UVB-Induced Conversion of 7-Dehydrocholesterol to 1α ,25-Dihydroxyvitamin D₃ in an *In Vitro* Human Skin Equivalent Model

Bodo Lehmann, Thurid Genehr, Peter Knuschke, Jens Pietzsch,* and Michael Meurer Department of Dermatology, *Institute and Policlinic of Clinical Metabolic Research, Carl Gustav Carus Medical School, Dresden University of Technology, Germany

We have previously shown that keratinocytes in vitro can convert biologically inactive vitamin D₃ to the hormone calcitriol $(1\alpha, 25$ -dihydroxyvitamin D_3). This study was initiated to test whether the ultraviolet-B-induced photolysis of provitamin D₃ (7-dehydrocholesterol), which results in the formation of vitamin D₃, can generate calcitriol in an in vivo-like human skin equivalent model made of fibroblasts in a collagen matrix as the dermal component and keratinocytes as the epidermal component. Cultures were preincubated with increasing concentrations of 7-dehydrocholesterol (0.53-5.94 nmol per cm² human skin equivalent) at 37°C and irradiated with monochromatic ultraviolet B at wavelengths ranging from 285 to 315 nm (effective ultraviolet doses 7.5-45 mJ per cm²). In our in vitro model irradiation with ultraviolet B resulted in a sequential metabolic process with generation of previtamin D₃ followed by the time-dependent formation of vitamin D_3 , 25-

alcitriol (1 α ,25-dihydroxyvitamin D₃, 1 α ,25(OH)₂-D₃), the most potent biologically active form of vitamin D₃ (VD₃), is produced by a cascade of reactions including photochemical synthesis of VD₃ in the skin and after release into the circulation subsequent hydroxylation at the C25 atom in the liver and at the C-1 α position in the kidney (Haussler, 1986). Calcitriol and other vitamin D analogs have antiproliferative and prodifferentiative effects on epidermal keratinocytes (Hosomi *et al*, 1983; Smith *et al*, 1986; McLane *et al*, 1990) and have become potent therapeutic agents for the treatment of proliferative skin disorders such as psoriasis. It has been shown that cultured keratinocytes can convert hydroxyvitamin D₃, and ultimately calcitriol in the femtomolar range. Unirradiated cultures and irradiated cultures without keratinocytes generated no calcitriol. Irradiation of skin equivalents at wavelengths > 315 nm generated no or only trace amounts of calcitriol. The ultraviolet-B-triggered conversion of 7-dehydrocholesterol to calcitriol was strongly inhibited by ketoconazole indicating the involvement of P450 mixed function oxidases. The amount of calcitriol generated was dependent on the 7-dehydrocholesterol concentration, on wavelength, and on ultraviolet B dose. Hence, keratinocytes in the presence of physiologic concentrations of 7-dehydrocholesterol and irradiated with therapeutic doses of ultraviolet B may be a potential source of biologically active calcitriol within the epidermis. Key words: keratinocyte/metabolism/vitamin D3. J Invest Dermatol 117:1179-1185, 2001

exogenous calcidiol (25-hydroxyvitamin D₃, 25OHD₃) to calcitriol (Bikle et al, 1986; Matsumoto et al, 1991; Lehmann, 1997) and we have previously demonstrated that keratinocytes can convert exogenous alphacalcidol (1 α -hydroxyvitamin D₃, 1 α -OHD₃) and VD3 to calcitriol (Lehmann et al, 1998; 2000a) implicating functionally active 1α - and 25-hydroxylases present in keratinocytes. Provitamin D₃ (7-dehydrocholesterol, 7-DHC) exposed to ultraviolet B (UVB) radiation (spectral range 290-315 nm) converts in vivo (Holick et al, 1980) and in vitro (Nemanic et al, 1985) to previtamin D₃ (pre-VD₃), which in turn isomerizes to VD₃. Until now, the complete pathway from 7-DHC to 1α ,25(OH)₂D₃ has only been shown in the transformed cell line HaCaT (Lehmann et al, 2000b) and not under in vivo-like conditions. Furthermore, the question of possible intermediate products on the pathway from VD_3 to 1α , $25(OH)_2D_3$ remains unanswered. It was the aim of this study to demonstrate that photolysis of 7-DHC results in the formation of 1α , 25(OH)₂D₃ not only in HaCaT cells but also in an in vivo-like human skin equivalent (HSE) model. Our skin equivalent culture system consists of fibroblasts in a collagen matrix as the dermal component and keratinocytes as the epidermal component (Bell et al, 1981; Prunieras et al, 1983).

