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CD4-binding site (CD4bs) alterations in gp120 contribute to different pathophysiological phenotypes of CCR5-
using (R5) HIV-1 strains, but the potential structural basis is unknown. Here, we characterized functionally
diverse R5 envelope (Env) clones (n=16) to elucidate potential structural alterations within the gp120
CD4bs that influence Env function. Initially, we showed that the magnitude of gp120–CD4-binding correlates
with increased fusogenicity and reduced CD4 dependence. Analysis of three-dimensional gp120 structural
models revealed two CD4bs variants, D279 and N362, that were associated with reduced CD4 dependence.
Further structural analysis showed that a wider aperture of the predicted CD4bs cavity, as constrained by the
inner-most atoms at the gp120 V1V2 stem and the V5 loop, was associated with amino acid alterations within
V5 and correlated with increased gp120–CD4 binding and increased fusogenicity. Our results provide
evidence that the gp120 V5 loop may alter CD4bs conformation and contribute to increased gp120–CD4
interactions and Env fusogenicity.
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Introduction

The trimeric envelope glycoprotein (Env) of human immunode-
ficiency virus type 1 (HIV-1) mediates virus entry into cells, which
comprises surface gp120 glycoproteins non-covalently linked to
transmembrane gp41 glycoproteins that embed the complex into
the viral membrane (Chan et al., 1997; Kwong et al., 1998, 2000). HIV-
1 entry is initiated by gp120 binding to cellular CD4, which is a high-
affinity interaction that facilitates the initial attachment of virus to the
target cell (Dalgleish et al., 1984). The binding of gp120 to CD4 results
in dramatic conformational changes in gp120 that expose the binding
site for a secondary coreceptor, which is either of the chemokine
receptors CCR5 or CXCR4 [reviewed in Doms, 2000; Doms and Trono,
2000].

Crystallographic and biochemical studies of gp120 have provided
valuable insights into mechanisms involved in CD4-binding and CD4-
induced conformational changes that result in formation and
exposure of the coreceptor binding site (Chen et al., 2005b; Huang
et al., 2005; Kwong et al., 1998; Myszka et al., 2000). The unliganded
gp120 core of the closely related simian immunodeficiency virus (SIV)
consists of a highly conserved inner domain, which faces the trimer
axis, and a heavily glycosylated, globular outer domain, which is
mostly exposed on the surface of the trimer (Chen et al., 2005b;
Kwong et al., 1998;Wyatt et al., 1998;Wyatt and Sodroski, 1998). CD4
interacts with gp120 via surface-exposed residues within three
separate regions distributed over six segments of gp120. These
regions include the α-helices of the inner domain, the CD4-binding
loop of outer domain, and the β20–β21 ribbon, which becomes part of
the gp120 bridging sheet, which is a structural element of gp120
formed after CD4 binding that is involved in coreceptor binding
(Kwong et al., 1998; Wyatt et al., 1998). Thermodynamic and
structural analysis of the gp120–CD4 interaction demonstrated little
evidence of a structured CD4-binding pocket on the unliganded
gp120, and that CD4bs elements that influence gp120–CD4 affinity are
formed from conformational alterations that occur after gp120 has
encountered CD4 (Kwong et al., 2000; Myszka et al., 2000).

CD4 binding to gp120 not only drives the folding of the bridging
sheet but also draws the bridging sheet, inner domain, and outer
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Table 1
Coreceptor usage and fusion activity of Env clones.

Env
clone

Primary virus
isolatea

Coreceptor
usageb

Fusion
activityb

GenBank accession
number

NB2-C1 NB2 CCR5 ++ EU308541
NB2-C4 CCR5 +++ EU308543
NB6-C3 NB6 CCR5 ++ EU308546
NB6-C4 CCR5 +++ EU308547
NB7-C1 NB7 CCR5 ++++ EU308548
NB7-C2 CCR5 +++ EU308549
NB8-C2 NB8 CCR5 +++ EU308553
NB8-C4 CCR5 ++ EU308555
NB23-C2 NB23 CCR5 + EU308557
NB23-C3 CCR5 + EU308558
NB24-C3 NB24 CCR5 ++ EU308561
NB24-C4 CCR5 ++ EU308562
NB25-C2 NB25 CCR5 + EU308564
NB25-C3 CCR5 + EU308565
NB27-C2 NB27 CCR5 ++ EU308567
NB27-C3 CCR5 ++ EU308568

a The primary virus isolates and the clinical characteristics of the subjects from
whom they were isolated have been described in detail previously (Gray et al., 2005; Li
et al., 1999).

