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Abstract

For the categories of pointed spaces, pointed simplicial sets and simplicial groups and for some
�xed co�brant object A there are closed model category structures in which co�brant objects are
built out of “A-cells”. The A-cellular structure coincides with the usual structure when A = S0 for
spaces and simplicial sets, or A = Zconst for simplicial groups. Closed-model category structures
are also de�ned for diagrams in such a way that for diagrams over a contractible category under
certain conditions the factorization of a map of diagrams into an A-co�bration followed by an
A-trivial �bration commutes with holim up to an equivalence. c© 1999 Elsevier Science B.V.
All rights reserved.

MSC: 55; 18

0. Introduction

For a given co�brant object A of a suitable closed simplicial model category C (see
Theorem 2.1), we de�ne a new closed model category structure in which co�brant
objects are built by attaching A-cells of various dimensions (see Corollary 2.1.2 for
their characterization). In particular, if C is the category of pointed spaces, then the
co�brations are relative A-CW complexes in the sense of [8, 9] and their retracts, and
weak equivalences are maps that induce isomorphisms on A-homotopy. When A = S0

this specializes to Quillen’s closed model category structure [14].
Closed-model category structures are also constructed for diagrams in C in such a

way that if the classifying space of the index category is contractible, with certain addi-
tional conditions the holim commutes with factorization into an A-co�bration followed
by an A-trivial �bration up to an original equivalence.
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In [11] closed-model category structures are constructed that correspond to localiza-
tion with respect to maps of spaces or simplicial sets. If ∗ → A is a co�bration, a map
f : X → Y is a weak equivalence in the model category of [11] if PAf, the localization
of f with respect to A, is an ordinary weak equivalence. In the closed-model category
considered here, f is a weak equivalence if CWAX , the colocalization of A with respect
to X , is an ordinary weak equivalence. In other words, [11] concentrates on the part
of the homotopy theory away from A, while we concentrate on the part of A.
The rest of the introduction is devoted to the small object argument [2] which is

used to factor maps into A-co�brations followed by A-trivial �brations. We illustrate
the small object argument construction in the case of pointed topological spaces and
indicate how to extend it to other simplicial categories. There is a short section on
notation at the end of the introduction and the axioms of a closed model category that
need to be checked are listed at the end of Section 1.
Let A be a �xed pointed co�brant space (for example, a pointed CW-complex). A

map j : X → Z is called A-cellular if it is built as a (possibly trans�nite) composition
of pushouts of half-smash products of A with standard inclusions of boundaries into
topological simplices

Ao |�̇[n]| −−−−−→ Xi
IdAo |i[n]|

y
yji

Ao |�[n]| −−−−−→ Xi+1;

so that X = X0, Z = X� for some ordinal �. The map ji in the pushout diagram
above is the inclusion of the space Xi into the space Xi+1 obtained by attaching an
n-dimensional A-cell. In the same fashion the map j : X → Z above can be seen as a
relative A-CW-complex, or if X = ∗ then Z can be seen as an absolute A-CW complex.
Observe that for the choice A = S0 the map Ao |i[n]| becomes simply |i[n]| and so a
relative S0-CW-complex is just a usual relative CW-complex, except that the cells are
not required to be attached in the order of dimension.
The weak equivalences in the new closed model category structure are the A-

equivalences: namely, maps f : Z → Y such that they induce a weak homotopy
equivalence on the mapping space from A

Map(A; f) :Map(A; Z) ∼→Map(A; Y ):
Again if A = S0 an A-equivalence is just a weak homotopy equivalence.
Any map from X to Y can be factored into an A-co�bration followed by a �bration

which is an A-equivalence: X
CofA−→ Z ∼FibA−→ Y . (we call the second class A-trivial

�brations).
This factoring can be used to construct A-cellular approximations (A-colocalizations)

of a space X , or A-localizations of X . Recall from [8, 9] that there exist maps CWAX →
X and X → PAX so that the �rst is terminal up to homotopy from A-cellular spaces
into X and the second is initial up to homotopy from X into spaces whose A-homotopy
is trivial.
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If the map to be factored is ∗ → X , the result is CWAX , an A-cellular approximation
of X : ∗ → CWAX → X . If the map is X → ∗, the result is PAX , an A-localization of
X: X → PAX → ∗.
In [1] Bous�eld studies the notion of HZ-local space which is analogous in some

ways to the notion of A-local space discussed above. He constructs a closed model
category structure on the category of spaces with respect to which the map X → ∗ is
a �bration if and only if X is HZ-local. The reader should note that we do something
quite di�erent: we construct a closed model category structure on the category of
pointed spaces with respect to which the map X → ∗ is a trivial �bration if and only
if X is A-local.
This topological picture can be extended to simplicial objects over an algebraic

category as follows: instead of taking the topological half-smash product of a co�brant
space A with the realization of a simplicial set K , one takes the tensor product A⊗K
of a co�brant object A with a simplicial set K [14]. Hence, all the notions of A-
co�brations, A-equivalences and A-homotopy groups exist as long as the conditions of
Theorem 2.1 are satis�ed.
The crucial tool in the proof of existence of closed model category structures is the