MATERIALS AND METHODS

Chemicals and reagents Dulbecco's modified Eagle's medium (DMEM) and fetal bovine serum were provided from Gibco

0022-202X/01/\$15.00 · Copyright © 2001 by The Society for Investigative Dermatology, Inc.

Manuscript received January 8, 2001; revised May 29, 2001; accepted for publication July 19, 2001.

Reprint requests to: Dr. Bodo Lehmann, Carl Gustav Carus Medical School, Dresden University of Technology, Department of Dermatology, Fetscherstrasse 74, D-01307 Dresden, Germany. Email: Bodo.lehmann@ mailbox.tu-dresden.de

Abbreviations: $1\alpha,25(OH)_2D_3$, $1\alpha,25$ -dihydroxyvitamin D_3 ; 1α -OHD₃, 1α -hydroxyvitamin D_3 ; D_{eff} , effective ultraviolet B dose; 7-DHC, 7-dehydrocholesterol; E_e , irradiance; GC-MS, gas chromatography-mass spectrometry; HSE, human skin equivalent; 19-nor,10-keto-25OHD₃, 19-nor,10-keto-25-hydroxyvitamin D_3 ; pre-VD₃, previtamin D_3 ; 25OHD₃, 25-hydroxyvitamin D_3 ; VD₃, vitamin D_3 ; VDR, vitamin D receptor.

(Eggenstein, Germany). Keratinocyte growth medium (KGM) and keratinocyte basal medium (KBM) were purchased from Clonetics (San Diego, CA). Culture dishes (\rightarrow 30 mm) were from Falcon (Heidelberg, Germany). 1a,25(OH)2D3 was kindly provided by Hoffmann-La Roche (Basel, Switzerland). 25-hydroxy[26,27-methyl-3H]vitamin D₃ (3H-25OHD₃, 177 Ci per mmol), 1α,25-dihydroxy[26,27-methyl-³H]vitamin D₃ (³H-1α,25(OH)₂D₃, 173.5 Ci per mmol), and 24R,25-dihydroxy-[26,27-methyl-³H]vitamin D₃ (³H-24R,25(OH)₂D₃, 170 Ci per mmol) were purchased from Amersham, Braunschweig, Germany. The 1a,25(OH)2D3-radioreceptor assay kit from Nichols Institute (Bad Nauheim, Germany) was used. VD3 solvents for high performance liquid chromatography (HPLC) (n-hexane, 2-propanol, and methanol) were provided by Merck (Darmstadt, Germany). Lumisterol and tachysterol were donated by Dr. A. Kissmeyer (Leo Pharmaceutical Products, Ballerup, Denmark). Ketoconazole was bought from Paesel & Lorei (Frankfurt/M, Germany). Bovine serum albumin (BSA), purity $\geq 99\%$ (product number A 0281), and 7-DHC were from Sigma (Deisenhofen, Germany). Scintillation cocktail, Ready Protein+, was purchased from Beckman Instruments (Fullerton). N,O-bis(trimethylsilyl) acetamide (BSA), N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA), Ntrimethylsilylimidazole (TMSI), and trimethylchlorosilane (TMCS) were purchased from Macherey-Nagel (Dueren, Germany). Pre-VD3 was prepared by thermal treatment of an ethanolic solution of VD_3 (1.0 µg per ml) at 60°C for 16 h under nitrogen according to the literature (Isler and Brubacher, 1982). VD3 (retention time 10.57 min) and generated pre-VD₃ (retention time 8.22 min) were separated by normal phase (NP) HPLC (eluent 1, see HPLC analysis). Pre-VD3 was fractionated from 8.00 to 9.00 min. The UV spectrum of pre-D₃ (λ_{max} 260 nm, λ_{min} 230 nm) was identical to that described in the literature (Holick et al, 1977).

Preparation of the HSE model Keratinocytes from the epidermis of normal skin from young patients undergoing plastic surgery were used as second-passage cells. Dermal fibroblasts from the same patients were cultured in DMEM supplemented with 10% (vol/vol) fetal bovine serum. The fibroblasts were embedded in rat tail collagen type 1 lattices 2 d before the keratinocytes were inoculated onto the gel matrix in the culture dishes at a density of 4×10^4 per cm². Cultivation was carried out in 3 ml KGM at 37°C in a humidified atmosphere of 5% CO₂ in air. After achieving preconfluence (equivalent to $0.45-0.65 \times 10^6$ cells per dish) fresh KBM (1.2 ml) supplemented with 1.0% (wt/vol) of BSA was added. Cell numbers and cellular viability were assessed using a CASY[®] one-cell counter (Schärfe System, Reutlingen, Germany). The viability of keratinocytes in HSE was always $\geq 92\%$.