b The coreceptor usage and fusion activity of the Env clones has been described
previously (Sterjovski et al., 2007). Fusion activity was scored as+(50–100×105 RLU),
++ (100–200×105 RLU), +++ (200–300×105 RLU), or ++++ (N300×105 RLU).
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domains of gp120 into closer proximity to form the coreceptor
binding site (Chen et al., 2005a). The burial of extensive surface at the
CD4–gp120 interface provides the energy required to drive these
structural rearrangements, permitting the exposure of gp120 residues
involved in coreceptor binding (Myszka et al., 2000). Current models
of CD4-bound gp120 binding to coreceptor suggest the gp120 V3 loop
interacts principally with the coreceptor second extracellular loop
(ECL2) region, while the gp120 bridging sheet interacts with the
coreceptor N-terminus (Brelot et al., 1999; Cormier and Dragic, 2002;
Farzan et al., 1999; Huang et al., 2005). Mutagenesis studies
demonstrated a critical role for tyrosine sulfation of the coreceptor
N-terminus, particularly at amino acid positions 14 and 15 of CCR5, in
facilitating HIV-1 entry (Cormier et al., 2000; Farzan et al., 1999). The
ECL1 and ECL3 regionsmay also influence coreceptor function of CCR5
and CXCR4 (Doranz et al., 1997, 1999; Farzan et al., 1998). The
interaction of CD4-bound gp120 with coreceptor induces additional
conformational changes in gp120, which leads to a structural
rearrangement in gp41 that enables fusion and virus entry.

In addition to mediating HIV-1 entry into cells, the Env
glycoproteins contribute to viral pathogenicity through fusogenic
properties. Env mediates most of the acute cytopathic effects of HIV-1
infection in cultured cells (Sodroski et al., 1986), and membrane
fusion appears to be an important factor contributing to HIV-1
cytopathicity in vitro (LaBonte et al., 2000; Wade et al., 2010). Passage
of chimeric simian-HIV (SHIV) strains in macaques demonstrated
enhancement of pathogenicity that often resulted from increased
Env-mediated membrane fusing capacity (Etemad-Moghadam et al.,
2001; Etemad-Moghadam et al., 2000; Karlsson et al., 1998; Liu et al.,
1999; Si et al., 2004), suggesting that fusogenicity contributes to viral
pathogenicity in this animal model. In addition, the cytopathic effects
of Env-mediated HIV-1 fusogenicity are evident in humans. For
example, the presence of multinucleated giant cells (MNGC) in brain,
formed by Env-mediated fusion between infected and uninfected
macrophage lineage cells, is characteristic of HIV-1 encephalitis
(HIVE) and a neuropathological hallmark of HIV-associated dementia
(Gonzalez-Scarano and Martin-Garcia, 2005).

The Env determines cellular tropism of HIV-1 through alterations
in gp120 that influence fusogenicity. The ability of CCR5-using (R5)
HIV-1 strains to enter cell types that have relatively low levels of cell-
surface CD4 expression, for example, macrophages and microglia, is
frequently attributed to augmented binding of gp120 to CD4 and/or
greater exposure of the CD4-binding site (CD4bs) in gp120, which
enables HIV-1 to scavenge limiting levels of CD4 to mediate virus–cell
fusion (Duenas-Decamp et al., 2009; Dunfee et al., 2006, 2007, 2009;
Gorry et al., 2001, 2002; Martin et al., 2001; Martin-Garcia et al., 2005;
Peters et al., 2006, 2008; Rossi et al., 2008; Thomas et al., 2007).
Furthermore, enhanced Env-mediated fusogenicity is a prominent
phenotype of R5 HIV-1 strains isolated from subjects with AIDS
(Sterjovski et al., 2007) and causes increased levels of Env-mediated
apoptosis in CD4+ cells (Wade et al., 2010). Thus, an enhanced
interaction between gp120 and CD4 influences Env-mediated fuso-
genicity and viral pathogenicity. However, the structural alterations
occurring within the CD4bs of primary gp120 proteins that contribute
to augmented gp120–CD4 interactions and subsequent cytopathicity
are presently unclear.

In this study, we characterized a panel of functionally diverse R5 Env
clones to better understand potential structural alterations within the
gp120 CD4bs, which may influence CD4 interactions and fusogenicity.

Results

CD4 binding influences Env fusogenicity and the ability to use low levels
of CD4

Enhanced fusogenicity is a prominent phenotype of R5 Envs that
have increased cytopathicity for CD4+ T cells (Sterjovski et al., 2007;
Wade et al., 2010) and of SHIV variants passaged in macaques that
acquired enhanced pathogenicity in vivo (Etemad-Moghadam et al.,
2001; Etemad-Moghadam et al., 2000; Karlsson et al., 1998; Liu et al.,
1999; Si et al., 2004). To determine whether enhanced fusogenicity of
R5 Envs is associated with ability to bind CD4, gp120–CD4-binding
assays were conducted using a panel of primary isolate-derived R5
Envs that exhibit diversity in levels of cell–cell fusion activity
(Sterjovski et al., 2007) (Table 1). We observed a positive correlation
between the extent of CD4 binding and level of fusogenicity mediated
by Env (Fig. 1A). Similar levels of gp120were expressed on the surface
of cells used in CD4-binding assays and cell–cell fusion assays (data
not shown). Furthermore, we observed a positive correlation between
the extent of CD4 binding and the ability of Env to use low levels of CD4
tomediate fusion (Fig. 1B). The results of CD4 binding, fusogenicity, and
relative ability to use low levels of CD4 for the individual Env clones is
summarized in Supplementary Table 1. Together, these results suggest
that enhanced fusogenicity by primary R5 gp120 proteins is influenced
by the ability of gp120 to bind to and utilize CD4.