small object argument [2], used to construct the factorizations of the axioms CM5I and
CM5II of a closed model category .
Let us illustrate how it works in the case when A is a �nite CW-complex and we

wish to construct a CM5I factorization of a map f : X → Y .
First, take all possible commutative squares from all maps Ao |i[n]|, which we will

call generators, and form a map from their wedge to the given map f : X → Y :
∨

a;b;n

Ao |�̇[n]| a−−−−−→ X
y

yf
∨

a;b;n

Ao |�[n]| b−−−−−→ Y

and then take as the “�rst approximation to Z” the pushout of the diagram with Y

removed. We obtain a space Z1 and the maps: X
j1−→ Z1

p1→ Y .
Then apply the same construction to the map p1 : Z1 → Y and obtain Z2, etc.
At the step ! take the colimit, which is in this case just the union of all Zi:

X
j!−−−−−→Z!

p!−−−−−→Y:
The map j! is a A-co�bration by construction, and p! is an A-trivial �bration since

it has the RLP, the right lifting property, with respect to all the generators Ao |i[n]|
(we use the notation (Ao |i[n]|)↗ p!).
The right lifting property for the map p! with respect to generators Ao |i[n]| follows

from the fact that the natural map

k : lim−→
i¡!

Map∗(Ao |i[n]|; pi)
∼=−→Map∗(Ao |i[n]|; lim−→

i¡!

pi):
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is a bijection by compactness of Ao |�[n]| and the existence of a countable open cover
for the pair (Z!; X ), see Lemma 3.8 for details.
Roughly, the reason for this is that a map, which is actually a commutative square,

from the generator into the right side of the bijection above, factors through some
pn : Zn → Y and from the construction of pn+1 : Zn+1 → Y it follows that the given
commutative square is already “glued into” Zn+1 and so the lifting exists into the next
stage Zn+1.
We say that in this case the small object argument converges at the step !.
We use the notion of “s-de�niteness” de�ned in [2, 4.2], though not strictly in the

sense of “smallness” (since compact spaces and compactly generated spaces are not
small) to describe the property of the domains and ranges of the generating maps
which causes the small object argument to converge. This property of an object A is
the existence of a cardinal  such that for any -sequence Y� in the category which is
continuous at limit ordinals in the sense of colimits, there is a bijection

lim−→
�¡

HomC(A;Y�)
∼=−→HomC(A; lim−→

�¡

Y�):

See Section 3.1. for additional conditions on the sequence Y� in the topological case.
We prove in Section 3.1 that the small object argument converges at a step which

is a regular cardinal when A a compactly generated space. It would be interesting to
know if the least ordinal at which the small object argument construction converges is
always a regular cardinal.
By “generators of A-co�brations” we mean a set of maps that are used together with

the “generators of trivial co�brations” at each step of the small object argument to
construct a CM5I factorization of a map into an A-cellular map followed by a map
with a right lifting property with respect to the generators. This gives a factoring of
map into an A-co�bration followed by an A-trivial �bration if both objects are �brant.
In case the objects of C are not all �brant, and the category C is proper one applies
this procedure to the induced map of �brant models.
The CM5II factorization into a trivial co�bration followed by a �bration remains

unchanged and in the case of pointed topological spaces uses the generators:

|i[n; k]|+ : |V [n; k]|+ → |�[n]|+
where V [n; k] is the “simplicial horn” obtained by removing the interior and the k-th
face of a n-simplex [14].
When the generators form a set, one can use the small object argument with their

coproduct as the single generator. Then the construction converges at a cardinal that
does not depend on the map that is being factorized. Since the whole construction is
functorial, this results in functorial factorizations. In what follows we always assume
that the generators form a set.
We use the existence in the original category of adjoint functors ⊗K , ( )K , where

K is a not necessarily �nite simplicial set, which satis�es the conditions of [14, Part
II], to de�ne the generators of co�brations in Theorem 2.1, and to de�ne an analog
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of the homotopy inverse limit for an I -diagram X over an arbitrary closed simplicial
model category : holimX = lim←− (Xi)

I =j where the simplicial diagram (I=−) is de�ned
as in [4].
In the category of pointed spaces examples of localizations and colocalizations with

respect to a co�brant space A include the Quillen plus construction, Postnikov pieces
and n-connected covers, but not localization with respect to homology (see [8, 5]).

0.1. Notation

Throughout CWAX and PAX stand, respectively, for colocalization and localization of
an object X with respect to an object A. A lower bar indicates diagrams or morphisms
of diagrams and a lower case “+” stands for a space or a diagram with a disjoint
basepoint. As usual LLP and RLP stand for “left lifting property” and “right lifting
property” and we also use the shortened “i ↗ ’” for “i has the LLP with respect to
’”, or equivalently “’ has the RLP with respect to i”, applying this to classes of maps
as well.
We often specify the kind of a weak equivalence (co�bration, �bration) such that

for example X ∼A−→ Y means a weak A-equivalence of diagrams and X
CofA−→ Y means

an A-co�bration with respect to a co�brant object A.
If C is a category and A ∈ |C| is a co�brant object, CA will the A-cellular closed

model category structure on C.

