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In large-scale linear problems a one-dimensional electrical network 
often serves as a model, at discrete points, for a function of K independent 
variables. Such a discrete animated model has been generalized by the 
author to represent a class of large-scale nonlinear problems by intro- 
ducing a sequence of linear-, planar-, cubic-, etc., up to K-dimensional 
networks, all interconnected into a single polyhedral structure. However, 
a hierarchy of multidimensional networks can no longer be energized by 
mere currents and voltages. A sequence of multidimensional electro- 
magnetic waves must be propagated across the polyhedron (and its dual 
polyhedron), in order that the waves may satisfy Stokes’ theorem, as they 
step across the boundaries between two different-dimensional networks. 
Such an animated polyhedral model can represent not only a function of 
k independent variables, but also all its divided differences of higher 
order (estimated directional derivatives along the lines, planes, cubes, etc.) 
all simultaneously. Furthermore, if the polyhedron and its dual are im- 
mersed into a k-dimensional region filled with stationary or moving 
magnetohydrodynamic plasma, the amorphous field crystallizes into a 
sequence of 2k sets of transmission networks, coupled by and energized 
with a large number of K-dimensional magnetohydrodynamic generators 
(“generalized” rotating electrical machines). Even in the absence of 
motion (velocity terms), the crystallized field-structure may assume a 
self-adaptive “oscillatory” state, in which it can represent not one, but any 
number of arbitrarily picked functions of k independent variables, as well 
as their higher order divided differences-all simultaneously and auto- 
matically-without needing any adjustment or interference by the analyst. 

The resultant oscillatory polyhedron (or self-organizing “automaton”) 
is applied in the present paper to model (curve-fit) simultaneously any 
number of functions of a set of nonuniformly-spaced variables. In 
particular, simple numerical examples are shown of estimating-by 
regression theory and a least-square criterion-several arbitrary functions 
of two independent variables at four nonuniformly-spaced points on a 
plane. The same oscillatory model (automaton) is used, without any 
change, for the highly satisfactory estimation of not one but six different 
arbitrarily picked functions, plus their divided differences. Numerical 
examples with two nonoscillatory polyhedra show that the latter can 
satisfactorily fit only one, or at most, only a small class of functions plus 
their divided differences. 
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INTRODUCTION 

Mathematical Background of Physical Concepts 

In order not to frighten the mathematician or statistician readers of this 
paper by the electrical engineering terminology, it should be pointed out at 
the beginning that it is the belief of the author that many-if not all-of the 
physical concepts stated in these pages can be restated in purely mathematical 
terminology. He believes that these concepts can be fitted somewhere into the 
framework of modern tensor calculus that deals with such topics as the inte- 
gration theory of “exterior” differential forms [l]. During the last three 
decades the author has been applying conventional tensor-analysis, which 
is now used quite extensively in the local jIeZd problems of differential 
geometry, to global electrical network problems. Lately the author discovered 
that during the same decades Cartan, DeRham, Hodge, Whitney, Steenrod, 
and a host of other mathematicians have extended the theory of local “tensors 
in the small,” to global “tensors in the large,” by utilizing the multiply- 
connected, curved polyhedral networks of algebraic topology. These mathe- 
maticians thus apply tensorial methods to the analysis and approximate 
solution of combined jeld and network problems. That is also the purpose of 
the author (and of the present paper), except that he specializes in getting 
numerical answers to practical physical problems. 

Since the author is an electrical engineer and not a mathematician, his 
models are electrical and not mathematical networks. He believes that his 
electrical network researches are somewhat equivalent to replacing some of the 
geometrical concepts of mathematicians with physical concepts, and to 
retaining others as geometry. Actually, he attempts to combine mathematics, 
geometry, and physics into one engineering tool. At the same time he is 
definitely anxious that his physical structures should dovetail as closely as 
possible into the elaborate geometrical and mathematical structures built by 
theoretical mathematicians. 

The Discretization of Fields by “Neighborhoods” 

Statisticians consider the rows of an experimental n x k data-matrix X 
(independent variables) as n scattered points in a k-dimensional space. The 
single column y of the dependent variables is viewed either as weights at 
the points, or as a k-dimensional surface immersed in a k + 1 dimensional 
volume. This netpoint representation of a surface is quite analogous to the 
manner in which mathematicians are solving multidimensional partial 
differential equations by the use of finite-difference methods. Electrical 
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engineers have also been employing the netpoint representation of field 
problems by replacing the diSference equations with electrical one-dimensional 
network analogous. 