Structural models of primary R5 gp120 proteins in the CD4-bound
conformation and mapping predicted CD4 contact residues

To better understand the molecular mechanisms contributing to
alterations in CD4 binding by primary R5 gp120 proteins and the
subsequent influence on CD4 dependence and fusogenicity, we
produced structural models of CD4-liganded gp120 proteins. The
three-dimensional structural similarity between the 2B4C crystal
structure of JRFL gp120 and 16 predicted structures of the primary R5
gp120 proteins wasb1.0 Å for all the primary gp120 models (range,
0.25 to 0.56 Å) (data not shown), indicating a high overall degree of
structural similarity. Identical RMSD values for each gp120 model
were obtained upon repeated, independent modeling operations
(data not shown). Residues in gp120 where atoms are predicted to be
within 4 Å of CD4 were mapped to the molecular surface of all gp120
models, with comparison to the 2B4C crystal structure of JRFL gp120
(Fig. 2). These residues were generally conserved across all primary
gp120 proteins and included those identified previously to be
involved in CD4 binding (Kwong et al., 1998). Residues at the
gp120–CD4 interface were mapped to the base of the V1V2 loop, C2,
C3, C4, and V5 regions of gp120. The number of potential CD4 contact
residues in gp120, as determined using the Protein Interfaces,
Surfaces and Assemblies (PISA) computational platform (Krissinel



Fig. 1. Association between gp120–CD4 binding, fusogenicity, and CD4 dependence.
The ability of gp120 to bind to CD4 was quantified as described in Materials and
methods and plotted against the overall level of fusion mediated by gp120 in cell–
cell fusion assays (A), or the relative ability of gp120 to mediate fusion in CD4low cells
(B), using Prism version 4.0c (GraphPad Software). The Spearman correlation
coefficient (r) and P values are shown. P values b0.05 were considered statistically
significant. The data shown are representative of 3 independent experiments.

420 J. Sterjovski et al. / Virology 410 (2011) 418–428
and Henrick, 2007), was not associatedwith CD4 binding, fusogenicity
or CD4 dependence of the primary R5 gp120 proteins (data not
shown), suggesting that the type or position of amino acid in the
CD4bs rather than the number of contacts may enhance the CD4-
binding properties of gp120.

Five amino acid variants within or immediately adjacent to the
CD4-binding regions were identified at positions 195 in the V1V2
region, 279 and 283 in the C2 region, and 362 and 363 in the C3 region
of gp120 (Fig. 2C). Modeling these amino acid variants on the CD4-
liganded JRFL crystal structure shows that they cluster around the
CD4-binding pocket of gp120 with the potential to influence CD4
binding (Fig. 3). Previous mutagenesis studies have shown that amino
acid variation at position 283 affects CD4bs exposure and CD4 binding
of gp120 proteins derived from brain and other tissues (Duenas-
Decamp et al., 2009; Dunfee et al., 2006; Peters et al., 2006). Further
mutagenesis studies have shown that variation at position 363
influences CD4 binding (Duenas-Decamp et al., 2009) and that
variation at position 362 influences fusogenicity (Sterjovski et al.,
2007). Thus, the amino acid polymorphisms identified within or
surrounding the gp120 CD4bs may influence gp120–CD4 interactions.