1. A-cellular closed-model category structures

In the following de�nition Hom(X ;Y ) denotes the simplicial function complex of
[7]. We de�ne weak equivalences as morphisms inducing equivalences on simplicial
function complexes from A into �brant approximations of objects, leave the �brations
unchanged and de�ne the co�brations by LLP.

De�nition 1.0. Let C be a pointed closed simplicial model category [14, Part II, Sec-
tion 1] and a A a co�brant object of C. We call CA an A-cellular closed model category
structure if the weak equivalences, �brations and co�brations in CA are de�ned as fol-
lows (the subscript f denotes �brant approximation, and WsSets is the class of weak
equivalences of simplicial sets):

WCA = {’| Hom(A; ’f ) ∈ Ws Sets};
FibCA = FibC;

Cof CA = { j| j ↗ (WCA ∩ FibCA)}:

We will call the new co�brations and the new weak equivalences, respectively A-
co�brations and A-equivalences. It follows from the de�nitions that weak equivalences
in C are A-equivalences for any co�brant A.
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In the following theorem A-cellular closed-model category structures are constructed
for six categories: pointed spaces, pointed simplicial sets, simplicial groups and di-
agrams of such. These closed model category structures have the property that un-
der suitable assumptions the homotopy limit functor (say from diagrams of spaces to
spaces) commutes with a factorization of a map into a co�bration followed by a trivial
�bration up to an original equivalence (see Section 5).

Theorem 1.1. There exist A-cellular closed simplicial model category structures in
the following categories:
(1) In the category T∗ of pointed spaces with respect to a co�brant space A;
(2) In the category S∗ of pointed simplicial sets with respect to a pointed simplicial

set;
(3) In the category sGr of simplicial groups with respect to a co�brant simplicial

group;
(4) In the category (T∗)I of I -diagrams in T∗ with respect to A ∧ (I=−)+; where

(I=−)+ is the overcategory with a disjoint basepoint, see [4].
(5) In the category (S∗)I of diagrams of pointed simplicial sets over I; a small

category, with respect to the diagram A ∧ (I=−)+.
(6) In the category sGrI of I-diagrams of simplicial groups; with respect to A ⊗

(I=−); where A is a co�brant simplicial group.
For convenience we reproduce the axioms that need to be checked [15]:

(CM1) The category is closed under �nite limits and �nite colimits;
(CM2) If in a commutative triangle  = �·� two of the maps are weak equivalences;

then so is the third;
(CM3) The three classes of �brations; co�brations and weak equivalences are

closed under retractions;
(CM4I) Co�brations have LLP with respect to trivial �brations;
(CM4II) Trivial co�brations have LLP with respect to �brations;
(CM5I) Any map can be factored as a co�bration followed by a trivial �bration;
(CM5II) Any map can be factored as a trivial co�bration followed by a �bration.

2. An existence theorem

We suppose the existence in C of a set of “generators of trivial co�brations”, i.e.
trivial co�brations {tj} such that a morphism ’ is a �bration if and only if {tj} ↗ ’,
with s-de�nite domains and codomains. We will also suppose that the original closed-
model category C is proper, which means that a pushout of a weak equivalence along
a co�bration is a weak equivalence, and a pullback of a weak equivalence along a
�bration is also a weak equivalence [3, De�nition 1.2 and Appendix A].

Theorem 2.1. Let C be a pointed closed simplicial model category with arbitrary
colimits and with a set {tj} of generators of trivial co�brations. Suppose that C is
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proper (or if it is not then all its objects are �brant). Let A be a co�brant, s-de�nite
object.1 Then there exists an A-cellular closed model category structure CA; as in
De�nition 1.0, which admits functorial factorizations.

Proof. The proof consists of two steps: �rst, one proves the existence of the closed
model category structure CA

f for the subcategory Cf of �brant objects, then one uses the
characterization of trivial �brations and of co�brations and goes through the proof again
extending the closed model category structure to all of the category C. At the �rst read-
ing the �brant approximation of any object is supposed to be the object itself, and the
CM5I factorization is obtained by a straightforward use of the small object argument .
CM1, CM2, CM3 and CM4I are immediate.
CM4II: We need to show the existence of a lifting in a diagram:

B −−−−−→ X

∼A
yCof A

yFibA

C −−−−−→ Y:

(1)

Since FibA = Fib, it would be enough to show that a trivial A-co�bration is a trivial
co�bration. To do this consider a CM5II factorization of the left vertical map in C

B
∼Cof−−−−−→ B′

∼A
yCof A ∼A

yFibA

C
Id−−−−−→ C:

(2)

The vertical map on the right-hand side of Eq. (2) is an A-equivalence since the
upper horizontal map is an equivalence, hence an A-equivalence. The left vertical map
is an A-co�bration, hence a lifting C → B′ exists. This represents the map B→ C as a
retract of the map B→ B′, which is a trivial co�bration in C. Since trivial co�brations
in C are closed under retracts, it follows that B→ C is a trivial co�bration in C and
this implies the existence of a lifting C → X in Eq. (1).
CM5I: Let i[n] : �̇[n]→ �[n] be the usual inclusions, and tj the generators of trivial

co�brations in C. For an arbitrary map f : X → Y take a factorization Xf
i−→ Z ′′ ’f−→