Incubation conditions Different concentrations of 7-DHC (3.13– 35 μ M) dissolved in 6 μ l ethanol (final concentration 0.5%) were added to the medium of HSE. Control experiments were carried out (i) in the presence of 7-DHC without irradiation, (ii) in the absence of 7-DHC with and without irradiation, and (iii) in the presence of collagen matrix without keratinocytes with 7-DHC and irradiation. After UVB irradiation and incubation in the dark the medium and detached keratinocytes were separately extracted with methanol:chloroform (1:1). The chloroform phases were used for the determination of pre-VD₃, VD₃, and 1 α ,25(OH)₂D₃.

UV irradiation Samples were exposed to UVB emitted by a tunable high intensity monochromator (FWHM, 5 nm) (part of the Dermolum Um, Fa. Müller Optik-Elektronik, Moosinning, Germany). The irradiance $E_e = 0.28$ mW per cm⁻² (inhomogeneity within the irradiation spot of \rightarrow 15 mm, \pm 10%) was measured at the bottom of the culture dish and controlled by a thermopile TS 50-1 (Physikalisch-Technische Werkstätten, Jena, Germany), calibrated with PTB (Braunschweig, Germany). The culture dish (\rightarrow 30 mm) was continuously rotated round the axis. The UV spot (\rightarrow 15 mm) was positioned at the radius of the rotating dish. The UVB doses used were adapted to these experimental conditions (effective dose $D_{\rm eff}$ = applied UVB dose \times 0.25).

HPLC analysis NP-HPLC [Merck/Hitachi; column LiChroCART 250-4, Superspher Si 60, 5 μ m; solvent system 1 (n-hexane:2-propanol 95:5 vol/vol; flow rate 0.5 ml per min)] was used for the determination of pre-VD₃, VD₃, and 7-DHC. The peaks of pre-VD₃ and VD₃ (retention times 8.22 min and 10.57 min) were quantified by UV detection at 265 nm. The peak homogeneity was checked using a diode array detector (L-4500, Merck/Hitachi). Solvent system 2 (n-hexane:2-propanol:methanol 87:10:3 vol/vol; flow rate 1.0 ml per min) was used for separation of 25OHD₃ and 1 α ,25(OH)₂D₃ (retention times 7.01 min and 21.10 min). Fractions containing putative 25OHD₃ (fraction number

6–8) and 1α,25(OH)₂D₃ (fraction number 20–22) were collected and, after drying, analyzed for calcidiol [gas chromatography–mass spectrometry (GC-MS)] and calcitriol (GC-MS and radioreceptor assay). In reversed phase (RP) HPLC the calcitriol generated was identified by cochromatography of the ³H-labeled standard using a Hibar[®] column, 250-4, LiChrospher 100RP-18, 5 µm (Merck, Darmstadt, Germany), with solvent system 3 (methanol:water 85:15 vol/vol, flow rate 1 ml per min). Calcitriol-containing fractions were dried and analyzed for their content of calcitriol. Concentrations of VD₃ and calcitriol were corrected for their recoveries [VD₃ (500 pmol), 63.69% ± 4.61%, N = 5; calcitriol (720 fmol), 50.11% ± 4.87%, N = 5) and normalized to 1 cm² HSE.

GC-MS The dried HPLC fractions containing $25OHD_3$ or 1α ,25(OH)₂D₃ were derivatized to the trimethylsilyl ether derivatives and analyzed by GC-MS. The samples were treated with 40 μl of MSTFA:BSA:TMCS:TMSI (10:5:5:2, vol/vol) at 95°C for 45 min. One microliter of the derivatized sample was directly and manually injected into a model 5890/II gas chromatograph equipped with a 25 m \times 0.2 mm HP-1 capillary column (cross-linked methylsiloxane, 0.33 µm) and interfaced with a model 5989 A MS-Engine (Hewlett-Packard, Palo Alto, CA). GC conditions were the following: carrier gas, helium; column head pressure, 10 psi; injector temperature, 260°C; oven temperature gradient, maintained at 200°C for 1 min, increased to 260°C at 30°C per min, then increased to 300°C at 20°C per min, held at 300°C for 10 min; interface temperature, 300°C. Electron impact MS conditions were the following: source temperature, 250°C; analyzer temperature, 120°C; energy, 70 eV. All samples were run in triplicate under the control of the HP-ChemStation data system. For selective ion monitoring, the most abundant ions at m/z 452 and m/z 501 were monitored for 1α ,25(OH)₂D₃. The most abundant ion at m/z 439 was monitored for 25OHD₃.