The effect of D279 and N362 on CD4 dependence

To better understand the role of CD4bs polymorphisms on the
interaction between gp120 and CD4, the association between the
presence of amino acid variants identified within the CD4bs of
primary R5 gp120 models and ability of gp120 to utilize CD4 to
mediate fusion was determined. The presence of D279 (Fig. 4A) was
associated with a relatively modest yet statistically significant
reduction in CD4 dependence (Fig. 4B) when compared to gp120
proteins containing the clade B consensus residue N279. Analysis of
potential molecular bond partners showed that, while N279 does not
directly contact residues in CD4, the presence of the negatively
charged Asp residue at this position has the potential to form an ion
pair with the positively charged K31 residue of CD4 (Fig. 4C, D). Thus,
an additional salt bridge formed between D279 of gp120 and K31 of
CD4may strengthen the gp120–CD4 interaction. Further mutagenesis
studies are required to confirm this hypothesis. Similarly, the
presence of N362 (Fig. 5A), shown previously by mutagenesis studies
to enhance the fusogenicity of gp120 (Sterjovski et al., 2007), was
associated with reduced CD4 dependence in the majority of clones
containing this residue (Fig. 5B) compared to gp120 proteins that
lacked N362. N362 has the potential to form an additional hydrogen
bond with one or more residues within the β24 and β28 strands
within the CD4-binding pocket of gp120 (Sterjovski et al., 2007),
suggesting that N362 may augment the gp120–CD4 interaction by
stabilizing the CD4-bound conformation of gp120. Furthermore, N362
is potentially glycosylated, whereby a branched N-linked carbohy-
drate moiety is likely to protrude along the first and possibly the
second domain of CD4 and may further stabilize the gp120–CD4
interaction (Fig. 5C, D). There was no association between CD4bs
polymorphisms at positions 195, 283, or 363 and reduced CD4
dependence by the Envs studied here (data not shown). Thus, D279
and N362 CD4bs variants that were identified by homology modeling
may contribute to enhanced CD4 interactions of these primary R5
gp120 proteins.
Conformational alterations in the CD4bs influence CD4-binding and Env
fusogenicity

The preceding studies identified two CD4bs polymorphisms
associated with increased ability of gp120 to utilize CD4. However,
these polymorphisms could not fully account for the magnitude of
reduced CD4 dependence. Therefore, to determine whether gp120–
CD4 interactions are also influenced by changes in the overall
conformation of the CD4bs, the aperture width of the CD4bs cavity
was calculated from each of the three-dimensional gp120 structural
models by measuring the distance between the inner most atoms
present at the stem of the V1V2 loops and the V5 loop, which
constrain the CD4-binding pocket of gp120 (Huang et al., 2005). Since
previous studies from Kwong and colleagues showed that changes in
CD4-binding affinity are due to structural alterations involving the
variable loop regions rather than from elements within the gp120
core (Kwong et al., 2000), we specifically chose a measurement
spanning the base of V1V2 to V5 rather than other distance
measurements across the CD4bs cavity. Fig. 6A shows the calculation
of the CD4bs aperture width for the NB23-C3 gp120 model as an
example, and the results for all the structural models are summarized
in Fig. 6B.

We next determined whether this predicted conformational
alteration in the CD4bs may potentially affect CD4 interactions and
gp120 function. We found a positive correlation between the
predicted width of the CD4bs cavity in gp120 and the ability of
gp120 to bind CD4 (Fig. 7A), suggesting that a wider CD4bs cavitymay
augment the gp120–CD4 interaction. Furthermore, we found a near-
significant association between the width of the CD4bs cavity and
level of fusogenicity mediated by Env (Fig. 7B). Together, these results
provide evidence for a conformational alteration in the CD4bs of
gp120 that is associated with increased ability of gp120 to interact
with CD4 and augmented fusogenicity of Env.



Fig. 2. Predicted CD4 contact residues in gp120 structural models and identification of CD4bs polymorphisms. (A) Themolecular surface of the crystal structure of JRFL gp120 (white)
is shown bound to CD4 (blue) (PDB ID: 2B4C). (B) The CD4bs residues within the JRFL gp120 crystal structure are shown in blue. (C) Sequences extracted from the primary gp120
models were aligned against the gp120 sequence extracted from the 2B4C JRFL crystal structure. The alignments illustrate gp120 residues (shaded in blue) where atoms are
predicted to be within 4 Å of CD4 by molecular modeling, located in the V1V2, C2, C3, C4, and V5 regions. Residues shown previously to be involved in CD4 binding (Kwong et al.,
1998; McCaffrey et al., 2004) are marked with an asterisk. The GAG linker sequence, which replaced the V1V2 loops in the crystal and model structures, is shaded in grey.
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The gp120 V5 loop influences conformational alterations in the CD4bs

We next investigated determinants in gp120, which may contrib-
ute to predicted alterations in the width of the CD4bs cavity and
which subsequently influence CD4 binding and fusogenicity. Struc-
tural overlays of NB25-C3 and NB6-C3 gp120 models, which are
gp120 proteins predicted to have the narrowest and widest of the
CD4bs apertures, respectively (Fig. 6B), revealed a high degree of
structural similarity within the V1V2 stem region, but notable
structural variation within the V5 loop region (Fig. 8A). Furthermore,
sequence analysis of all the primary R5 Envs showed a high degree
sequence homology within the V1V2 stem region (Fig. 8B) but a high
degree of sequence variation within the V5 loop (Fig. 8C). Together,
these results suggest that alteration in the width of the CD4bs cavity
may be due to sequence variability in V5, which may contribute to
repositioning of the V5 loop. This potential structural alteration, along
with possible effects of CD4bs polymorphisms, may increase the
ability of gp120 to interact with CD4 and mediate fusion.