Yf of the induced map of �brant approximations (see diagram below), obtained by
using the set of morphisms {A ⊗ i[n]; tj} at every successor step of the small object
argument. Convergence follows from the s-de�niteness of A⊗K for a �nite simplicial
set K , which can be seen by applying the functor HomC(K; ) to the isomorphism in
the de�nition of s-de�niteness of A.
The second map ’f is a �bration since it has the RLP with respect to tj’s. To

see that ’f is an A-equivalence note that from A ⊗ i[n] ↗ ’f it follows that i[n] ↗
HomC(A; ’f ), hence this map is a trivial �bration and so HomC(A; ’f ) is an weak
equivalence. Hence the pullback ’′ : Z ′ → Y of ’f is a �bration and an A-equivalence.
Now factor the map X → Z ′ to obtain a co�bration j : X → Z followed by a trivial

1 see [1, 4.2] and the introduction.
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�bration. Since C is proper, the characterization of A-co�brations below (Part 3) implies
that j is an A-co�bration.

X
j−−−−−→ Z

Fib−−−−−→
∼

Z ′ Fib−−−−−→
∼A

Y

∼

y
Cof

y
∼

y
∼

y
Cof

Xf
CofA−−−−−→ Z ′′ =−−−−−→ Z ′′ Fib−−−−−→

∼A
Yf

CM5II – follows from CM5II in C, since the �brations and the trivial co�brations are
the same.

Now we give the characterizations of A-trivial �brations and A-co�brations in case
there are non-�brant objects in C.

Characterization of A-trivial �brations: A �bration � is in FibC ∩WCA if and only if
it �ts in a diagram

X
�−−−−−→
Fib

Y

iX

y∼Cof iY

y∼Cof
Xf

�f−−−−−→
Fib

Yf

where iX and iY are trivial co�brations and �f is an A-trivial �bration in Cf .

Proof. Factor the �brant approximation of � into a trivial co�bration followed by a
�bration and absorb the �rst term into iX .

Characterization of A-co�brations: The following are equivalent:
(1) The map j : X → Y has the LLP with respect to all A-trivial �brations: j ↗

(FibC ∩WCA).
(2) The map j : X → Y is a co�bration in C and �ts in a diagram

X
j−−−−−→ Y

1X

y ∼Cof
yiY

X
k−−−−−→ Yf

where iY is a trivial co�bration, Yf is �brant, and k is a retract of an A-cellular map;
(3) The map j : X → Y is a co�bration and �ts in a diagram above where iY is an

equivalence, but not necessarily a co�bration.

Proof. (1)⇒ (2) Let j have the required LLP and let k be the pushout of j along a
trivial co�bration iX : X → Xf with Xf �brant

X
j−−−−−→ Y

iX

y∼
y∼

Xf
k−−−−−→ P
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The right vertical map is an equivalence by properness, since j is clearly a co�bration
in C, and k has the same LLP as j. Now consider a factoring of a �brant approximation
jf : Xf → Yf into an A-cellular map if followed by an A-trivial �bration ’f :

X
iX−−−−−→Xf

if−−−−−→Zf
’f−−−−−→Yf :

Comparing the two factorings:

Xf
k−−−−−→ P

∼−−−−−→ Yf
1Xf

y
y

y1Yf
Xf

if−−−−−→ Zf
’f−−−−−→ Yf

and using 2 Theorem 4.4 in CAf , we see that the A-trivial �bration ’f is a trivial
�bration, and there exists a lifting in a diagram

X
jf◦iX−−−−−→ Zf

iY◦j
y

y’f
Yf

1Yf−−−−−→ Yf

implying (2), because iY ◦ j = k is a retract of if ◦ iX , an A-cellular map. Note that
ordinary trivial co�brations are retracts of A-cellular maps in a trivial way, since we
add their generators to A⊗ i[n], the generators of A-co�brations.
(2)⇒ (3): obvious.
(3)⇒ (1): Consider a commutative square

X
h−−−−−→ Z

j

y
y’

Y
t−−−−−→ W

with j as in (3) and ’ an A-trivial �bration. We need to show the existence of a lifting
in this square. Consider a cubic diagram obtained by attaching the sides:

X
j−−−−−→ Y

1X

y ∼Cof
yiY

X
k−−−−−→ Yf

Z
�−−−−−→ W

iZ

y∼Cof ∼Cof
yiW

Zf
�f−−−−−→ Wf

(The left-hand side is given by (3), and the right follows from the characterization of
A-trivial �brations). Since we do not demand that iY be a co�bration, we need to show
the existence of a map tf : Yf → Wf so that the cubic diagram commutes. This follows
from the existence of a lifting in a commutative square:

X
iW◦’◦h−−−−−→ Wf

k

y
y

Yf −−−−−→ ∗
2 It is applicable, since CA

f exists.
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by applying the Lemma 2.1.1 to the category of objects under X , where k is a co�brant,
iW ◦ ’ ◦ h is a �brant, and the zigzag from the �rst to the second given by the cubic
diagram implies the existence of an actual lifting in the square above by Lemma 2.1.1.
Now, a lifting l in a diagram

