j−t+1 +

(t − 1)σ − γ −µ is deleted in recurrence (6), max0≤s≤t−1{Hi−t, j−s + sσ − γ − (t − s)µ} which is already computed
in Ci j cannot be directly used in computing Ci, j+1. However, if we know the maximum value for the range of s such
that 0 ≤ s ≤ t − 2, it can be used in Ci, j+1. We will find the maximum value using MQUEUE.

We define a specialized queue data structure, MQUEUE, that supports the following three operations:

max() : Return the maximum score among all elements in MQUEUE.

28 J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33

Fig. 8. An example of MQUEUE. (a) The list of maximum candidates is 30 → 20 → 15 → 10. (b) After insert(25), the list is modified to
30→ 25.

insert(e) : Add an element e to MQUEUE.
delete() : Remove the oldest element in MQUEUE.

The max() operation is added to the traditional queue. Instead of MQUEUE, we can use a deque with heap order [5].
Each operation of it takes O(1) worst case time. However, a simple O(1) amortized time operation is sufficient for
this case.

To obtain O(1) amortized time for each operation, MQUEUE maintains a list of maximum candidates. Maximum
candidates are defined as follows: Given a set of ordered elements, the first maximum candidate is an element that
has the maximum score in the list. If the i th maximum candidate is defined, then the (i + 1)st maximum candidate is
an element that has the maximum score in the range from the next element of the i th maximum candidate to the last
element of the list. Fig. 8(a) shows a list of maximum candidates.

The list of maximum candidates is maintained as a doubly linked list. A pointer head points to the maximum
element of MQUEUE and tail points to the last one. The important property of the list is that the scores of the
elements are in descending order.

Operation insert(e) needs to maintain the list property. After adding an element e, the score of e is compared
with the maximum candidates from tail until it meets the score that is larger than the score of e or the list becomes
empty. When it meets a larger one, they link each other and tail points to e. When the list becomes empty, we make a
new list which has one element e and head and tail point to e. Fig. 8(b) shows an example of insert(e).

Lemma 11. Operation insert(e) takes amortized O(1) time.

Proof. If there are c comparisons in one insert(e), the number of elements in the list of maximum candidates is
reduced by c − 2. Hence, each insert takes amortized O(1) time. �

Operation delete() removes the oldest element from MQUEUE. If head points to the oldest element, then head is
set to the next element in the list and we remove the oldest element. Operation max() returns the score of the element
which is pointed to by head.

Fig. 9 shows the algorithm for Case 2 with A[i − t + 1..i] and B[1..q] where q > t . The algorithm consists of two
for loops. The first for loop computes Hi j for 1 ≤ j ≤ t and the second for loop computes Hi j for t +1 ≤ j ≤ q. We
use two MQUEUEs, one for Ci j and the other for Hi j . In addition, we compute Ri j for 1 ≤ j ≤ q using recurrence
(2) because Riq can be used in Case 4 of the block which is to the right of the current block.

3.2.2. Case 4
We will show how to compute the bottom-right corner entry Hi j of a t × s block and how to compute the row on

top of the block and the column to the left of the block. See Fig. 6. Let A[i − t + 1..i] and B[j − s + 1.. j] be masked
regions, i.e., A[i − t + 1..i] = NN . . . N and B[j − s + 1.. j] = NN . . . N.

Lemma 12. If Hi j comes from Ci−t, j−u for 1 ≤ u ≤ min{s, t} − 1, Hi j comes from Ci−t, j or Hi−t, j−l for
0 ≤ l ≤ min{s, t} − 2.