Discussion

In this study, we characterized Env determinants that contribute
to enhanced fusogenicity, which is an important pathophysiological
phenotype of R5 HIV-1 strains that are present at late stages of HIV-1
infection, and of pathogenic SHIV variants following passage in
macaques. We showed that increased fusogenicity of primary R5
HIV-1 Envs is associated with enhanced gp120–CD4 binding and
subsequently, an increased ability of Env to use low levels of cell-
surface CD4. Therefore, alterations in Env, which augment the ability
of gp120 to interact with CD4, influence the fusogenic properties of
Env. Consistentwith our results, a number of studies have shown that
certain highly M-tropic HIV-1 strains, particularly those isolated
from the brain or other tissues that favor macrophage replication of
virus, have enhanced gp120–CD4-binding capacity and/or greater
exposure of the gp120 CD4bs (Duenas-Decamp et al., 2009; Dunfee
et al., 2006, 2007, 2009; Gorry et al., 2001, 2002; Martin et al., 2001;
Martin-Garcia et al., 2005; Peters et al., 2006, 2008; Rossi et al., 2008;
Thomas et al., 2007). This permits engagement with CD4 that is
expressed at comparatively low levels on microglia and macro-
phages. Thus, our results suggest that enhanced fusogenicity of
blood-derived R5 Envs most likely results from structural alterations
in gp120 that are common to or overlappingwith those that promote
M-tropism of particular R5 Env variants.

Cross-sectional and longitudinal studies have shown that in-
creased Env-mediated fusogenicity is a prominent phenotype of R5
Envs that contributes to CD4+ T cell decline in subjects who harbor
R5 HIV-1 strains to late stages of infection (Sterjovski et al., 2007).
Consistent with previous studies that showed membrane fusing
capacity to be essential for Env-mediated cytopathicity in vitro
(LaBonte et al., 2000), particularly in cells where CD4 levels are
limiting (Wade et al., 2010), the results of our studies suggest that
increased Env-mediated fusogenicity may reflect an increased ability
of Envs to cause cytopathic effects through enhanced gp120–CD4
binding. This idea is supported by studies in macaques, where passage
of chimeric SHIV strains led to enhancement of pathogenicity
associated with adaptive changes in Env (Cayabyab et al., 1999;
Karlsson et al., 1997, 1998; Liu et al., 1999; Stephens et al., 1996,
1997). These mutations arose in the gp120 C2, C3, V3, V4, and gp41
Env regions, resulting in increased Env-mediated fusogenicity that
was thought to occur via increased Env-receptor binding. Thus,
increased fusogenicity contributes to viral pathogenicity in the
macaque model. The cytopathic effects of Env-mediated fusogenicity
are also evident in humans as MNGC, which are present in autopsy
brain tissues of subjects with HIVE (Price, 1996) and formed by Env-
mediated fusion between infected and uninfected macrophage-
lineage cells (Gonzalez-Scarano and Martin-Garcia, 2005). Multinu-
cleated giant cells in brain are caused predominantly by R5 HIV-1 Envs
(Gorry et al., 2001, 2002; Peters et al., 2004; Shieh et al., 1998), which
share several features with late-emerging blood-derived R5 viruses
such as enhanced fusogenicity (Gorry et al., 2002; Peters et al., 2004;
Thomas et al., 2007), increased sensitivity to neutralization by
IgG1b12 (Dunfee et al., 2009; Gorry et al., 2002), and Env structures
that enable efficient Env–CD4 interactions (Dunfee et al., 2006). Thus,
increased fusogenicity of blood-derived R5 Envs may enhance their
cytopathic potential via increased gp120–CD4 interactions.

To better understand the nature of gp120 structural alterations
that could be involved in augmenting gp120–CD4 interactions, we
produced 3-dimentional structural models of gp120 sequences, using
the CD4-bound 2B4C gp120 crystal structure as template. While
acknowledging the limitations of gp120 models for accurately
interpreting structural alterations (discussed in more detail below),
we carefully validated our approach by first comparing the JRFL
crystal structure to the predicted structure of the same gp120
sequence after extensive optimization of the modeling protocol. The
RMSD between the predicted and crystal structures of JRFL gp120
after rigid-body superposition of Cα atoms of the entire gp120
structure was 0.37 Å, indicating a high degree of structural similarity,
providing evidence that the gp120 models used in this study have
sufficient accuracy to provide useful structural information. Thus,
cautious interpretation of structural models of gp120 based on our
optimised protocol may shed light on potential gp120 alterations,
which may contribute to enhanced CD4 interactions and fusogenicity.