X −−−−−→ Zf
k

y
y’f

Yf −−−−−→ Wf

exists, since k is a retract of an A-cellular map and ’f is an A-trivial �bration of
�brant objects. Next, consider the commutative square given in the beginning as two

objects under X and over W : a co�brant object X
j→ Y t→ W and a �brant object

X h→ Z
’→ W . The lifting above gives a zigzag from the co�brant to the �brant in the

following way: let P be the pullback obtained by using the lifting l, as seen in the
diagram

P
�−−−−−→ Z

�

y∼ ∼
yiZ:

Y
loiY−−−−−→ Zf :

Now, use the map X → P, the equivalence � and the map � to construct a zigzag in
(X ↓ C ↓ W ):

X
1X−−−−−→ X

1X←−−−−− X

j

y
y

yh
Y

�←−−−−−
∼

P
�−−−−−→ Z

t

y ’o�

y
y’

W
1W←−−−−− W 1W−−−−−→ W

and we use the lemma that follows again to conclude the proof.

Lemma 2.1.1. Suppose that in the commutative square j is a co�bration; ’ is a
�bration; and suppose also that in this square

X −−−−−→ V

j

y
y’

Y −−−−−→ W

considered as two objects in (X ↓ C ↓ W ); there exists a zigzag from the co�brant
object X → Y → W to the �brant object X → V → W where the maps going left
are equivalences. Then there exists a lifting Y → V so that the diagram commutes.
(Note: the given condition is di�erent from the existence of a lifting up to homotopy;
and implies the existence of two commutative triangles for every morphism in the
zigzag.)
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Proof. Call the �rst object j and the second ’. The category (X ↓ C ↓ W ) inherits
a closed model category structure from C by [14, Part I]. By Theorem 4.4 of [7] the
simplicial function complex LH (j; ’) is weakly equivalent to (X ↓ C ↓ W )(j; ’∗), where
’∗ is a �brant simplicial resolution of ’. Since ’ is �brant, in its �brant simplicial
resolution the term ’0 can be chosen as ’ itself, and so the set (X ↓ C ↓ W )(j; ’), as
the 0th dimension of a non-empty simplicial set LH (j; ’), is non-empty.

A possible choice of functorial factorizations in CA follows from the fact that the
generators of both co�brations and trivial co�brations form a set, and the construction
of CM5I factorization is functorial.

Corollary 2.1.2. An object is A-co�brant if and only if it admits a trivial co�bration
into a retract of an A-cellular object.

Remark 2.2. A-co�brant objects are co�brant in C. This is a special case of Cof CA
⊆Cof C which follows from

WC ∩ FibC⊆WCA ∩ FibCA :
The �brant objects in C and CA are the same.

Theorem 2.3. Let I be a small category; and let A be a co�brant object of a closed
simplicial model category C as in Theorem 2.1, with arbitrary limits and with one
additional condition: there exists an s-de�nite object S0 such that

HomC(S0; f) ∈ WS ⇒ f ∈ WC:

Then there exists a closed model category structure on the category of I-diagrams
in C in which

W(CA)I = {f|holim f ) ∈WCA};
Fib(CA)I = {’|’i ∈ FibC};
Cof (CA)I = {j|j ↗ (W(CA)I ∩ Fib(CA)I }:

Proof. The �rst step is to construct an underlying closed simplicial model category
structure in which the weak equivalences and �brations are de�ned objectwise. This is
given by Theorem 2.2 of [6] with orbits being S0 ⊗ Fi, where Fi is the free discrete
simplicial diagram corresponding to the object i ∈ I .
The second step is to apply Theorem. 2.1 to this underlying closed simplicial model

category structure choosing A⊗ (I=−) as the localizing object. We need to check that
A⊗ (I=−) is s-de�nite and co�brant in CI . The �rst follows from Lemma 3.6, and the
second from the adjunction

Hom CI(A⊗ (I=−); f) ∼= holimHomC(A; f )

The generators of trivial co�brations are S0 ⊗ Fi ⊗ i[n; k].
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Example 2.4. In the categories T∗, S∗ the S0 is just S0, in the category sGr it is the
free simplicial group FS0 =constantZ , in the category of I-diagrams it is S0 ⊗∐

iFi.

Remark 2.5 (Dwyer and Kan [7, 4.3]). it follows that a simplicial resolution in C

can serve as one in CA. Hence, in the subcategory of A-co�brants the original function
complexes and simplicial structure are compatible with the new closed model category
structure.

3. The proof of Theorem 1.1

The proof consists of checking the conditions of Theorem 2.1 for �ve cases: pointed
spaces, pointed simplicial sets, simplicial groups, diagrams of pointed spaces and of
pointed simplicial sets.

