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Abstract

A sequence in the additive group Zn of integers modulo n is called n-zero-free if it does not contain subsequences with length n and
sum zero. The article characterizes the n-zero-free sequences in Zn of length greater than 3n/2−1. The structure of these sequences
is completely determined, which generalizes a number of previously known facts. The characterization cannot be extended in the
same form to shorter sequence lengths. Consequences of the main result are best possible lower bounds for the maximum multiplicity
of a term in an n-zero-free sequence of any given length greater than 3n/2 − 1 in Zn, and also for the combined multiplicity of the
two most repeated terms. Yet another application is finding the values in a certain range of a function related to the classic theorem
of Erdős, Ginzburg and Ziv.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Erdős–Ginzburg–Ziv theorem [4] states that each sequence of length 2n − 1 in the cyclic group of order n has
a subsequence of length n and sum zero. This article characterizes all sequences with length greater than 3n/2 − 1 in
the same group that do not satisfy the conclusion of the celebrated theorem.

In the sequel, the cyclic group of order n is identified with the additive group Zn = Z/nZ of integers modulo n. A
sequence in Zn is called a zero sequence or a zero sum if its sum is the zero element of Zn. A sequence is zero-free if it
does not contain a nonempty zero subsequence. Sequences in Zn without zero subsequences of length n will be called
n-zero-free.

The n-zero-free sequences in Zn were given considerable attention. Here we mention only results most closely
related to our topic. Yuster and Peterson [11] and, independently, Bialostocki and Dierker [1], determined all n-zero-
free sequences of length 2n − 2 in Zn. These are the sequences containing exactly two distinct elements a and b of Zn,
each of them repeated n − 1 times, such that a − b generates Zn. Ordaz and Flores [9] solved the same problem for
length 2n−3. Again, two distinct terms have high combined multiplicity (details can be found in Section 4). In general,
the combined multiplicity of the two most represented terms was intensively studied. Gao [6] proved a statement to
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this effect for n-zero-free sequences of length roughly greater than 7n/4. A recent work of Gao et al. [8] considered
the same question in the case of a prime n, for length roughly greater than 5n/3.

Based on the main theorem in [6], Bialostocki et al. [2] obtained an explicit characterization of the n-zero-free
sequences in Zn with length greater than or equal to 2n − 2 − �n/4�. The core of their proof is essentially present
already in the article of Gao and Hamidoune [7].

Our goal is to characterize the n-zero-free sequences in Zn of length greater than 3n/2 − 1. The argument relies on
a key structural result from [10] about zero-free sequences of length greater than n/2 in Zn. The description obtained
generalizes the one from [2] and cannot be extended in the same shape to shorter sequences. In this sense the range of
the characterization is optimal.

Let a be an integer coprime to n and b an element of Zn. The function x �→ ax + b from Zn into itself will be
called an affine map. In particular the translations x �→ x + b are affine maps, for each b ∈ Zn. Suppose that a
sequence � in Zn can be obtained from a sequence � through an affine map and rearrangement of terms. Then we say
that � is similar to � and write � ∼ �. Clearly ∼ is an equivalence relation. Affine maps preserve zero sums of length
n and do not bring in new ones. So it is usual not to distinguish between similar sequences in questions involving
n-term zero subsequences. Our characterization will be up to similitude, i.e. up to affine maps and rearrangement
of terms.

If a ∈ Zn, let a denote the unique integer in [1, n] that belongs to the congruence class a modulo n. We call a the least
positive representative of a. For a sequence � in Zn we denote by � the sequence of its least positive representatives,
and by L(�) the sum of �.

The sequences considered are written multiplicatively, and multiplicities of sequence terms are indicated by using
exponents. The length of the sequence � is denoted by |�|. The union of two sequences � and �, denoted � ∪ �, is the
sequence formed by appending the terms of � to �. Also, 1 − � is the sequence obtained by replacing each term b of �
by 1 − b.

Now the main result in the article, Theorem 5, can be stated as follows:

A sequence of length greater than 3n/2 − 1 in Zn is n-zero-free if and only if it is similar to the union of two
sequences � and � in Zn such that L(�) < n and L(1 − �) < n.