During the heyday of the ac network analyzer, the author specialized in the 
electrical network modeling of the partial differential equations (not difference 
equations) of mathematical physics (both classical and quantum physics). 
He realized even then that the use of electrical networks implies more than 
just an analogue representation of difference equations. He was convinced 
that the use of networks derives from the given data, (and from the given 
partial differential equations), additional information about the K-dimensional 
surface that was not contained in the second-hand difference equations; 
and which can be put to use, for instance, in the tearing apart and the piece- 
wise solution of large networks. He conjectured that a network examined also 
the neighborhood of each given point (vertex) with the aid of currents and 
voltages residing in the added branches of the network. Following up this 
belief, the author eventually has generalized his one-dimensional physical 
models by a sequence of multidimensional networks, in order to derive still 
more information from the given data, or equations, with the aid of still more 
detailed neighborhoods. 

The subject matter of the present paper utilizes practically the last step 
only in the generalization processes that discretize multidimensional fields by 
neighborhoods, rather than by mere points only. That step is a self-organizing 
“automaton.” Thus it becomes necessary to give a bird’s eye view of the 
various steps in the generalization process in order to appreciate the results of 
the last step, the oscillatory polyhedron or automaton. 

Electric Circuit Models and Their Generalization 

It is well known even in nonengineering circles, that the analytical solution 
to a linear field problem, say to the flow of heat within an odd-shaped region, 
may be approximated in a discrete manner by erecting between the assumed 
netpoints an irregular resistance network, and allowing the electrical currents 
in the added branches to imitate the flow and distribution of heat. (However, 
many mathematicians do not admit that the introduction of physics adds new 
information to the mathematical problem, since both approaches lead to 
exactly the same answer.) The next step in the functional generalization of / 
such an analogue model consists of the use of inductors and capacitors, as 
well as ideal transformers, in addition to resistors. This step enables the 
simultaneous representation of several partial differential equations. (See 
Fig. 1.) A further generalization in the same direction undertakes the discre- 
tization of nonlinear field problems by means of moving networks, or moving 
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currents measured along stationary networks, etc; such as arise in the study 
of rotating electrical machinery used in industry. This last generalization is 
equivalent to introducing two spatially orthogonal, one-dimensional networks 
and immersing them into a two-dimensional magnetic field traversed by 
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FIG. 1. Linear electric-network model of the field equations of Maxwell 
(orthogonal, curvilinear reference frame). 

conduction currents. The networks act as nonholonomic reference frames and 
permit the analysis of the nonlinear field as a circuit structure by the 
addition of mechanical parameters (speed and torque) to the electrical 
parameters (current and voltage). 

A more radical generalization along an entirely different direction consists 
of the enlargement of the one-dimensional (linear) stationary or moving 
network by polyhedral (nonlinear) networks (Fig. 2) having straight or curved 
multidimensional elements 12-41. But now it becomes necessary to propagate 
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across the polyhedron a sequence of electromagnetic waves, in place of 
conventional currents. The next logical and almost inevitable generalization 
is to immerse the polyhedron (and its dual polyhedron) into an underlying 
stationary or moving magneto-hydrodynamic plasma that fills a K-dimensional 

t 
x0, 

f ‘\ POLYHEDRON 

FIG. 2. Primal and dual polyhedra. 

region. In addition to making available a hierarchy of additional electrical 
and mechanical parameters, the new kind of model combines the hitherto 
separate types of continuous and discrete approximations into one engineering 
tool. The resulting continuous plus discrete (crystallized) structure consists of 
a maze of multidimensional transmission networks (nonholonomic reference 
frames) connecting together a host of K-dimensional “generalized” rotating 
electrical machines, each having fluid and gaseous, electrostatic and electro- 
magnetic, etc, sources, as well as conductors and dielectrics distributed 
continuously or discretely throughout a k-dimensional space. 

Self-Organizing “Automata” 

From the author’s point of view, the advantage of the use of networks over 
netpoints is that each step in the above series of generalizations is introducing 
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a large number of intrinsic adaptive parameters and feedbacks into the phy- 
sical model. The adaptive parameters are the carriers of all derived infmmations 
about the “neighborhoods” of the given points. In the presence of extra para- 
meters and thus of extra informations, more accurate and more versatile 
studies about the over-all problem become feasible. 