3.1. The category T∗ of pointed topological spaces.
In this section we will use the term “s-de�niteness” in a speci�c restricted sense,

since compact spaces are not small. Namely, a pointed space K will be called s-de�nite
if there exists a cardinal � such that

lim−→
�¡�

HomT∗(K; Y�)
∼=−→HomT∗(K; lim−→

�¡�

Y�): (1)

where Y� is a diagram in T∗ indexed by Seq[�], the order category of ordinals less
then �, whose values at limit ordinals are colimits of values at smaller ordinals with the
additional conditions that are discussed in Lemma 3.8. These conditions are satis�ed
for trans�nite sequences that arise from the small object argument construction when
the generating map is as in Lemma 3.8.
Let A be a co�brant pointed space. We need to show that A is s-de�nite. First we

consider the case of a compact A. Then the small object argument converges in each
case for the cardinal � = !, see [14]. This is also a special case of Lemma 3.8 where
convergence is proved for an arbitrary limit ordinal.
Now consider the general case. A co�brant pointed space A is a retract of a CW

complex and as such a compactly generated space. Let A = lim−→i∈I
Ki, where Ki is the

diagram of compact subsets of A and their inclusions. In this case take � a regular cardi-
nal large enough so that inverse limits of cardinality |Morph(I)| commute with colimits
of sequences of length � (see Lemma 3.5.) and use the convergence for each Ki.
To show that the small argument converges for the cardinal � we need the following

canonical map to be an isomorphism (as sets):

k : lim−→
�¡�

HomT∗(A; X�)
∼=−→HomT∗(A; lim−→

�¡�

X�):

For the left-hand side we have isomorphisms:

lim−→
�¡�

HomT∗(A; X�) ∼= lim−→
�¡�

HomT∗ lim−→
i

Ki; X�) ∼= lim−→
�¡�

lim←−
i

HomT∗(Ki; X�):



A. Nofech / Journal of Pure and Applied Algebra 141 (1999) 249–267 261

On the right-hand side we have

HomT∗(A; lim−→
�¡�

X�) ∼= HomT∗ lim−→
i

Ki; lim−→
�¡�

X�)

∼= lim←−
i

HomT∗(Ki lim−→
�¡�

X�) ∼= lim←−
i

lim−→
�¡�

HomT∗(Ki; X�);

where the last one follows from compactness of Ki and Lemma 3.8. Now take � to be a
regular cardinal such that � is (a) large enough for the convergence of the small object
argument and (b) larger than the cardinality of the category of compact susbsets of A
and use Lemma 3.5. on the interchange of small limits and “large and regular“ �ltered
colimits. This lemma is proved for simplicity’s sake only for (trans�nite) sequences,
but can be generalized in a form similar to Theorem 1, p. 211 [12].
The generators of trivial co�brations are the maps |i[n; k]| : |V [n; k]| → |�[n]|.

3.2. The categories S∗ of pointed simplicial sets and sGr of simplicial groups.
The s-de�niteness of any simplicial set was proved in [2]. In this case the factor-

ization in CM5I is constructed using the maps

Ao i[n] : Ao �̇[n]→ Ao�[n]; i[n; k] : V [n; k]→ �[n]

and the factorization of CM5II uses as usual i[n; k] : V [n; k]→ �[n]:
The category sGr of simplicial groups:

All objects of this, category are s-de�nite by Lemma 3.6, the s-de�niteness of Gr
was proved in [2]. Let A be a co�brant simplicial group. Then there exists a closed
simplicial model category structure in sGr in which

WA = {f|HomsGr(A; f) ∈ WS}:

3.3. The category TI
∗ of diagrams of pointed spaces over a small category I .

For a co�brant pointed space A we take as a localizing object the diagram FA =
AoK|(I=−)|, where the subscript K denotes the compactly generated topology. Note
that by adjunction

HomTI∗(FA; X )
∼= HomT∗(A; holim X );

where we use the compactly generated version of the ordinary homotopy inverse limit.
Hence the equivalences in (TI

∗)
A are those and only those maps of diagrams that

induce an A-equivalence on holim.
The s-de�niteness of FA (with the same restrictions as in Section 3.1) follows from

Lemma 3.6. and the s-de�niteness of any co�brant space in T∗.
The generating maps of trivial co�brations are the maps of diagrams

|(IdF i)+ ∧ i[n; k]+| : |(F i)+ ∧ V [n; k]+| → |(Fi)+ ∧ �[n]+|;
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where Fi are the free orbit diagrams. The initial closed simplicial model category
structure is given by

FibTI∗ = {f| (Fi)+ ∧ i[n; k]+ ↗ f};
FibTI∗ ∩WTI∗ = {f| (Fi)+ ∧ i[n; k]+| ↗ f; (Fi)+ ∧ i[n]+ ↗ f}:

This structure is related to the one described in [4, p. 314] in the same way as the
closed simplicial model category structure of pointed spaces is related to that of pointed
simplicial sets.
In the new closed simplicial model category structure �brations are the same and

the A-trivial �brations are

Fib(TA∗)I ∩W(TA∗)I = {f| A ∧ |(I=−)+ ∧ i[n]+| ↗ f; |(Fi)+ ∧ i[n; k]+| ↗ f}:

3.4. The category SI
∗ of pointed simplicial diagrams over a small category I .

In this case the initial closed simplicial model category structure is the one of [4,
p. 314]. The localizing object is FA = Ao (I=−). Its s-de�niteness follows from Lemma
3.6. and from s-de�niteness of simplicial sets. The A-equivalences are exactly those
maps of diagrams that induce an A-equivalence on |holim−|.