Statistical analysis Results are presented as mean or mean \pm SD. Data were analyzed by one-way analysis of variance (Bonferroni method).

RESULTS

UVB induces conversion of 7-DHC to VD₃ in HSE In order monitor UVB-induced photolysis under experimental conditions, 7-DHC (25 μ M) was added to the culture medium of the HSE model with subsequent exposure to monochromatic UVB at 300 \pm 2.5 nm and D_{eff} = 30 mJ per cm². Figure 1 shows three chromatograms obtained from extracts of unirradiated HSE (control) and at 00.17 h and 16 h after UVB irradiation. The photolyzed product pre-VD3 was identified by cochromatography of pre-VD₃ prepared by thermal isomerization of VD₃ as described in Materials and Methods and by its UV spectrum (λ_{max} 260 nm, λ_{\min} 230 nm). VD₃ formed was identified by cochromatography of the VD₃ reference substance and by its UV spectrum (λ_{max} 265 nm and λ_{min} 229 nm). The photoisomers of pre-VD₃, lumisterol and tachysterol (retention times 9.00 min and 10.96 min, respectively), were not detectable after irradiation. No 7-DHC was detected in detached keratinocytes whereas the concentration of 7-DHC in the gel matrix supplemented with fibroblasts was determined as 0.23 ± 0.14 nmol per cm² (N = 5). The time course of the UVB-induced conversion of 7-DHC via pre-VD₃ to VD₃ indicates that the isomerization of pre-VD₃ to VD₃ is complete after 15-20 h (data not shown in detail). The VD₃ synthesis in HSE is dependent on the wavelength of UV radiation. The maximum synthesis rates of VD₃ were found at 302 nm. After irradiation at wavelengths \geq 315 nm no de novo VD₃ production was detectable in the HSE model.

Photosynthesized VD₃ is converted to 1α ,25(OH)₂D₃ in HSE Extracts of irradiated HSE (300 ± 2.5 nm, $D_{eff} = 30$ mJ per cm²) and of nonirradiated controls were fractionated by NP-HPLC (solvent system 2) and fractions (Nos 1–25) were analyzed for calcitriol (**Fig 2**). The peak in fractions 20–22 is identical with calcitriol. Two additional minor peaks at 7 min and 17 min were found. The radioactivity peaks of ³H-25OHD₃ and ³H-24R,25(OH)₂D₃ appear after 7 min and 12 min, respectively. We could not quantify 25OHD₃ in the same NP-HPLC step by UV detection at 265 nm, however (analytical sensitivity ≈2 ng per ml; data not shown). No calcitriol was detectable in analogous

Figure 1. HPLC chromatograms after photochemical transformation of 7-DHC via pre-VD₃ into VD₃ in an HSE culture model. Culture medium (KBM) supplemented with 1% BSA (wt/vol) was incubated with 25 μ M 7-DHC and irradiated at 300 nm ($D_{\rm eff}$ = 30 mJ per cm²) or not irradiated (control). Peaks represent pre-VD₃, VD₃, and 7-DHC at 00.17 h and 16 h incubation time after UVB exposure.

fractions of nonirradiated cultures (**Fig 2**) as well as in the other controls (ii) and (iii) described in *Materials* and *Methods* (data not shown). Calcitriol comigrated with synthetic ${}^{3}H-1\alpha$,25(OH)₂D₃ in both NP- and RP-HPLC systems. To exclude the presence of 19-nor,10-keto-25OHD₃, which comigrates with 1α ,25(OH)₂D₃ in NP-HPLC, 300 pg putative calcitriol was separated by RP-HPLC and the amount of calcitriol recovered was about the same as injected initially, indicating the absence of 19-nor,10-keto-25OHD₃.