Once such a characterization is available, certain basic questions about sufficiently long n-zero-free sequences in
cyclic groups receive satisfactory answers.

The preliminaries needed for the key proof are included in Section 2. The main result is proven in Section 3. It is
preceded by some properties of sequences of the form � ∪ �, where � and � are sequences in Zn satisfying L(�) < n

and L(1 − �) < n. In Section 4 we study the maximum multiplicity of a term in an n-zero-free sequence of length
n − 1 + k, where n/2 < k < n, and also the combined multiplicity of the two most repeated terms. Best possible lower
bounds are established in both cases. The main theorem enables us to determine, in Section 5, the values in a certain
range of a function related to a variant of the Erdős–Ginzburg–Ziv theorem.

2. Preliminaries

For sequences � and � in Zn, we say that � is equivalent to � if � can be obtained from � through multiplication by an
integer coprime to n and rearrangement of terms. Such multiplication is an affine map preserving all zero sums in Zn,
not just the ones of length n. In particular equivalent sequences are similar. Our characterization rests on the following
result from [10]:

Theorem 1. Each zero-free sequence of length greater than n/2 in the cyclic group Zn is equivalent to a sequence
whose sum of the least positive representatives is less than n.

A restatement of a fact from [5] is also used in the main proof.

Proposition 2. A sequence in an abelian group of order n is such that the multiplicity of each term is at most the
multiplicity of 0. Then each subsequence sum of length greater than n equals a subsequence sum of length exactly n.

One more statement is necessary for the main argument.
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Proposition 3. Let � be a sequence with positive integer terms of length � and sum S, where 2� > S. Then:

(a) � contains at least 2� − S terms equal to 1;
(b) each integer in the interval [2�−S, S] is representable as the sum of a subsequence of � with length at least 2�−S.

Proof. Part (a) is straightforward. If � contains x terms equal to 1 then each of the remaining � − x terms is at least
2, hence S�x + 2(� − x) = 2� − x. This implies x�2� − S. For part (b), fix 2� − S ones in �. The remaining
� − (2� − S) = S − � terms add up to S − (2� − S) = 2(S − �), so their average is 2. Label these terms a1, . . . , aS−�,
assuming that 1�a1 � · · · �aS−�. Due to this nondecreasing order, the sequence a1, (a1 +a2)/2, (a1 +a2 +a3)/3, . . .

of arithmetic means is nondecreasing, hence these means are all at most 2. In other words, a1 + · · · + ai �2i for all
i = 1, . . . , S − �.

Suppose that b1, . . . , bk are positive integers such that b1 +· · ·+bi �2i for all i =1, . . . , k. Denoting Sk =∑k
i=1bi ,

we prove by induction on k that the sumset of the sequence 1b1 . . . bk is {1, 2, . . . , Sk + 1}. By sumset we mean the set
of integers representable as a nonempty subsequence sum. The base k = 1 is clear. For the inductive step, let �k−1 and
�k be the sumsets of 1b1 . . . bk−1 and 1b1 . . . bk−1bk , respectively. Now �k−1 = {1, 2, . . . , Sk−1 + 1} by the induction
hypothesis, hence �k = {1, 2, . . . , Sk−1 + 1} ∪ {bk, bk + 1, . . . , bk + Sk−1 + 1}. Since bk + Sk−1 = Sk , it suffices to
check that bk �Sk−1 +2 which is equivalent to Sk �2Sk−1 +2. The latter is true as 2Sk−1 +2�2(k −1)+2=2k�Sk .
The induction is complete.

Going back to the proof of (b), we infer from the previous paragraph that the sequence 1a1 . . . aS−� has sumset
{1, 2, . . . , 2(S − �) + 1}. Take an arbitrary x ∈ [2� − S, S] and set y = x − (2� − S − 1). Since 1�y�2(S − �) + 1,
one can express y as a nonempty subsequence sum of 1a1 . . . aS−�. In view of (a), adding 2� − S − 1 to both sides of
this representation shows that x equals the sum of at least 2� − S terms of the original sequence �. �

3. The main result

We are about to characterize all sufficiently long n-zero-free sequences in Zn. Up to similitude, a sequence of length
greater than 3n/2 − 1 is n-zero-free if and only if it can be divided into two sequences � and � satisfying L(�) < n and
L(1 − �) < n. (Recall that L(�) denotes the sum of the least positive representatives of the sequence �.) There exist
sequences of any length less than 2n−1 that are “separable” in the sense just described. We discuss them before the main
theorem in order to indicate that most of their basic properties do not depend on whether or not the sequence is “long.”