Lemma 3.5. Let � be a regular cardinal. If seq[�] is a category with one object for
any ordinal � ¡ � and one morphism � →  for � ¡  ¡ � and P is a category
with

|MorphP|¡ �;

then for any bifunctor F : P × seq[�] 7→ Sets the canonical map

k : lim−→
�

lim←−
p

F(p; �)
∼=−→ lim←−

p

lim−→
�

F(p; �)

is an isomorphism.

Proof. Use the construction of colimits from coproducts

lim−→
�

F(p; �) ∼=
∐

�

F(p; �)= ∼;

where the equivalence relation is: x ∼ x′ for x ∈ F(p; �); x′ ∈ F(p; �′) if and only if
F(p; (� → ))(x) = F(p; (�′ → ))(x′) for some ordinal  such that � ¡ ; �′ ¡ .
The proof for P �nite in [12, p. 212] consists of �nding a bound for a �nite set of
p’s and morphisms between them, and this is assured in our case by regularity of the
cardinal �.

Lemma 3.6. For a small category I an I-diagram in C with s-de�nite objects is itself
s-de�nite in the category of diagrams CI .
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Proof. Let W be the subdivision category of I , and let A, X be objects of CI . Then

HomCI (A; X ) ∼= lim←−W
HomC(Ai; Xj):

Let i be a limit ordinal corresponding to Ai as in Section 3.1. Choose � to be a
regular cardinal greater then sup{i; card(W )}, and apply Lemma 3.5.

Corollary 3.7. For a category C with s-de�nite objects; the objects of sC are also
s-de�nite.

Lemma 3.8. Let j be the wedge for all n ≥ 0 of the inclusions below; where A is a
co�brant; compact pointed space.

Ao |i[n]| : Ao |�̇[n]| → Ao |�[n]|:
For a map f : X → Y denote as

X = Z0
i�−→Z� p�−→Y;

the factorization of f at the stage � of the small object argument construction whose
generator is j. Then the construction converges at each limit ordinal ; or in other
words j ↗ p.

Proof. First note that for each inclusion one can �x open neighborhoods (which we will
denote U ) so that the inclusion of the domain into the neighborhood is a deformation
retract. This is done by choosing appropriate neighborhoods for the simplices and taking
their half smash with the identity of A.
Let the stages of the construction be

X = Z0 −→ Z1 −→ · · · −→ Z! −→ · · · −→ Z
p−→Y:

We construct inductively open covers for each stage Z�, indexed by �. They will be
denoted U�

i , i ¡ �, and we also denote Z� = U�
� , so that

· · · ⊂U�
i ⊂U�

i+1⊂ · · ·⊂U�
� = Z�

and Zi⊂U�
i .

For any U�
i ⊂Z� denote by gU�

i the open neighborhood of U
�
i in Z�+1, obtained

by replacing each pushout of j by the pushout of the inclusion of the domain of j in
U in a step of the small object argument construction applied to the restriction map
U�
i → Y .
Now, we de�ne U�

i inductively

U 0
0 = Z0;

U �+1
i = gU�

i ;

U 
i =

⋃

�¡

U�
i if lim():
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Since the glueing construction g is functorial, one can show that there is a deforma-
tion retraction

r�i : U
�
i → Zi:

Now let j → p be a commutative square for  a limit ordinal. The image of the
domain of j in Z is contained in some U


� , and the retraction r


� takes it to Z�, which

de�nes a map of the range of j into Z�+1. Now one can repeat the procedure for the
homotopy, etc., exactly as in the case of  = !.

4. Relations between the original and the A-cellular homotopy categories

We collect some of the relations in the following:

Theorem 4.1. Let A be a co�brant object of C and K a �nite simplicial set. Then:
(1) An equivalence in C is an A-equivalence;
(2) An A-equivalence is an A⊗ K-equivalence;
(3) An A⊗ K-co�bration is an A-co�bration;
(4) An A-co�bration is an co�bration in C;
(5) A-trivial A-co�brations are exactly the trivial co�brations in C.

Proof. (2) follows from the adjunction

HomC(A⊗ K; X ) ∼= HomC(K;HomC(A; X );

(3)–(5) follow since co�brations and trivial co�brations are de�ned by the LLP with
respect to trivial �brations and �brations, respectively.

Of special interest is the closed model category structure on the category of I -
diagrams with A = S0:

Corollary 4.2. There exists a closed model category structure on diagrams of pointed
simplicial sets (and on diagrams of pointed spaces) in which

FibS
0
= {’| ’

i
∈ Fib};

W S0 = {’| holim’f ∈W};
CofS

0

= {j| j ↗ (FibS
0 ∩WS0 )}:

A particular case is a closed simplicial model category structure on cosimplicial
spaces in which the weak equivalences are determined by the Tot functor.
A-trivial �brations can be characterized in terms of homotopy groups with coe�cients

in A [8, 9], and there are corresponding long exact sequences. As an example we give
a de�nition in the category of I -diagrams of pointed spaces.