Studies of the TMS derivatives of synthetic and *de novo* generated calcitriol by GC-MS demonstrated identical retention times. Two resulting peaks (pyro and isopyro derivative) were identical for synthetic and *de novo* generated 1α ,25(OH)₂D₃. The full-scan electron impact mass spectra of the pertrimethylsilyl ether derivatives from the reference compound and presumptive 1α ,25(OH)₂D₃ (pyro peak) are depicted in **Fig 3**(*A*), (*B*). The mass spectra produced by the pyro and isopyro peaks differ only in

Figure 2. Determination of calcitriol in extracts of irradiated and nonirradiated HSE. HSE supplemented with 25 μ M 7-DHC (4.24 nmol per cm² HSE) were irradiated at 300 nm (30 mJ per cm⁻²) or not irradiated (control) and further incubated for 16 h. After extraction and separation by NP-HPLC (eluent 2) fractions 1–25 were analyzed for calcitriol by a radioreceptor assay. Comigration of calcitriol formed with synthetic ³H-1\alpha,25(OH)₂D₃ 116 pg per 0.05 μ Ci.

the relative abundance of the mass fragments. Of note, weak molecular ions $[M^{+}]$ at m/z 632 can be observed in both spectra (no mass peaks of intensity greater than 9% of the base peak). The spectra showed the most abundant ion at m/z 452 ($[M^+$ 180]) resulting from the loss of two silanol groups from the ionized molecule. There were two other prominent ions at m/z 542 ($[M^+$ 90]) due to the loss of one silanol group and at m/z 362 ($[M^+$ 270]) arising from the loss of three silanol groups, respectively. The intense ion at m/z 501 ($[M^+$ 131]) may arise from the loss of the C2,3,4-3-silanol fragment. The peak at m/z 131 corresponds to a secondary propyl ether trimethylsilyl ion obtained by cleavage of the bond between C24 and C25.

Notably, the GC-MS analysis of pooled fractions collected between 6 and 8 min provided a mass spectrum with identical mass fragments obtained from synthetic 25OHD₃ (**Fig 3***C*, *D*). The most abundant high mass ion was m/z 439, resulting from the loss of one silanol group plus one methyl group ([M⁺ 90–15]). Only in the standard substance a weak molecular ion [M⁺] at m/z 544 could be observed (no mass peaks of intensity greater than 4% of the base peak). In unirradiated controls no 25OHD₃ was detectable.

Ketoconazole (1 μ M, 5 μ M, AND 10 μ M) added to HSE immediately after irradiation at 300 ± 2.5 nm and D_{eff} = 30 mJ per cm² and further incubation for 16 h in the dark caused a dose-dependent inhibition (**Fig 4**) of 1 α ,25(OH)₂D₃ formation. The antioxidant 1,2-dianilinoethane (10 μ M) had only a marginal inhibitory effect (**Fig 4**) on the generation of 1 α ,25(OH)₂D₃.

The time course of UVB-induced generation of VD_3 and calcitriol in HSE containing 4.24 nmol 7-DHC per cm² HSE after irradiation at 300 nm with a constant dose of $D_{\text{eff}} = 30$ mJ per cm² is shown in **Fig 5**. The maximal synthesis rate of VD₃ is reached after 8–10 h whereas that of calcitriol continuously increases up to 24 h. The viability of keratinocytes decreases with rising incubation time (data not shown in detail).

In HSE preincubated with increasing concentrations of 7-DHC (0.53–5.94 nmol per cm² HSE) and irradiated with UVB at 300 nm ($D_{\text{eff}} = 30 \text{ mJ per cm}^2$) followed by 16 h incubation time a concentration-dependent generation of VD₃ and calcitriol was observed (**Fig 6**).

The UVB dose–response relationship depicted in **Fig 7** indicates increasing VD₃ levels linear with UVB dose after a constant incubation time of 16 h whereas the calcitriol synthesis is maximal near $D_{\text{eff}} = 30$ mJ per cm² and declines at higher UV doses. The decrease in viability of cells was dependent on UVB dose (**Fig 7**).

The rate of calcitriol synthesis depends on the UVB wavelength used for irradiation and is very similar to that of VD_3 showing a

Figure 3. Electron impact mass spectra of chemically synthesized 1α ,25(OH)₂D₃ and presumptive calcitriol as well as of the standard substance 25OHD₃ and putative calcidiol generated after UVB-induced photolysis of 7-DHC in the presence of HSE. (A) Trimethylsilyl derivatives of the synthetic 1α ,25(OH)₂D₃ (M_r 632), (B) the corresponding purified metabolite, (C) synthetic 25OHD₃ (M_r 529), and (D) the corresponding purified metabolite were compared by GC-MS as described in the text. Spectra represent electron ionization (electron impact, 70 eV) mass spectra.

maximum at around 302 nm (**Fig 8**). No VD_3 and calcitriol were detected at wavelegths > 315 nm.