A couple of technical remarks will be necessary. Let � and � be sequences in Zn such that L(�) < n and L(1−�) < n.
Because 0 = n, note that a 	= 0 for a ∈ � and b 	= 1 for b ∈ �. We will need the observations that

−b = n − b and 1 − b = 1 + −b for each b ∈ Zn, b 	= 0. (1)

By (1), for each sequence � in Zn one can write

L(1 − �) =
∑

b∈�,b 	=0

−b + |�|. (2)

In what follows, the empty sequence is assumed to have sum 0, both in Z and in Zn.

Proposition 4. Let n and k be integers such that 0 < k < n. Suppose that the sequences � and � in Zn satisfy the
conditions |�| + |�| = n − 1 + k, L(�) < n and L(1 − �) < n. Then:

(a) The union � ∪ � is n-zero-free.
(b) k� |�| < n, k� |�| < n and b − a�k for all a ∈ �, b ∈ �. In particular a 	= b for all a ∈ �, b ∈ �.
(c) The multiplicities u and v of 1 and 0 in � ∪ � satisfy

u + v�2k, max(u, v)�k, min(u, v)�2k − n + 1.

The equality u + v = 2k is attained if and only if � = 12p−n+12n−1−p and � = 02q−n+1(−1)n−1−q , for integers
p and q such that (n − 1)/2�p < n, (n − 1)/2�q < n and p + q = n − 1 + k. The equality max(u, v) = k is
attained if and only if n and k have different parity and � = 1k2(n−1−k)/2, � = 0k(−1)(n−1−k)/2.

(d) For k�(n − 1)/2, the highest multiplicity of a term in � ∪ � is max(u, v).
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Proof. (a) Consider a zero subsequence � of �∪�. Let � contain r terms a1, . . . , ar from �, s nonzero terms b1, . . . , bs

from �, and several zeros, from � again. Because the sum of � is zero in Zn, the integers
∑r

i=1 ai and
∑s

j=1 −bj are
congruent modulo n. Also 0�

∑r
i=1 ai �L(�) < n and, by (2),

0�
s∑

j=1

−bj �
∑

b∈�,b 	=0

−b = L(1 − �) − |�| < n − |�|�n.

Hence
∑r

i=1 ai =∑s
j=1 −bj . Therefore, r �

∑r
i=1 ai =∑s

j=1 −bj < n−|�|, implying r +|�| < n. Since |�|�r +|�|,
we infer that � ∪ � is n-zero-free.

(b) The first two inequalities are immediate, because |�|+|�|=n−1+k, |�|�L(�) < n and |�|=|1−�|�L(1−�) < n.
To show that b − a�k for a ∈ � and b ∈ �, denote M = maxa∈� a + maxb∈� 1 − b. Then

2(n − 1)�L(�) + L(1 − �)�M + (|�| − 1) + (|�| − 1) = M + n − 3 + k.

This yields M �n + 1 − k; thus a + 1 − b�n + 1 − k for all a ∈ �, b ∈ �. If b 	= 0 then 1 − b = 1 + −b = 1 + n − b

by (1), so a + 1 − b�n + 1 − k becomes b − a�k. The same conclusion holds if b = 0, as then b = n, 1 − b = 1.
(c) We have n − 1�L(�)�u + 2(|�| − u) = 2|�| − u, since a�2 for a 	= 1. Similarly, 1 − b�2 for b 	= 0, so that

n−1�L(1−�)�v+2(|�|−v)=2|�|−v. Adding up yields 2(n−1)�2(|�|+|�|)− (u+v)=2(n−1+k)− (u+v).
It follows that u + v�2k, so max(u, v)�k. Clearly max(u, v)�n − 1 by (b), which implies min(u, v)�2k − n + 1.