A most fertile potentiality is opened up by the fact that the last-mentioned 
crystallized field structure may assume an oscillatory state under a great 
variety of boundary and environmental conditions. Hence it can be considered 
as a self-organizing “automaton,” possessing a great variety of intrinsic self- 
adaptive parameters and feedbacks. Another potentiality is the fact that the 
automaton can also be given a deterministic or a probabilistic interpretation. 
The author expects to use the probabilistic automaton and its further 
generalizations for the solution of such cognitive processes as pattern recogni- 
tion. 

If the mechanical parameters (speed and torque) in the model are absent, 
the resulting stationary plasma and electromagnetic field can still oscillate 
in unison, and adjust themselves automatically to changes in their environ- 
ment. This elementary nonmechanical automaton will be called an “oscillatory 
polyhedron.” Its ability to curve-fit any number of arbitrarily picked multi- 
dimensional functions simultaneously is the subject matter of the present 
paper. It will be seen from the numerical examples to be shown, that the 
self-organizing (oscillatory) property of the structure is retained even in the 
absence of the motion of the underlying electric and magnetic charges and 
currents. 

The automata mentioned above utilize only the minimum number of 
parameters and characteristics of a magnetohydrodynamic plasma. Actually 
it is possible to introduce an almost limitless sequence of thermodynamic 
and other parameters into the plasma, and thus into the automaton, in order 
to increase the versatility of the latter in solving complex “systems” pro- 
blem. 

REGRESSION ANALYSIS VERSUS TEARING NETWORKS 

Regression Coeficients as Liberated “Constraint” Variables 

Although the introduction of higher order divided differences is part and 
parcel of the Calculus of Finite Differences, the curve-fitting will be per- 
formed not with Newton’s interpolation formula, but with a generalized 
regression method employing a least-square criterion. The regression 
procedure will curve-fit not only a given function, but also its higher-order 
divided differences, all simultaneously. (It will be due to the oscillatory 
property of the polyhedron, and not to the generalization of the regression 
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method, that the model will fit not one but any number of functions plus 
their divided differences.) 

For several years the author has been developing a procedure-the method 
of tearing-to solve large-scale physical systems (linear, nonlinear, or oscilla- 
tory systems), in a piecewise manner [5]. He tore apart a physical system (or 
its network model) into n disjointed, isolated networks, and constructed a 
hypothetical “intersection” network out of the fragments of the torn n 
subdivisions. (The intersection network had the same eigenvalues as the 
original untorn system.) The author solved the n + 1 smaller networks 
separately, then interconnected the partial solutions into the solution of the 
resultant system. The resultant solution of the n + 1 smaller systems was as 
exact as if the original system had not been torn apart into n component 
systems, but solved in one piece. 

It came as a pleasant surprise to discover that the philosophy underlying 
the theory of regression used in curve-fitting follows closely some of the steps 
that arise in the method of tearing. Both methods liberate hitherto hidden 
internal variables (regression coefficients residing within a hypothetical 
“intersection” system) that can throw new light upon the internal mechanism 
of the unknown overall system under study. Thus a general outline of the 
generalized curve-fitting procedure of this paper can be presented-ahead 
of the numerical examples-by comparing regression analysis with the 
method of tearing. 

It may be mentioned that many people confuse the method of tearing 
networks (physical systems) with the method of partitioning matrices (set of 
equations) because of the similarity of their formulae. Such blind comparisons 
miss, however, the underlying basic differences. Tearing a network is like 
cutting open a patient; whereas partitioning a matrix (by any trick) is only 
like fluoroscoping the patient. A physical system (or its physical model) 
always contains more information than its mathematical representation, which 
uses only the minimum number of necessary equations. 

Given Experimental Points 

Let the numerical results of n experiments with k independent variables 
be expressed as an n x k data-matrix X. Of course, it is assumed that the 
selection of data satisfies all the requirements of small sample theory, whatever 
they may be, for the particular problem under consideration. 