Proof. Because Hi j comes from Ci−t, j−u , there exists Hi−t−k, j−u for k ≥ 1 such that Ci−t, j−u = Hi−t−k, j−u − gk
and Hi j = Hi−t−k, j−u+uσ−gk+t−u . If k > u, then Hi−t−k, j−u+uσ ≤ Hi−t−k+u, j and Hi−t−k+u, j−gk−u ≤ Ci−t, j ,
and thus Hi j ≤ Ci−t, j − tµ. However, Hi j ≥ Ci−t, j − tµ by definition, and hence Hi j comes from Ci−t, j . See
Fig. 10(a). If 1 ≤ k ≤ u, then Hi−t−k, j−u+kσ ≤ Hi−t, j−u+k and thus Hi j ≤ Hi−t, j−u+k+(u−k)σ−gt+k−u . Because
Hi j ≥ Hi−t, j−u+k+(u−k)σ−gt+k−u by Lemma 1, Hi j comes from Hi−t, j−u+k . Note that 0 ≤ u−k ≤ min{s, t}−2.
See Fig. 10(b). �

J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33 29

1 MQUEUE cmq, hmq
2 cut←−σ − µ

3 le← σ + µ

4 for j ← 1 to t
5 cut← cut + σ + µ

6 cmq.insert(Hi−t, j − γ − tµ− cut),
7 hmq.insert(Ci−t, j − tµ− cut)
8 le← le − µ

9 Ci j ← max(cmq.max(), Ci−t, j − tµ− cut)+ cut
10 Hi j ← max(max(le, hmq.max(),−cut)+ cut, Ci j)

11 Ri j ← max(Ri, j−1 − µ, Hi, j−1 − γ − µ)

12 end for
13 for j ← t + 1 to q
14 cut← cut + σ + µ

15 cmq.delete(),
16 cmq.insert(Hi−t, j − γ − tµ− cut),
17 hmq.delete()
18 hmq.insert(Ci−t, j − tµ− cut)
19 Ci j ← max(cmq.max(), Ci−t, j − tµ− cut)+ cut
20 Hi j ← max(max(hmq.max(),−cut)+ cut, Hi−t, j−t + tσ, Ci j)

21 Ri j ← max(Ri, j−1 − µ, Hi, j−1 − γ − µ)

22 end for

Fig. 9. Algorithm for Case 2.

Fig. 10. Proof of Lemma 12.

Lemma 13. If Hi, j+r for 1 ≤ r ≤ t − 2 comes from Ci−t, j+r−u for r + 1 ≤ u ≤ min{min{s, t}− 1+ r, t − 1}, Hi, j+r
comes from Ci−t, j or Hi−t, j+r−l for r ≤ l ≤ min{min{s, t} − 2+ r, t − 2}. (See Fig. 11.)

Proof. Similar to the proof of Lemma 12. �

The symmetric versions of the above lemmas hold.
Lemma 12 shows that we do not need Ci−t, j−k for 1 ≤ k ≤ min{s, t} − 1 to compute the bottom-right corner

entry Hi j . Thus, by Theorem 10 and Lemma 12, in order to compute Hi j we need Hi−t, j−k for 0 ≤ k ≤ t , Ci−t, j and
Ci−t, j−k for min{s, t} ≤ k ≤ t − 1. Since Ci−t, j is already computed in Case 3 of the block which is on top of the
current block, and Hi−t, j−k for min{s, t} ≤ k ≤ t and Ci−t, j−k for min{s, t} ≤ k ≤ t − 1 are also already computed
in Case 2 of the block which is to the left of the current block, we will show below how to compute Hi−t, j−k for
1 ≤ k ≤ min{t, s} − 1.

30 J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33

Fig. 11. Lemma 13.

Fig. 12. Two MQUEUEs for Hi−t, j and Hi−t, j−1.

For 1 ≤ k ≤ min{t, s} − 1, we compute Hi−t, j−k (row E4 in Fig. 6) using the MQUEUE that was constructed
to compute Hi−t, j in Case 3, i.e., we compute Hi−t, j−k from right to left. See Fig. 12. The difference between two
MQUEUEs for Hi−t, j and Hi−t, j−1 is that the oldest element, Ri−t−s+1, j−s , in the MQUEUE for Hi−t, j is deleted.
Thus, after one delete, we get the MQUEUE for Hi−t, j−1. Of course, to compute Hi−t, j−1, µ is added to max.
Similarly, we can compute Hi−k, j−s for 1 ≤ k ≤ min{t, s} − 1 (column E5 in Fig. 6).