The equality u+v=2k occurs if and only if n−1=L(�)=2|�|−u and n−1=L(1−�)=2|�|−v. These conditions
imply u = 2|�| − n + 1, v = 2|�| − n + 1; also a = 2 for a ∈ �, a 	= 1 and 1 − b = 2 for b ∈ �, b 	= 0. In particular
|�|�(n − 1)/2, |�|�(n − 1)/2. So setting p = |�|, q = |�| and taking (b) into account, we obtain (n − 1)/2�p < n,
(n− 1)/2�q < n, p + q =n− 1 + k and �= 12p−n+12n−1−p, �= 02q−n+1(−1)n−1−q . The converse is easy to check;
we note only that the last two sequences are well defined whenever (n − 1)/2�p < n, (n − 1)/2�q < n.

If max(u, v) = k then u = v = k in view of u + v�2k, so u + v = 2k. The conclusions of the last paragraph imply
�=1k2(n−1−k)/2, �=0k(−1)(n−1−k)/2. These sequences are well-defined only if k /≡ n (mod 2). The converse is clear.

(d) We have u+v�2k by (c), so the number of terms different from 1 and 0 in �∪� is at most (n−1+k)−2k=n−1−k.
Now it suffices to observe that n − 1 − k�k for k�(n − 1)/2, and that max(u, v)�k by (c). �

One can see that sequences “separable” in the sense of Proposition 4 are not just n-zero-free but have an interesting
general structure. This is unexpected at first glance as � and � do not seem to be related in any way. While the properties
listed in Proposition 4 are fairly simple to derive, it is less trivial to establish that each sufficiently long n-zero-free
sequence in Zn is “separable.” The next theorem proves that length greater than 3n/2 − 1 is enough to guarantee this.
Moreover, shorter n-zero-free sequences are not necessarily “separable.” These conclusions form the essential part of
the article.

Theorem 5. A sequence of length greater than 3n/2 − 1 in the cyclic group Zn does not contain an n-term zero
subsequence if and only if it is similar to the union of two sequences � and � in Zn such that

L(�) < n and L(1 − �) < n.

Proof. The sufficiency follows from Proposition 4(a). For the necessity, let � be an n-zero-free sequence of length
greater than 3n/2 − 1 in Zn. Translations in Zn do not affect sums of length n, so one may assume that 0 is a term
of � with maximum multiplicity v. Then Proposition 2 shows that each zero subsequence of � has length less than n.
In particular v < n.

Select a zero subsequence � of � with nonzero terms and of maximum length; � may be the empty sequence. This
choice implies that the remaining nonzero terms of � form a zero-free sequence �. By the remark above, the lengths
of � and � satisfy |�| < n − v and |�| > (3n/2 − 1) − (n − 1) = n/2. Therefore Theorem 1 applies to the zero-free
sequence �.

Hence multiplying � by a certain integer coprime to n yields an equivalent sequence with sum of the least positive
representatives less than n. We multiply by the same integer all remaining terms of �, which preserves the zero sums of
any length. So there is no loss of generality in assuming that �= 0v��, where � is a zero subsequence of � with nonzero
terms and of maximum length, and � is a zero-free sequence of length greater than n/2 satisfying L(�) < n.
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Let � = 1wb1 . . . bq where b1, . . . , bq are all terms of � different from 1. The following inequality stronger than
L(�) < n implies the conclusion directly:

L(�) +
q∑

j=1

−bj < n. (3)

Indeed, assume (3) is true, and let � = 1w�, � = 0vb1 . . . bq . Then � = � ∪ �; in addition, L(�) < n and L(1 − �) < n.
Firstly, w ≡ ∑q

j=1 −bj (mod n), since � has sum zero.Also 0�
∑q

j=1−bj < n by (3), and clearly 0�w < n. Therefore

w = ∑q
j=1−bj . So (3) can be written as L(�) + w < n, which is the inequality L(�) < n. Furthermore, we obtain

|�| = w + q = ∑q
j=1−bj + q, and because |�| < n − v, it follows that

∑q
j=1−bj + q < n − v. This is the same as∑

b∈�,b 	=0−b + |�| < n. By (2), the latter means that L(1 − �) < n .
So it suffices to prove (3) which is clear if � is the empty sequence. Hence let � 	= ∅, implying q �1 (� cannot have

only terms equal to 1). For the sake of clarity, denote |�|=� > n/2, L(�)=S < n and −bj =vj , j =1, . . . , q. Note that
2� − S�2� − (n − 1)�2 as � > n/2. Thus, Proposition 3 applies to the sequence � of the least positive representatives
of �. Also, 1�vj < n − 1 by the choice of b1, . . . , bq . The proof of (3) is based on the following observation:

Suppose that m terms vj1 , . . . , vjm of the sequence v1 . . . vq are such that the integer T = n − (vj1 + · · · + vjm)

satisfies 1 < T �S. Then m�2� − S if 2� − S�T �S and m�T if 1 < T < 2� − S.

Indeed, if T represents the congruence class t modulo n then t = ∑m
i=1bji

. Let 2� − S�T �S. By Proposition 3,
there is a subsequence � of � with length at least 2� − S such that T = ∑

c∈�c. Hence
∑

c∈�c = t = ∑m
i=1bji

. This
implies m� |�|�2� − S as m < |�| would yield a zero subsequence of � with nonzero terms which is longer than �,
obtained upon replacing bj1 . . . bjm by �. Similarly, if 1 < T < 2� − S then T can be expressed as the sum of T terms
equal to 1 of �. (There are at least 2� − S ones in � by Proposition 3.) Now the same argument as above gives m�T ,
by the maximum choice of �.

It follows from the observation that n − vj > S, j = 1, . . . , q. Indeed, if 1 < n − vj �S for some j then 1�2� − S

or 1�n − vj , both of which are not true. Therefore 1�vj < n − S, j = 1, . . . , q.
Passing on to the proof of (3), suppose that it is false. Then there are subsequences of v1 . . . vq whose sum is at

least n − S, for instance v1 . . . vq itself. Without loss of generality, let v1 . . . vm be such a (nonempty) subsequence
of minimum length m. So T = n − ∑m

j=1vj �S but T + vj > S for all j = 1, . . . , m. Note that T > 1 in view of the
previous paragraph, because vm < n − S yields T > S − vm > S − (n − S) = 2S − n�2� − n�1.

Let 2� − S�T �S. Then m�2� − S by the observation above. Hence

S + 1�n −
m−1∑
j=1

vj �n − (m − 1)�n − (2� − S − 1) = (n − 2�) + S + 1,

implying n�2� which is a contradiction.
Next, let 1 < T < 2� − S. Now the observation gives m�T . Recalling that T + vj > S, we have vj �S + 1 − T > 0

for j = 1, . . . , m, implying

n = T +
m∑

j=1

vj �T + m(S + 1 − T )�T + T (S + 1 − T ) = T (S + 2 − T ).

Consider the quadratic function g(t) = t2 − (S + 2)t + n. We obtained g(T )�0 for some T ∈ {2, . . . , 2� − S − 1}.
But the maximum of g on {2, . . . , 2�−S − 1} is g(2)=n− 2S, and n− 2S�n− 2� < 0. This is a contradiction again;
claim (3) follows, concluding the main argument. �

Theorem 5 establishes the desired characterization, in a form hopefully providing general insight into the structure
of n-zero-free sequences. On the other hand, the practically important consequence of the theorem is that each
n-zero-free sequence of length n − 1 + k in Zn, where n/2 < k < n, is similar to a sequence satisfying the conclusions
of Proposition 4. Both Theorem 5 and Proposition 4 are needed for a really clear picture of the “long” n-zero-free
sequences in Zn. The next observation adds one more detail to this picture.
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The affine map x �→ 1 − x interchanges 0 and 1 and transforms arbitrary sequences � and � into �1 = 1 − � and
�1 = 1 − �, respectively. If the inequalities L(�) < n and L(1 − �) < n hold true, they can be written as L(1 − �1) < n

and L(�1) < n. So if a sequence � is similar to � ∪ �, it is also similar to �1 ∪ �1, a sequence with all properties from
Proposition 4, in which the multiplicities of 0 and 1 are interchanged. Therefore one can assume additionally that u�v.
For k�(n − 1)/2, Proposition 4(d) then implies that 0 is a term of highest multiplicity in � ∪ �.