The matrix of independent variables X can be plotted as n points in 
a K-dimensional Euclidean space. The vector of dependent variables y 
represents points on the K-dimensional surface that has to be fitted by a 
model. 
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Developing the “Neighborhood” of Points 

The immediate problem is to utilize the neighborhoods of the given n 
points for gathering more information about the unknown surface. For that 
purpose the author interconnects neighboring points (0-simplexes) with a 
network of lines, (branches or 1-simplexes), neighboring lines with a network 
of planes (triangles or 2-simplexes), and so on, until a network of k-dimen- 
sional Euclidean hyperplanes (k-simplexes) covers the entire K-dimensional 
space spanned by the n vertices (Fig. 2). The square of a q-dimensional 
volume element is called the “impedance” z of that element. Mutual impe- 
dances may also be introduced, representing products of direction cosines. 
A second, so-called “dual” polyhedron is also constructed, whose q-simplexes 
are orthogonal to those of the original, or “primal” polyhedron. 

The existence of the polyhedron is equivalent to an enlargement of the original 
n x k data matrix X (k independent variables) by an equal number of rows 

and columns. Each added q-network contributes to X as many rows and 
columns as there are q-simplexes in the q-network. 

The vector y of the dependent variables (the surface to be fitted) is also 
lengthened by propagating an electromagnetic wave across the torn-apart 
polyhedron. Hence the q-simplexes in a q-network must be so represented 
individually, and so interconnected with each other (and with the q + 1 or 
q - 1 simplexes of neighboring networks) that an electromagnetic wave 
with four types of parameters (e, b, h, d) can propagate across the network, 

Satisfying Eight Maxwell’s Equations Simultaneously 

The linear network model that satisfies, in a discrete manner, the four 
field equations and the four constitutive equations of Maxwell, all simultane- 
ously, is shown in Fig. 1, and is derived in [6]. The model contains resistors, 
inductors, and capacitors, as well as two types of ideal transformers. (The 
latter are necessary in order to take care of the arbitrary values of the varia- 
bles.) Originally the author thought that for each higher dimension in the 
polyhedron a similar network would have to be constructed. 

In attempting to satisfy Stokes’ theorem between two different-dimensional 
networks, the author eventually discovered the fact (well known to geometers) 
that even-dimensional spaces behave d@rently from odd-dimensional spaces, 
and thereby, in a polyhedron, two complete diSerent-dimensional networks are 
necessary to generate one complete electromagnetic wave. Thus a k-dimensional 
polyhedron includes a sequence of only k/2 full waves. (This is the reason 
why the simplest possible example that can be worked out with the aid of a 
complete electromagnetic wave must be two-dimensional and not one- 
dimensional. A planar network must also be used.) 
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All even-dimensional q-networks were thus constructed of magnetic 
material (inductors and resistances), and all odd-dimensional q-networks of 
dielectric material (capacitors and conductances). In order to introduce ideal 
transformers, it was necessary to assume a dual polyhedron also, in which the 
physical role of even and odd dimensions are interchanged. The two poly- 
hedra also are interconnected both conductively and inductively. It may 
be stated that each full electromagnetic wave (with e, h, b and d components) 

still occupies the conjiguration of Fig. 1, except that now the configuration 
extends over both a q-dimensional and a q + l-dimensional network. 

The Method of Tearing 

Before energizing the polyhedra, two preliminary steps implied by the 
method of tearing must be performed: 

1. Each polyhedron is torn into isolated q-networks (separate linear-, 
triangular-, tetrahedral-, etc. networks), then their impedance matrices are 
established and inverted. 

2. Out of the fragments of the inverted and isolated q-networks two 
additional polyhedra, the so-called “intersection” polyhedra are constructed 
(both primal and dual). 

These component networks are separately energized. 

Regression Analysis 

The determination of the model-errors in curve-fitting by regression 
consists of the same steps that arise in solving piecewise the linear equations 
of state I = YE of a network by the method of tearing. (In the linear network, 
the known quantities are the impressed “open-path” currents I; whereas 
the unknowns are the potential differences E appearing across the same open 
paths.) If the terminology of linear networks is used for a simplified pre- 
sentation of the polyhedral network, the steps in the piecewise solution of a 
polyhedron are as follows: 

1. The given dependent variables y are considered as known currents I 
impressed upon the vertices of the untorn polyhedron. (The vertices belong 
to the O-network and not to the linear-, or l-network.) 

2. The polyhedron is torn into isolated q-dimensional networks (sub- 
divisions) and the open-circuit voltages E’ appearing upon each q-network 
are calculated. These voltages are considered to represent the “divided 
differences” (approximations to directional derivatives), that also have to 
be fitted by the polyhedron, simultaneously with the function. The vector of 
open-circuit voltages E’ forms the extended y vector. 