The entries in row E4 of Fig. 6 will be used in Case 2 of the block which is to the right of the current block. To
compute the entry Hi, j+1 in Case 2, we need Hi−t, j+1−t.. j+1 and Ci−t, j+1−t+1.. j+1 among which Hi−t, j+1−t.. j and
Ci−t, j+1−t+1.. j are the entries that lie outside of the block of Case 2. We already have computed Hi−t, j+1−t.. j in Case
4 of the current block. For C , we do not need Ci−t, j+1−k for 2 ≤ k ≤ min{min{s, t}, t − 1} by Lemma 13 and already
have others. Similarly, the entries in column E5 of Fig. 6 will be used in Case 3 of the block which is below the current
block.

3.3. Analysis

Consider the time complexity for each of the four cases. In Case 1, the algorithm takes O(pq) time for a p × q
block because we use the SWG algorithm to compute Hi j . Since Case 3 is symmetric to Case 2, we consider Cases 2
and 4.

In Case 2, the algorithm takes O(q) time for a t×q block. There are q insert, q max and q−t delete operations.
Because max and delete take constant time, q max and q− t delete operations take O(q) time. Since insert takes
amortized O(1) time by Lemma 11, q insert operations also take O(q) time. Hence, the total time for Case 2 is
O(q).

In Case 4, the algorithm takes O(min{t, s}) time for a t × s block. Because it computes one row and one column
with min{t, s} entries and the operations of MQUEUE take amortized O(1) time, it takes O(min{t, s}) time.

Now consider the worst case time complexity of our algorithm. The worst case is that the lengths of all masked
regions of A and B are the same (say, t). Let v and w be the numbers of masked regions of A and B, respectively, and
let T and S be the total numbers of N in A and B, respectively (i.e., T = vt , S = wt). Case 1 covers (n − T)(m − S)

entries and it takes O((n− T)(m− S)) time. For one masked region of A, Case 2 covers t × (m− S) entries and Case
4 covers t × S entries. Thus we compute (m − S) + S = m entries and it takes O(m) time. Similarly, it takes O(n)

J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33 31

time for one masked region of B. Since there are v masked regions in A and w in B, the time complexity for Cases 2,
3 and 4 is O(vm + wn). Therefore, the total time complexity is O((n − T)(m − S)+ vm + wn).

3.4. Algorithm for the linear gap penalty model

Because the linear gap penalty model is a special case of the affine gap penalty model, it can be solved by the
algorithm for the affine gap penalty model. From Lemmas 2, 6 and 7, however, we derive the following theorem
which provides a simpler recurrence for an insignificant entry Hi j .

Theorem 14.

Hi j =


max

{
jσ, max

0≤s≤ j−1
{Hi−t, j−s + sσ − (t − s)µ}, 0

}
for 1 ≤ j ≤ t

max
{

max
0≤s≤t
{Hi−t, j−s + sσ − (t − s)µ}, 0

}
for t < j ≤ m.

Using the new recurrence of Theorem 14, we can give a local alignment algorithm for the linear gap penalty model
that is similar to the algorithm for the affine gap penalty model, and the time complexity is also O((n− T)(m − S)+

vm + un).

4. Global alignment algorithm

In this section we present an algorithm that finds an optimal global alignment without computing insignificant
entries. We first give a new recurrence for insignificant entries Hi j , and then give an O((n − T)(m − S)+ vm +wn)

time algorithm.
We provide some lemmas to make a new recurrence for an insignificant entry Hi j for an optimal global alignment.

Lemmas 1–5 still hold for a global alignment. However, because there are some differences between the recurrences
for a local alignment and a global alignment, we cannot use Lemmas 6 to 9. The following lemmas handle the case
where Hi j can come from the leftmost column.

Lemma 15. If t < j ≤ m and Hi j comes from Hi−u,0 for 0 ≤ u ≤ t , Hi j comes from Hi−t, j−t or Hi,0.