The conditions L(�) < n and L(1 − �) < n can be expanded to obtain an explicit form of the characterization
established in Theorem 5. Up to certain details, this explicit description has the same shape as the one in [2] of the
n-zero-free sequences with length n−1+k, for k roughly greater than 3n/4. It is worth noting that the range n/2 < k < n

for k is the natural scope of such a characterization. There are n-zero-free sequences of length n − 1 + �n/2� that do
not obey the conclusion of Theorem 5.

Here are examples. For an odd n�9 and an even n�6, consider the sequence 0n−12(n−5)/232 and 0n−12n/2−13,
respectively. Both of them n-zero-free and have length n − 1 + �n/2�. Suppose that either of them is similar to a union
� ∪ � where L(�) < n, L(1 − �) < n. Because k�(n − 1)/2, � and � can be chosen so that 0 is a term of highest
multiplicity v in �∪�. Then v =n− 1, so �= 0n−1. It follows that 2(n−5)/232 or 2n/2−13 is equivalent to �, a sequence
satisfying L(�) < n. However, one can check that the latter is not true.

4. Terms of high multiplicity

Let n/2 < k < n, and let � be an n-zero-free sequence of length n − 1 + k in Zn. It follows from Theorem 5 and
Proposition 4 that � has a term of multiplicity at least k, and two distinct terms of combined multiplicity at least 2k.
Now we obtain precise forms of these statements.

Let � ∪ � be a sequence similar to � and satisfying the conclusions of Proposition 4. We may also assume that 0 is a
term of maximum multiplicity v in � ∪ �, as explained in the previous section.

By Proposition 4(c), the equality v =k holds if and only if k /≡ n (mod 2) and �∪�=0k1k2(n−1−k)/2(−1)(n−1−k)/2.
This is the unique sequence satisfying v = k, up to affine maps and rearrangement of terms.

Suppose that k ≡ n (mod 2). Then v�k + 1 by Proposition 4(c) again. The equality v = k + 1 can be attained, for
instance for the sequence 0k+11k−12(n−k)/2(−1)(n−k−2)/2 which is well defined and n-zero-free by Proposition 4(a)
(setting � = 1k−12(n−k)/2, � = 0k+1(−1)(n−k−2)/2). Thus the following corollary is proved.

Corollary 6. Let n and k be integers satisfying n/2 < k < n. Each n-zero-free sequence of length n − 1 + k in Zn

contains a term of multiplicity at least k, if n and k are of different parity, and at least k + 1, if n and k are of the same
parity. Both estimates are best possible.

The sum of the two highest multiplicities was probably the most widely explored question concerning n-zero-free
sequences in Zn. We are now in the position to resolve this question completely for each length n − 1 + k where
n/2 < k < n. Indeed, the lower bound u + v�2k for this combined multiplicity follows from above. Now let us take
another look at the examples for the maximum multiplicity of a single term. In both possible cases, k /≡ n (mod 2) and
k ≡ n (mod 2), it is easy to see that 0 and 1 are the two terms with highest combined multiplicity, and the value of this
multiplicity is 2k. So we proceed with one more structural conclusion.

Corollary 7. Let n and k be integers satisfying n/2 < k < n. Each n-zero-free sequence of length n − 1 + k in Zn

contains two terms of combined multiplicity at least 2k, and this estimate is best possible.

Naturally, some well-known results about the structure of the n-zero-free sequences with a certain length are now
immediate. For example, let us consider the lengths 2n − 2 (as in [11,1]) and 2n − 3 (as in [9]). By the discussion
above, any n-zero-free sequence of length 2n− 2 (i.e. n− 1 + k with k =n− 1) is similar to 0v1u, where v =n− 1 (as
v�k) and u=n− 1 (as u+ v�2k). Here we assume n > 2 to ensure that k > n/2; however, the same conclusion holds
true for n = 2 as well. Similarly, for n > 4, any n-zero-free sequence of length 2n − 3 (i.e. n − 1 + k with k = n − 2) is
similar to 0v1u�, where v is the maximum multiplicity of a term and u+v�2k =2n−4. Since k =n−2 ≡ n (mod 2),
Corollary 6 implies v�k + 1 = n − 1. Hence v = n − 1 and u = n − 2 or u = n − 3. Now it is easy to infer that each
n-zero-free sequence of length 2n− 3, n > 4, is similar to 0n−11n−2 or 0n−11n−32. For n= 3, 4, this conclusion can be
checked directly. For n = 2, the only n-zero-free sequence of length 2n − 3 = 1 is similar to the one-term sequence 0.