MULTIDIMENSIONAL CURVE-FITTING 55 

3. The open-circuit voltages are impressed as e = Xty upon the inter- 
section polyhedron whose impedance matrix is X,X = S. 

4. The intersection-network impedance matrix is inverted as 

(X,X)-l = s-1. 

5. The resultant currents i are the regression coefficients fl of the least- 
square estimation. p = (X&Y)-lX,y or i = (X,X)-le. 

6. The additional currents I’ that appear upon the isolated subdivisions 
(because of the existence of the intersection network) are j = Xj?. The 
estimated function and all its estimated divided differences j are thereby 
found. 

7. The difference between the given and estimated “function plus divided 
differences” E’ - I’ = y - 5 = E is the error of the polyhedral model in 
fitting the given function and all its divided differences simultaneously. 

8. The unknown potentials E appearing upon the vertices of the untorn 
polyhedron are not utilized in the present study. 

Thus the physical tearing apart of the original polyhedron is an absolutely 
necessary procedure, since it is the hypothetical “intersection” polyhedron 
that acts as an estimating model. The tearing liberates new, otherwise hidden 
constraint forces that play the role of the unknown structural concepts 
sought. 

Nature of Polyhedral Curve-Fitting 

The curve-fitting process does not involve any reduction in the original 
degrees of freedom, since X is enlarged by equal number of rows and columns. 
That is, the improvement in curve-fitting is now based upon the utilization 
of the divided differences of the function (rows added to X) and not upon the 
reduction of the degrees of freedom of the data-matrix by adding only 
columns to X. 

It should be remarked that the data-matrix, hence the conventional regres- 
sion procedure, also enters in the form of a (- 1)-network attached to the 
polyhedron. As a result, if so desired, it is also allowable to guess an arbitrary 
functional form that fits the dependent variable. (The guess changes the 
original data-matrix and thus it may reduce the degrees of freedom.) An ab- 
sence of guess is equivalent to a hyperplane guess. The role of the polyhedron 
is to improve the fit given by the conventional regression model by introducing 
more regression toejicients, but without reducing the existing degrees of freedom. 
Thus, when only a limited number of points are available, a k-dimensional 
polyhedron can take the place of a polynomial with k variables and high 
degree. 
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The polyhedral model is still linear in the regression coefficients /I. It is, 
however, nonlinear in the independent variables X, since the volume elements 
are involved polynomials of X. 

NUMERICAL EXAMPLES 

Fitting with a Nonoscillatory Polyhedron 

The original aim of the author was to show that a polyhedron can always 
improve the fit of a k-dimensional function made by conventional regression 
theory, without reducing the available number of degrees of freedom. The appear- 
ance of fitted divided differences was only an added byproduct. 

Since it was found that different interconnections gave different fitting 
for the same function, also for different functions, it became the goal of a 
later research to discover whether one and the same model would fit, in a 
satisfactory manner, not one but any number of arbitrary functions simultane- 
ously, without changing the model. Thus the examples to follow in this 
section refer to trials with a nonoscillatory polyhedron only, whose behavior 
can be explained without introducing a magneto-hydrodynamic plasma 
and thus an oscillatory, self-organizing polyhedron. 

(A) Given data-matrix 

x Y 

I-NETWORK ~dlelectric) 
6 branches 

O-NETWORK (magnetic) 
3 planes 

(B) Given trial functions 

(1) .q = 3X + 4y + 2 (4) zg = x3 + 2y2x-2x* - 2xy + 4y + 8 
(2) z2 = 5xy + 3X + 4y + 2 (5) zg = lO[l + log (x + 4) - l/y] 
(3) zQ = x2 + 2y2 - 3xy + 5x - 3y + 6 (6) z6 = 10[2 + ez/10 - y  log (x + lo)] 

FIG. 3. Three-dimensional curve-fitting with a polyhedron 
@imuhaneous fitting of a function plus all its divided differences.) 
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Derived Characteristics of a Function 

Four points were assumed as discrete independent variables upon a 
two-dimensional plane (n = 4, K = 2), shown in Fig. 3. The polyhedral 
reference frame attached to the given points contains six branches and three 
triangles (planes), along which six first-order and three second-order divided 
differences can be defined. The assumed model can consider thus 
4 + 6 + 3 = 13 characteristics of the given function (or rather, of the discrete 
data) for curve-fitting or other purposes. 