Proof. We prove the lemma in three cases.
(i) Hi j = Hi−u,0 − g j−u + uσ and σ + 2µ ≥ 0: see Fig. 13(a). Hi j ≥ Hi−t,0 − g j−t + tσ by Lemma 1 and

Hi−u,0 = Hi−t,0− (t − u)µ by definition. Hence, −(t − u)µ− g j−u + uσ ≥ −g j−t + tσ , i.e., 0 ≥ (t − u)(σ + 2µ).
However, t ≥ u and σ + 2µ ≥ 0, and thus the equality must hold. Therefore Hi j = Hi−t,0 − g j−t + tσ . By the way,
by Lemma 1, Hi−t, j−t ≥ Hi−t,0− γ − (j − t)µ and Hi j ≥ Hi−t, j−t + tσ . Then, Hi j ≥ Hi−t,0− γ − (j − t)µ+ tσ .
Thus the equality must hold and therefore Hi j comes from Hi−t, j−t .

(ii) Hi j = Hi−u,0−g j−u+uσ and σ+2µ < 0: see Fig. 13(b). Hi j ≥ Hi,0−g j by Lemma 1 and Hi,0 = Hi−u,0−uµ

by definition. Hence, −g j−u + uσ ≥ −uµ− g j , i.e., u(σ + 2µ) ≥ 0. However, σ + 2µ < 0 and u ≥ 0, and thus the
equality holds only when u = 0. Therefore Hi j comes from Hi,0.

(iii) Hi j = Hi−u,0 − g j−u + uσ : see Fig. 13(c). Hi j ≥ Hi,0 − g j by Lemma 1 and Hi,0 = Hi−u,0 − uµ by
definition. Hence, −gu ≥ −uµ, i.e., 0 ≥ γ . However, γ ≥ 0 and thus the equality must hold. Therefore Hi j comes
from Hi,0. �

Lemma 16. If 0 < j ≤ t and Hi j comes from Hi−u,0 for 0 ≤ u ≤ t , Hi j comes from Hi− j,0 or Hi,0.

Proof. Similar to the proof of Lemma 15. �

The following lemmas handle the case where Ci j can come from the leftmost column. Since the proofs of
Lemmas 17 and 18 are similar to that of Lemma 15, we omit them.

Lemma 17. If t ≤ j ≤ m and Ci j comes from Hi−u,0 for 1 ≤ u ≤ t , Ci j comes from Hi−t, j−k for 0 ≤ k ≤ t − 1.

Lemma 18. If 0 < j < t and Ci j comes from Hi−u,0 for 1 ≤ u ≤ t , Ci j comes from Hi− j−1,0 or Hi−t, j−k for
0 ≤ k < j .

32 J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33

Fig. 13. Proof of Lemma 15.

By the above lemmas, we derive the following theorem which provides a new recurrence for an insignificant entry
Hi j .

Theorem 19. Let A[i−t+1..i] be a masked region of length t. Then Hi j can be computed by the following recurrence:

Ci j =


max

{
max

0≤s≤ j−1
{Hi−t, j−s + sσ − γ − (t − s)µ},

Ci−t, j − tµ, Hi− j−1,0 + jσ − γ − µ

}
for 1 ≤ j < t

max

{
max

0≤s≤t−1
{Hi−t, j−s + sσ − γ − (t − s)µ},

Ci−t, j − tµ

}
for t ≤ j ≤ m.

Hi j =


max

{
max

1≤s≤ j−1
{Ci−t, j−s + sσ − (t − s)µ},

Hi− j,0 + jσ, Ci j , Hi,0 − γ − jµ

}
for 1 ≤ j ≤ t

max

{
max

1≤s≤t−1
{Ci−t, j−s + sσ − (t − s)µ},

Hi−t, j−t + tσ, Ci j , Hi,0 − γ − jµ

}
for t < j ≤ m.