S. Savchev, F. Chen / Discrete Mathematics 308 (2008) 1–8 7

5. The g(n, k) function

For positive integers n and k, k�n, let g(n, k)�k be the least integer such that each sequence in Zn with at least k
distinct terms and length g(n, k) contains an n-term zero sum. The function g(n, k) was introduced by Bialostocki and
Lotspeich in [3]. The structural results about n-zero-free sequences of lengths 2n − 2 and 2n − 3 (such as mentioned
after Corollary 7) imply g(n, 2) = 2n − 1 for n�2 and g(n, 3) = 2n − 2 for n�4. It is easy to see that g(3, 3) = 3.

The values of g(n, k) for 4�k�
√

n + 4 + 1 were found in [2]: If k�4 is even and n�k2 − 2k − 4, or if k�5 is
odd and n�k2 − 2k − 3, then

g(n, k) = 2n − 1 −
⌊(

k − 1

2

)2
⌋

.

For the lower bound, the following examples were used. In the case of an even k�2, consider the sequence

−
(

k − 2

2

)
. . . (−1)(0)n−(k2+2k)/8(1)n−(k2+2k)/8(2) . . .

(
k

2

)
;

if k�3 is odd, consider the sequence

−
(

k − 3

2

)
. . . (−1)(0)n−(k2−1)/8(1)n−(k2+4k+3)/8(2) . . .

(
k + 1

2

)
.

These examples are valid under the weaker restrictions n�(k2 +2k)/8+1 when k is even, and n�(k2 +4k +3)/8+1
when k is odd. The multiplicities of 0 and 1 in both sequences are positive integers. By Proposition 4(a), both sequences
are n-zero-free, and each one contains k distinct terms.

Here we prove that g(n, k) obeys the same formula as above under the weaker constraints 4�k�
√

2n − 1 + 1. In
this range the examples above still provide the lower bound g(n, k)�2n − 1 − �((k − 1)/2)2�.

Theorem 8. Let n�k be integers such that 4�k�
√

2n − 1 + 1. Then

g(n, k) = 2n − 1 −
⌊(

k − 1

2

)2
⌋

.

Proof. As already mentioned, we need to prove only the upper bound. The condition k�
√

2n − 1 + 1 is equivalent
to n − �((k − 1)/2)2� > n/2. Also k�4, so the integer � = n − �((k − 1)/2)2� satisfies n/2 < � < n. Consider any
n-zero-free sequence � of length n − 1 + � in Zn. It suffices to prove that the number of distinct terms in � is less
than k; then the definition of g(n, k) implies g(n, k)�n − 1 + � = 2n − 1 − �((k − 1)/2)2�.

Let � ∪ � be a sequence similar to � , where � and � satisfy the conditions in Proposition 4, with k replaced by �. Let
there be x distinct terms in � and y distinct terms in �. Then Proposition 4(b) shows that the number of distinct terms
in � is z = x + y. The sum L(�) does not increase upon replacing x distinct summands in it by the least possible values
1, 2, . . . , x, and all remaining summands by 1. Therefore

1 + 2 + · · · + x + (|�| − x)�L(�)�n − 1,

which gives (x2 −x)/2�n−1−|�|. Likewise, noticing that there are y distinct terms in the sequence 1−�, we obtain
(y2 − y)/2�n − 1 − |�|. Hence

1

2
(x2 − x) + 1

2
(y2 − y)�2(n − 1) − (|�| + |�|).

Since |�| + |�| = n − 1 + �, the right-hand side expression equals n − 1 − � = �((k − 1)/2)2� − 1. On the other hand,

1

2
(x2 − x) + 1

2
(y2 − y)�

(
x + y

2

)2

− x + y

2
=

( z

2

)2 − z

2
=

(
z − 1

2

)2

− 1

4
.

Thus ((z − 1)/2)2 − 1/4��((k − 1)/2)2� − 1 which implies the desired z < k and completes the proof. �
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