Analysis of predicted three-dimensional gp120 structural models
revealed a potential CD4bs alteration that appears to be involved in
modulating the ability of gp120 to interact with CD4. Specifically, a
wider aperture of the predicted CD4bs cavity, as constrained by the
inner-most atoms at the gp120 V1V2 stem and the V5 loop, was
associated with increased gp120–CD4 binding and increased fuso-
genicity. In contrast, we did not observe significant trends between
the overall area of the three-dimensional CD4bs cavity, as determined
by analysis using the PISA computational platform (Krissinel and
Henrick, 2007), and CD4 binding or fusogenicity (data not shown),
suggesting that a specific CD4bs conformation rather than changes in
the total contact area of the CD4bs may influence interactions
between gp120 and CD4. Thus, our results provide evidence for
structural alterations within the gp120 CD4bs that influence Env-
mediated fusogenicity through an increased ability to interact with
CD4. In addition to studying mechanisms of HIV-1 fusogenicity, the
CD4bs modeling approach described here may be useful for further
elucidating themolecular determinants of HIV-1 neurotropism, which
are known to involve alterations in gp120–CD4 binding.

CD4 binding to gp120 results in conformational changes thought
to be the result of an “induced fit” to the CD4 molecule (Kwong et al.,
1998). This suggests that greater CD4 affinity should result in a tighter
interaction between gp120 and CD4, rather than a more open
conformation. However, since CCR5 is more mobile on the surface of
cells than CD4 (Steffens and Hope, 2004), a more open conformation
of the CD4bs cavity may instead allow greater flexibility that
minimizes steric constraints during the process of CCR5 sequestration.
This suggests that a steric advantage, rather than or in addition to
increased affinity for CD4, may drive the selection of primary R5 Envs
with a wider CD4-binding site cavity. The structural rearrangement of
gp120 that occurs upon CD4-binding results in residues that would
otherwise be exposed on the surface of gp120 to become buried at
either the CD4 interface or at the junctions of gp120 domains that are
drawn together by CD4 (Myszka et al., 2000). Analysis of unbound
models of primary gp120 sequences may identify features in the pre-
triggered, unbound state of gp120 that may explain the significance of
the movement of the V5 loop in gp120 proteins and other features
that could influence the initial contact with CD4.

While our results suggest a possible functional role for CD4bs
alterations in the augmented function of certain R5 gp120 proteins,



Fig. 3. CD4bs variants modeled on the crystal structure of HIV-1 JRFL gp120. JRFL gp120
is shown in ribbon representation (light grey) in complex with CD4 (dark grey). The Cα
atoms of amino acid variants N279, T283, N362, Q363, and S195 are displayed as space
filling spheres (red). The CD4-binding loop of gp120 is shown as orange ribbon.

Fig. 4. The effect of D279 on gp120–CD4 interactions. (A) Sequence alignment illustrating th
relative ability of gp120 to mediate fusion in CD4low cells was measured as described in Mate
are representative of 3 independent experiments. P values were calculated using a nonparam
N279 was modeled on NB24-C3 gp120 and shown in green stick representation, with van der
stick representation, with van der Waals surface also red (D). K31 of CD4 is shown in blu
shown in ribbon representation (light grey and dark grey, respectively), and Phe43 of CD4
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there are a number of important considerations to take into account
when predicting gp120 structures by homology modeling. The first is
whether homology modeling can reliably predict the structure of
protein loops, such as V5. Loop building strategies are well accepted to
be accurate for predicting the structure of relatively small protein
loops like V5 (Eswar et al., 2007). Thus, while these algorithms are
likely to have limitations for predicting the structures of larger protein
loops such as the gp120 V3 loop, they are likely to be accurate for
predicting V5 loop structures. Second, the V1V2 gp120 loops are
missing from the 2B4C JRFL crystal structure, and therefore, these
regions are not accounted for in the gp120 models. The V1V2 loops
have been previously shown to modulate immunogenicity and
conformational shielding of the CD4 and coreceptor binding sites
(Bouma et al., 2003; Ching et al., 2008; Fox et al., 1997; Ly and
Stamatatos, 2000; Nabatov et al., 2004; Pinter et al., 2004) and,
therefore, will likely exert an affect on the structure of the CD4bs.
Finally, the gp120 models represent predicted monomeric proteins,
which are unlikely to completely recapitulate the functional proper-
ties of trimeric gp120. Therefore, a fully glycosylated trimeric gp120
structure in the native, unbound form that includes all the variable
loop regions is required in order to fully understand the influence of
CD4bs alterations on the function of primary R5 gp120 proteins.
Nonetheless, in the absence of such a structure, the cautious
e D279 polymorphism located within the C2 region of gp120. (B) For all Env clones, the
rials and methods and stratified based on the presence of N279 or D279. The data shown
etric Mann–Whitney U test, and values b0.05 were considered statistically significant.
Waals surface also in green (C). D279 was modeled on NB7-C1 gp120 and shown in red
e stick representation and blue van der Waals surface. Gp120 and CD4 molecules are
is shown in grey stick representation with grey van der Waals surface.