Using the recurrence of Theorem 19, we can give a global alignment algorithm for the affine gap penalty model.
The algorithm is essentially the same as the local alignment algorithm, and the time complexity is O((n − T)(m −
S)+ vm + un).

5. Conclusion

In this paper we have presented an efficient algorithm that finds an optimal local alignment by skipping masked
regions of sequences. The algorithm is based on a new recurrence for an insignificant entry and a data structure
MQUEUE. We also gave an efficient global alignment algorithm.

Our technique of skipping some regions using recurrences for insignificant entries can be applicable to other
problems [2] where dynamic programming tables are divided into blocks.

References

[1] A. Batzoglou, D.B. Jaffe, K. Stanley, J. Butler, et al., ARACHNE: A whole-genome shotgun assembler, Genome Research 12 (2002) 177–189.
[2] M. Crochemore, G.M. Landau, B. Schieber, M. Ziv-Ukelson, in: C.S. Iliopoulos, T. Lecroq (Eds.), Re-use Dynamic Programming for

Sequence Alignment: An Algorithmic Toolkit, String Algorithmics, King’s College London Publications, 2005, pp. 19–59.
[3] M. Crochemore, G.M. Landau, M. Ziv-Ukelson, A subquadratic sequence alignment algorithm for unrestricted scoring matrices, SIAM

Journal on Computing 32 (6) (2003) 1654–1673.
[4] B. Ewing, L. Hillier, M.C. Wendl, P. Green, Base-calling of automated sequencer traces using Phred. I. Accuracy assessment, Genome

Research 8 (1998) 175–185.
[5] H. Gajewska, R.E. Tarjan, Deques with heap order, Information Processing Letters 22 (1986) 197–200.
[6] GCG Documentation, http://www-igbmc.u-strasbg.fr/BioInfo/GCGdoc/Doc.html.
[7] O. Gotoh, An improved algorithm for matching biological sequences, Journal of Molecular Biology 162 (1982) 705–708.

http://www-igbmc.u-strasbg.fr/BioInfo/GCGdoc/Doc.html

J.W. Kim, K. Park / Theoretical Computer Science 370 (2007) 19–33 33

[8] P. Green, PHRAP, http://www.phrap.org.
[9] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, New York, 1997.

[10] J.W. Kim, K. Roh, K. Park, et al., MLP: Mate-based Layout with PHRAP, in: 7th Annual Inter. Conference on Research in Computational
Molecular Biology — Currents in Computational Molecular Biology, 2003, pp. 65–66.

[11] E.W. Myers, G.G. Sutton, A.L. Delcher, I.M. Dew, D.P. Fasulo, et al., A whole-genome assembly of Drosophila, Science 287 (2000)
2196–2204.

[12] NC-UIB, Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1985, The European Journal of
Biochemistry 150 (1985) 1–5.

[13] NCBI, http://www.ncbi.nlm.nih.gov.
[14] NCBI, ftp://ftp.ncbi.nlm.nih.gov/pub/TraceDB.
[15] A.F.A. Smit, R. Hubley, P. Green, RepeatMasker Open-3.0, 1996–2004, http://www.repeatmasker.org.
[16] T.F. Smith, M.S. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology 147 (1981) 195–197.
[17] J. Wang, G.K. Wong, P. Ni, et al., RePS: A sequence assembler that masks exact repeats identified from the shotgun data, Genome Research

12 (2002) 824–831.
[18] M.S. Waterman, Introduction to Computational Biology, Chapman & Hall, London, 1995.

http://www.phrap.org
http://www.ncbi.nlm.nih.gov
ftp://ftp.ncbi.nlm.nih.gov/pub/TraceDB
http://www.repeatmasker.org

	An efficient alignment algorithm for masked sequences
	Introduction
	Preliminaries
	Local alignments
	Global alignments
	Scoring matrix

	Local alignment algorithm
	New recurrence for an insignificant entry
	New algorithm for the affine gap penalty model
	Case 2
	Case 4

	Analysis
	Algorithm for the linear gap penalty model

	Global alignment algorithm
	Conclusion
	References