The 13 - 4 = 9 derived characteristics represent a minimum. Their 
number can be increased by assuming still higher-order divided differences 
(just as in the Calculus of Finite Differences). By subdividing (triangulating) 
the polyhedron, any desired number of further characteristics of a given 
function can be derived. Moreover with each divided difference the compo- 
nents of a skewsymmetric tensor of rank Q are also associated, representing 
still additional characteristics, namely projections of the directional derivative 
upon various coordinate hyperplanes (Grassman coordinates). 

As the assumed system has one residual degree of freedom (n - k - 1 = l), 
the 12 x 12 moment-matrix can supply 12 regression coefficients to estimate 
the characteristics of a particular function. In working out numerical examples 
six quite different functions were assumed to generate regression coefficients. 
It was found by trial that each nonoscillatory polyhedron could fit satis- 
factorily only one of the functions and its divided difference; at most a 
restricted class of functions only. It was found that in a given polyhedron 
different reference frames give different fit. The results of two different planar 

reference frames will now be shown, assuming the reference frame of the 
linear network to be unchanged. 

The six assumed functions and their derived first and second divided dif- 
ferences are listed in the left-hand columns of Tables I to VI. 

Estimation by a Hyperplane 

In fitting only one dependent variable z = f(x, y), it is possible to guess any 
arbitrary function that may fit x by least square. In the present example a 
large number of dependent variables exist, hence no single function could be 
guessed at. Thus for each of the six .Z functions a hyperplane fit 
x = a + bx + cy is being applied automatically by the - 1 network of the 
polyhedral model. 

Considering a hyperplane model as a first guess to fit each.of six functions, 
the conventional least-square estimates are given in the first right-hand 
columns of Tables I to VI. The least-square estimation does not utilize any 
divided differences. 
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Linear-Network Estimation 

Of course, the entire polyhedron can be immediately attached to the 
regression (- 1 dimensional) network and the final estimate calculated 
outright. As a matter of fact, even the hyperplane fit need not be calculated 
as an intermediary step. Nevertheless, in order to discover the relative effec- 
tiveness of the sequence of q-networks, next only a O-network plus a l-net- 
work were attached to the (- 1)-network. The results of the second step are 
shown in the second right-hand columns of Tables I to VI. 

The estimate of the fundamental functions became improved in all cases 
by the addition of a linear network. An approximate estimate of the first 
divided differences was also found. 

Planar-Network Estimations 

When three planes were added to the linear network, the polyhedral model 
attached to the least-square network represented one full electromagnetic 
wave. (The polyhedral model comprised part of a 0- and a 2-network, plus an 
entire l-network.) Two different reference frames were assumed on the planar 
network. 

The estimated functions are given in the third and fourth right-hand 
columns of Tables I-VI. The second planar reference frame gave much 
better fit than the first frame, with several of the functions. 

Goals Accomplished 

The cited numerical examples of Tables I-VI show that a polyhedron 
attached to a least-square model accomplishes the expected goals: 

1. It improves always the estimate of the conventional least-square model 
without decreasing its degrees of freedom. 

2. It gives simultaneously satisfactory estimates for the higher-order divided 
differences also. 

In analogy to a conventional regression model, any guessed-at reference 
frame upon the polyhedron can be improved only by further guessing, or by 
a systematic study (for instance, by introducing still higher-order divided 
differences). Thus each class of dependent variables requires, in general, 
a different polyhedral model, just as in conventional curve-fitting by regres- 
sion. 
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ALMOST-OSCILLATORY POLYHEDRON 

Search for a Universal Model 

However, it was the eventual goal of the author that the same model, 
without adjustment and without being of undue size, should fit: 

(1) Any number of arbitrary dependent functions, all simultaneously. 

(2) Functions with unknown components or unknown nonlinear parameters. 

(3) Also it should fit simultaneously all higher-order divided differences, 
integrals, as well as functions of the latter (if given). 

To satisfy such a large order, it occurred eventually to the author that the 
polyhedron itself (without the regression-network or - 1 network) should 
be made oscillatory, or self-excited. Such a stage could be expected to be 
reached by enlarging the purely electromagnetic wave (b, d, e, h) with electric 
and magnetic charges and currents (~6, J”, pm, Jm). This next step in the 
generalization was suggested by the unused portions in the configuration 
of Fig. 1, which still had just enough room left to incorporate the added 
electrical source variables (without the mechanical variables). The complete 
Fig. 1 appears to be a well-balanced structure, that might oscillate in the proper 
polyhedral surroundings, if stretched into two dimensions. It was hoped that, 
after adding the nonoscillatory least-square network, the resultant poly- 
hedron (an almost oscillatory structure) will not be unduly influenced by the 
nature of the functions that it is supposed to estimate. 