image of Fig.�3
image of Fig.�4


Fig. 5. The effect of N362 on gp120–CD4 interactions. (A) Sequence alignment illustrating the N362 polymorphism located within the C3 region of gp120. (B) For all Env clones, the
relative ability of gp120 to mediate fusion in CD4low cells was measured as described in Materials and methods and stratified based on the presence or absence of N362. The data
shown are representative of 3 independent experiments. P values were calculated using a nonparametric Mann–Whitney U test, and values b0.05 were considered statistically
significant. K362 was modeled on NB25-C2 gp120 and shown in blue stick representation with van der Waals surface also in blue (C). N362 was modeled on NB7-C1 gp120 and
shown in green stick representation with van der Waals surface also in green, the potential glycan of N362 is depicted as grey molecular surface (D). Gp120 and CD4 molecules are
shown in ribbon representation (light grey and dark grey, respectively).
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interpretation of our results based on the 2B4C JRFL crystal structure
provides mechanistic insights that are likely to be functionally
important.
Fig. 6. Predicted alterations in the CD4bs cavity from 3-dimensional gp120 models. (A) The g
molecule, in grey ribbon, with Phe43 of CD4 in yellow stick representation to highlight the
within 4 Å of CD4 are shown in ball and stick representation, and their molecular surface is
distance across the two innermost atoms located at the V1V2 stem and the V5 loop. (B) Su
In summary, our results suggest that alterations in the gp120 V5
loop may influence conformational variation in the gp120 CD4bs. We
highlight evidence that an increase in the aperture of the CD4bs
p120 model of NB23-C2 Env is shown in molecular surface representation, and the CD4
“Phe43 cavity” of gp120. Residues of gp120 within the CD4-binding pocket and located
highlighted in blue. The width of the CD4bs aperture was determined by measuring the
mmary of the CD4bs aperture widths calculated for all the primary gp120 models.
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Fig. 7. Association between gp120 CD4bs cavity alterations, CD4 binding, and
fusogenicity. The CD4bs aperture widths shown in Fig. 6 were plotted against the
ability of gp120 to bind CD4 (A) or mediate cell–cell fusion (B), which were determined
as described in Materials and methods, using Prism version 4.0c (GraphPad Software).
The Spearman correlation coefficient (r) and P values are shown. P values b0.05 were
considered statistically significant. The data shown are representative of 3 independent
experiments.
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cavity, as constrained by the inner-most atoms at the gp120 V1V2
stem and the V5 loop, influences the ability of gp120 to bind to CD4
and mediate cell–cell fusion. This potential conformational alteration
may be an important structural adaptation in HIV-1 contributing to
augmented Env function.

Materials and methods

HIV-1 Env clones

The HIV-1 Envs used in this study were cloned from primary R5
HIV-1 isolates, which have been described in detail previously,
including the clinical characteristics of the subjects from whom they
were isolated (Gray et al., 2005; Li et al., 1999; Sterjovski et al., 2007).
The Envs used were NB23-C2, NB23-C3, NB24-C3, NB24-C4, NB25-C2,
NB25-C3, NB27-C2, NB27-C3, NB2-C1, NB2-C4, NB6-C3, NB6-C4, NB7-
C1, NB7-C2, NB8-C2, andNB8-C4,which are cloned into the pSVIII–Env
expression vector (Gao et al., 1996). These clones have been described
in detail previously (Sterjovski et al., 2007; Sterjovski et al., 2010), and
their coreceptor usage and fusion activities are summarized in Table 1.

Cells

Cf2-Luc cells (Etemad-Moghadam et al., 2000), derived from the
Cf2th canine thymocyte cell line (Choe et al., 1996), stably express the
luciferase gene under the control of the HIV-1 long terminal repeat
and were cultured in Dulbecco modified Eagle medium (DMEM)
supplemented with 10% (vol/vol) fetal calf serum (FCS), 100 μg of
penicillin and streptomycin per milliliter, and 0.7 mg of G418 per
milliliter. 293 T cells were cultured in DMEM supplemented with 10%
(vol/vol) FCS and 100 μg of penicillin and streptomycin per milliliter.

Fusion assays

Cell–cell fusion assays were conducted as described previously
(Sterjovski et al., 2007). Briefly, Cf2-Luc target cells seeded in 25 cm2