A. Nofech / Journal of Pure and Applied Algebra 141 (1999) 249–267 265

De�nition 4.3. If ’ ∈ mapV∗ (A∧(V=−)+; X ) is a point in Map∗(A; holimX ), we denote

�k(X ;A)’ = �k(holimX ;A)’ = �k(Map∗(A; holimX ))’

where ’ : A→ holimX is a map of pointed spaces adjoint to ’.

We now turn to the relation between the categories Ho− C and Ho− CA.

Theorem 4.4. Let f : X → Y be an A-equivalence of A-co�brant; �brant objects.
Then f is an equivalence in C.

Proof. Since each of X , Y is A-co�brant and �brant, there exists a homotopy inverse
g and left homotopies

hX : g ◦ f l∼ IdX ; hY : f ◦ g l∼ IdY
We claim that the cylinder object (for X , for example) can be chosen to be X⊗�[1].

It is enough to show that X ⊗ i[1] : X ⊗ �̇[1]→ X ⊗�[1] is an A-co�bration, and this
follows from Remark 2.5 and [2, Lemma 6.4], since the map ∗ → X is an A-co�bration.
Finally, note that this cylinder object is also a cylinder object in C.

Corollary 4.5. Let ; A be the localization functors in C and CA; and let L; LA be
the respective total left derived functors. Then the functors

LA : Ho− CA ←→ Ho− C : LA

are an adjoint pair; where the functor on the left is a full embedding of the category
Ho− CA in Ho− C and the functor on the right is surjective.

Proof. By [14, Part II, Theorem 1] we need to consider the category of co�brant,
�brant objects in C and its subcategory of A-co�brant �brant objects. By Theorem
4.9 the A-co�brant approximation of a �brant object in C is determined up to original
equivalence. The isomorphism of Hom-sets is induced by �0 from the equivalence of
simplicial sets

Hom(X; CWAY )
∼→ Hom(X; Y );

in the diagram below:

∗ −−−−−→ CWAYcf
CofA

y ∼
yA

X Acf −−−−−→ Ycf

where X Acf is an A-co�brant, �brant representative of a homotopy type in H0 − CA,
and Ycf is a co�brant, �brant representative of a homotopy class in C.
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Example 4.6. Let C =T∗ and A = S2. In this case the embedding of the subcategory
of 1-connected spaces is left adjoint to the universal cover functor.

Corollary 4.7. An A-equivalence of A-co�brant �brant diagrams is an ordinary equiv-
alence on each object.

5. Lemmas on interchange of factorization and holim for contractible categories

In this section V denotes a small category whose classifying space (also denoted V )
is contractible, and we look at V -diagrams over a closed simplicial model category C,
satisfying the conditions of Theorem 2.3 and whose objects are �brant. In applications
we will use the fact that the objects of TA

∗ , (T
A
∗)
V are �brant.

Consider the adjoint functors:

FX = X ⊗ (V=−); F : C 7→ CV ;

holim− : CV 7→ C;

where the holim is de�ned as in the introduction.

Lemma 5.1. The unit of the adjunction uX : X → holimFX is an S0-equivalence
for any object X .

Corollary 5.2. The counit of the adjunction (the evaluation map) ev : F holimY →
Y is an S0-equivalence for any V-diagram Y .

Corollary 5.3. For any X ∈ C, Y ∈ CV a morphism t : X → holimY is an S0-
equivalence if and only if its adjoint adj t : FX → Y is an S0 equivalence.

Lemma 5.4. Let t : X → holimY be a morphism for an object X and a diagram
Y over a contractible small category V; let Z be its factorization and Z be the
factorization of the morphism adj t : FX → Y . Then the morphism FZ → Z is
an S0 ⊗ (V=−)-equivalence under FX; and the morphism Z → holimZ is an S0-
equivalence under X.

Corollary 5.5. The factorization of the morphism of diagrams ∗ → X is objectwise
S0-equivalent to the constant diagram on CWA(holimX ).

Lemma 5.6. The functor holim preserves right homotopies.

Lemma 5.7. The functor holim preserves CM5I factorizations up to an S0

-equivalence if the closed model category (CA)V is proper.
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6. Examples

(1) A = Sn: Equivalences are maps that induce isomorphisms on �k for k ≥ n.
A-co�brants: n− 1-connected spaces.
(2) Let f� be a self-map of a countable wedge of circles inducing an identity on

integral homology, and let A =
∨
� Cf� be a wedge of cones of f� where the index �

belongs to the set of homotopy equivalence classes of all such maps. It follows from
[5, 10] that the trivial �brant approximation in this structure is the plus construction.
(3) Let V = (a→ b← c) be the pullback category. Then Theorem 4.4 implies that

if a map of two A⊗ (V=−)-co�brant diagrams induces an A-equivalence on holim, then
it is an equivalence on each object in the original structure. One can also show that if
[A; X ] = ∗ then the A⊗ (V=−)-localization of a diagram (∗ → X ← ∗) is equivalent to
(∗ → P�AX ← ∗), recovering the result of [8] in a general setting. Note that A⊗(V=−)-
factoring of a morphism of diagrams is not necessarily an A-factoring for each object.
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