Estimation with an Oscillatory Polyhedron 

The last columns in Tables I-VI show the improved estimates given by an 
oscillatory polyhedron for the same six functions and differences that are 
given in Fig. 3. The previous linear network configuration was retained also 
in the oscillatory model, and only the planar network configuration was 
revamped. The estimates came out even better than the author expected. 
It is, however, emphasized that no exact jit is possible, since the polyhedral 
model still has one residual degree of freedom, the same that the least square 
model has. 

The good estimates of six widely different functions suggest that no 
guessing nor adjusting of the oscillatory polyhedral model is required when the 
dependent variables d;Ser widely. Because of this elastic, self-adjusting feature 
of the almost-oscillatory polyhedron, the dependent variables that are to be 
fitted can thus be arbitrary functions, or multivariate functions; they can 
have unknown components, or can be functions of unknown parameters. 
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The almost-oscillatory polyhedron is expected to be a universal model for estima- 

tion in a large class of problems. 

Interpolation 

Thirteen characteristics of the given functions and an already inverted 
12 x 12 moment-matrix are now available for further studies with the six 
functions, such as interpolation, smoothing, generalized harmonic analysis, 
etc. As a matter of fact, more than thirteen characteristics of each function 
are known, since, for instance, with each set of divided differences a skew- 
symmetric tensor of rank q (containing the Grassmann coordinates) is also 
associated. 

A whole gamut of crude to refined methods can now be employed for 
interpolation. The already known twelve regression-coefficients of each 
function may also be used either unchanged or in an altered form, as addi- 
tional interpolated points are assumed either singly or in groups. 

It is emphasized that the polyhedron interpolates not only points, but at 
the same time also their entire neighborhood by means of interpolated bran- 
ches, triangles, tetrahedra, etc. Thus the oscillatory polyhedron calculates not 
only the unknown functions at the interpolated points, but simultaneously also all 
their higher-order divided diSferences in the directions defined by the inter- 
polated q-networks. It is also emphasized that the multidimensional 
interpolation with a polyhedron is subject to the same analytical limitations 
as the one-dimensional interpolation of the Calculus of Finite Differences. 
The polyhedral interpolation should not be expected to accomplish theoretical 
feats that the one-dimensional Calculus of Finite Differences cannot do. 

Physical Interpretation 

The propagation of electromagnetic waves in multidimensional networks 
offers many unusual and unexpected features that lie outside the experience 
of the author. Some aspects of the physics are still puzzling, but the numerical 
results speak for themselves. Hence the physical interpretation given should 
be considered as only tentative, until more numerical data are gathered about 
the nature of propagation of a sequence of waves across a sequence of higher- 
dimensional networks. 

It should also be pointed out that the given numerical examples (fitting 
six arbitrary functions right at the given points) were devised merely as a 
convenient check on the correctness and oscillatory nature of the polyhedral 
model, and not as a field of possible application. After all, there exists an 
infinite number of data-matrices that can produce exact fits at the four given 
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points for all six functions, (even for their divided differences), without any 
error. (Of course, no degrees of freedom would be left over as occurs in these 
examples.) It is the quality and quantity of errors that determine the value 
of a model and not the absence of all errors. The polyhedral model is the 
depository of several other types of errors also, that have not been discussed in 
these pages. 

Minimum Stored Energy 

Following up the physical analogy between regression theory and its 
network analogue, it can be shown that the total power input into the net- 
work represents the error-square. Hence the model error is a minimum, zjc the 

total stored electromagnetic energy in the resultant polyhedron is also a minimum. 
If the intersection network “explains” totally, or fits perfectly, the given 
function and all its divided differences, then the stored energy in the inter- 
connected polyhedron is zero. 