tissue culture flasks were transfected with 1 μg of CD4 plasmid and
3 μg of CCR5 plasmid. 293 T effector cells seeded in 6-well tissue
culture plates were co-transfected with 3.4 μg of Env-expressing
plasmid and 0.6 μg pSVL-Tat. Target and effector cells were trans-
fected using Lipofectamine 2000 (Invitrogen) according to the
manufacturers' protocol. Approximately 2.5×104 293 T effector cells
were added to 2.5×104 Cf2-Luc target cells. After mixing, target and
effector cells were incubated at 37 °C in replicate wells containing
200 μl of culture medium. Cells from replicate wells were harvested at
10 h post-mixing and assayed for luciferase activity (Promega)
according to the manufacturers' protocol. Luminescence was mea-
sured using a FLUOStar microplate reader (BMG LABTECH, GmbH,
Germany). 293 T cells transfected with pSVL-Tat alone were used as
negative controls to determine the background level of luciferase
activity. For measurement of CD4 dependence, Cf2-Luc target cells
were transfected with 2.5 μg of CCR5 plasmid together with either 0.5
or 2.5 μg of CD4 plasmid to generate CD4low and CD4high cells,
respectively. This approach results in an increase in the percentage of
cells expressing CD4 as well as the levels of cell-surface CD4
expression (data not shown), as we and others have shown previously
(Dunfee et al., 2006; Gorry et al., 2001, 2002; Gray et al., 2005; Martin
et al., 2001; Martin-Garcia et al., 2005). To measure CD4 dependence,
the ability of gp120 to mediate fusion in CD4low cells was expressed as
a percentage of the ability to mediate fusion in CD4high cells.

CD4-binding assays

293 T cells were transfected with Env plasmids as described
above. At 48 h post-transfection, approximately 2×105 cells were
used in CD4-binding reactions, using soluble CD4 (sCD4; extracel-
lular domains D1–D4) (Progenics Pharmaceuticals, Tarrytown, NY)
that was conjugated to the Atto488 fluorophore (Reametrix, San
Carlos, CA). The levels of Env expressed on the surface of 293 T cells
were monitored by flow cytometry, as described previously
(Sterjovski et al., 2007). After pre-incubation with FACS wash buffer
(FWB) [PBS containing 3.5% (wt/vol) bovine serum albumin, 0.05%
(wt/vol) sodium azide, pH 7.3–7.4] for 2 h at RT, cells were washed
three times in FWB and resuspended in 20 μl of FWB containing 2 μg
of sCD4-Atto488. This concentration of sCD4-Atto488 was empiri-
cally determined to be within the linear range of Env–CD4 binding
and was readily able to discriminate between Envs known to have
high CD4-binding capability (e.g., YU-2) versus Envs that bind CD4
more weakly (e.g., JR-CSF) (data not shown). Cells were incubated
with sCD4-Atto488 for 1 h at RT, after which they were washed three
times with FWB. Cells were then resuspended in 150 μl of PBS
containing 4% (wt/vol) paraformaldehyde and analyzed by flow
cytometry as described previously (Gorry et al., 1999).

Computer-aided structure prediction of gp120

Homology models of CD4-bound gp120 sequences were prepared
using the Build Model protocol of the Discovery Studio suite, version
1.6 (Accelrys, San Diego, CA, USA), as we have described recently
(Sterjovski et al., 2010). This approach used the Modeller algorithm to
generate an atomic model of the target protein from a template
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Fig. 8. Repositioning of the V5 loop may contribute to structural alterations in the gp120 CD4bs cavity. (A) The gp120 models of NB25-C3 and NB6-C3 Envs (grey and blue ribbon
representation, respectively) were superimposed, and their molecular surfaces were presented as blue or grey wire mesh. Sequences of the V1V2 stem (B) and the V5 loop (C) of the
primary gp120models were aligned against the 2B4C JRFL crystal structure sequence. The GAG linker sequence, which replaced the V1V2 loops in the crystal andmodel structures, is
shown.
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molecule and a sequence alignment. The template-basedmodels were
optimised by iterative cycles of conjugate-gradient minimization
against a probability density function that included spatial restraints
derived from the template and residue specific properties (Sali and
Blundell, 1993). The crystal structure of JRFL gp120 containing the V3
variable loop and bound to CD4 and the X5 Fab antibody fragmentwas
used as the template for CD4-bound models (Huang et al., 2005)
(Protein Data Bank ID: 2B4C). The X5 antibody fragment was deleted
from the CD4-bound template prior to modeling. The coordinates for
gp120 and CD4 were extracted from the 2B4C crystal structure.
Sequence alignments were generated between JRFL gp120 and the
primary gp120 Env clones. The sequence for CD4 was included as a
second polypeptide chain such that the models of gp120 were
constructed as complexes with CD4. The V1/V2 variable loops were
replaced with a GAG linker sequence and the N- and C-termini
overhangs were cut using the modeling software.
Similarities in three-dimensional structure were measured by the
root mean square deviation (RMSD) of the distances between main-
chain atoms (N, Cα, C, and O atoms) from crystal andmodel structures
after rigid body superposition, where an RMSD of b1 Å signifies a high
level of homology of three-dimensional structure between overlayed
proteins. The overall quality of the geometry of gp120 models
generated was verified using PROCHECK (Laskowski et al., 1993).

Supplementarymaterials related to this article can be found online
at doi: 10.1016/j.virol.2010.12.010.
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