In a linear network the stored energy is zero only if the network is oscilla- 
tory. Thus before excitation both the resultant polyhedron and the inter- 
section polyhedron must be made oscillatory. That is, the reference frames 
in the individual q-networks and in the intersection polyhedron must be so 
assumed in unison, that the resultant over-all waves propagating within the 
interconnected polyhedron should be self-sustaining in space and time. 
This last step of finding a set of open-circuit and short-circuit reference 
frames that have minimum stored energy when combined, is basically a non- 
linear programming problem. Because of the simplicity of the problem, 
however, the best reference frame may be arrived at by physical reasoning, 
without a nonlinear programming process. (This physical reasoning has not 
been reduced as yet to a routine computer procedure.) 

The regression network itself (- 1 network) cannot be oscillatory when 
it has one or more degrees of freedom; thereby the polyhedron as a whole 
can only approach an oscillatory stage, but can never reach it. Thus the errors 
may approach zero much faster if the data-matrix itself approaches a square. 

Crystals as Self-Organizing Automata 

It is emphasized, however, that the oscillations in a polyhedron represent 
a far more advanced type of physical phenomenon than do the oscillations 
in a conventional electrical network. In the “self-organizing automaton” the 
oscillations are self-adaptive, that is, they can adjust their modes and 
frequencies automatically to varying conditions. It is an inherent property 
of all electrified polyhedral networks that the manner of interconnection of 
the underlying material p-simplexes is not permanent, but varies with the 
nature of the superimposed electrical waves. (This is the motivation behind 
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the author’s concept of “tearing and interconnecting” electrified networks 
[8, 91.) On the other hand, the oscillations in a conventional “oscillatory 
network” are not self-adaptive, but fixed in mode of oscillation and frequency. 
Fortunately nature offers many examples of self-adaptive electrified structures. 

The atoms of a polyatomic molecule within a crystal may be assumed to 
represent the vertices of a polyhedron. When a crystal is excited by x-rays, 
the resulting dipole waves of the oscillating atoms and their accompanying 
diffracted electromagnetic waves form a self-sustaining dynamical system. 
The multidimensional waves in the oscillatory polyhedron of this paper are 
surprisingly complete analogues of such resonant crystal-waves. (However, 
the curve-fitting examples utilize ray-optics rather than wave-optics.) 

Thus it lies within the realm of possibility that crystals will be employed 
eventually for the physical realization of multidimensional polyhedral net- 
works energized with electromagnetic, magnetohydrodynamic, and still more 
advanced types of waves. It appears that these advanced types of electro- 
magnetic waves can offer a greater variety of parameters (and thus more 
subtle multivalued logics) for the construction of crystal computers than 
switching-circuit signals can offer in conventional computers. The existence 
of electromagnetic-wave propagation along a neural network has already been 
long established. Thus a crystal may also act as a model for some classes of 
neural phenomena. 

SUMMARY 

Summary of Nonoscillatory Polyhedron 

1. The Calculus of Finite Differences deals with functions, as well as 
with their divided differences of higher order, but in one dimension only. 
Two or three dimensions are treated only as combinations of, or iterations 
upon, one-dimensional projections. (For a detailed discussion of this impor- 
tant point by Salzer, see [7].) 

2. The regression theory deals with functions in any number of dimen- 
sions, but ignores their divided differences. 

3. The animated polyhedral approach deals with functions, as well as 
with their higher order divided differences, all simultaneously, in any number 
of dimensions. 

The polyhedral approach can thus deal adequately with problems in which 
a limited amount of data is associated with a large number of independent 
variables. However, a nonoscillatory polyhedron, as well as a conventional 
nonlinear regression model, can deal, without adjustment, with only a small 
class of functions at a time. In the presence of additional arbitrary dependent 
variables additional regression models need to be guessed at; and in the 
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polyhedron a different model or a different reference frame needs to be 
assumed. 

Summary of Almost-Oscillatory Polyhedron 

The self-organizing, oscillatory capability of a polyhedral model (auto- 
maton) injects some unusual features into the problem of estimation. For 
instance: 

1. A single oscillatory polyhedron can estimate not only one function and 
its associated family of divided differences, but any number of arbitrarily 
selected functions and their divided differences, all simultaneously. 

2. The oscillatory polyhedron can estimate satisfactorily even a set of 
random numbers. (The significance of this is not yet understood.) Hence if 
the multivariate dependent variables contain unknown components or un- 
known linear parameters, the model can still estimate and solve them. 

3. If the unknown parameters of the multivariate dependent variables are 
nonlinear, the estimating polyhedron establishes a set of nonlinear algebraic 
relations between the parameters. However, a second oscillatory polyhedron 
is necessary to solve the nonlinear algebraic equations. 
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