DISCUSSION

One of the most important sunlight-mediated events in human skin is the photosynthesis of VD₃, the precursor both of calcidiol (25OHD₃) and hormonally active calcitriol (1 α ,25(OH)₂D₃) (Holick, 1995). The UVB radiation of sunlight (spectral range 290–315 nm) penetrates into the skin and causes photolysis of 7-DHC to pre-VD₃, which undergoes a rearrangement of its double bond structure to form the thermodynamically more stable VD₃. Both cultured keratinocytes and fibroblasts alone are able to photosynthesize pre-VD₃ and subsequently form, after its thermal isomerization, VD₃ (Nemanic *et al*, 1985).

Previously we have shown that cultured keratinocytes can hydroxylate exogenous VD₃ to 1α ,25(OH)₂D₃ (Lehmann *et al*, 1998; 2000a). In addition, we have recently demonstrated that the complete pathway from 7-DHC to 1α ,25(OH)₂D₃ takes place in the transformed cell line HaCaT (Lehmann *et al*, 2000b). The complete pathway from 7-DHC to 1α ,25(OH)₂D₃ in human keratinocytes under *in vivo*-like conditions has not been demonstrated, however. Furthermore, the question of possible intermediate products (25OHD₃ and/or 1α -OHD₃) within the pathway from VD₃ to 1α ,25(OH)₂D₃ has remained unanswered.

In this study we demonstrate the formation of 1α ,25(OH)₂D₃ from VD₃ generated by photolysis of the precursor 7-DHC in an *in vivo*-like HSE model (organotypic culture of human keratinocytes). The UVB-induced nonenzymatic isomerization of 7-DHC via pre-VD₃ to VD₃ in our HSE model is in accordance with several reports showing that UVB radiation (optimum wavelengths between 295 and 300 nm) can photolyze 7-DHC to pre-VD₃ in human skin (Holick *et al*, 1980; MacLaughlin *et al*, 1982) and in cultures of human keratinocytes (Nemanic *et al*, 1985). The identities of generated pre-VD₃ and VD₃ were confirmed by NP-HPLC as well as by spectrophotometry. The time- and temperature-dependent isomerization of pre-VD₃ to VD₃ (Holick *et al*,

Figure 4. Inhibitory effect of ketoconazole and 1,2-dianilinoethane on hydroxylation of VD₃ created after irradiation with UVB to 1 α ,25(OH)₂D₃ in HSE. Cultures containing 25 μ M 7-DHC were irradiated at 300 nm ($D_{\rm eff} = 30$ mJ per cm²). Immediately after irradiation various concentrations of ketoconazole and 1,2dianilinoethane (1 μ M, 5 μ M, AND 10 μ M) or ethanol (control) were added to the cultures, and further incubation for 16 h at 37°C was done in the dark. After extraction and separation by NP-HPLC, calcitriol was determined as described. Concentrations obtained are depicted as relative percent \pm SD of control (100% \pm 9% equal to 564 \pm 51 fmol calcitriol per cm² HSE) of three independent experiments; ***p < 0.001 compared to control.

Figure 5. Time course of the levels of VD₃ and calcitriol in cultures of HSE after exposure to UVB. Cultures containing 7-DHC (25 μ M) were irradiated with monochromatic UVB at 300 nm ($D_{\rm eff}$ = 30 mJ per cm²) and further incubated up to 24 h. Concentrations of VD₃ and 1 α ,25(OH)₂D₃ are depicted as mean ± SD of three independent experiments; *p < 0.05, **p < 0.01 and ***p < 0.001 compared to the data obtained immediately after irradiation.

1980; MacLaughlin *et al*, 1982; Tian *et al*, 1993) in our HSE model is almost complete after 16 h. This is comparable with findings in human skin where this isomerization was estimated to occur within 20 h (Tian *et al*, 1993).

Our results demonstrate that in normal human keratinocytes VD₃ generated by UVB-induced photolysis of 7-DHC is further metabolized via calcidiol to calcitriol. 1α ,25(OH)₂D₃ was clearly identified by both NP- and RP-HPLC as well as by GC-MS. The mass spectrum was identical to the synthetic reference substance and followed the fragmentation pattern that had been previously described for 1α ,25(OH)₂D₃ (Poon *et al*, 1993; Mawer *et al*, 1994; Schroeder *et al*, 1994). Calcitriol was not detected when medium alone supplemented with 7-DHC was irradiated with UVB or in unirradiated HSE as controls. In UVB-irradiated skin equivalents without the addition of 7-DHC (see **Fig 6**) we found small but detectable amounts of 1α ,25(OH)₂D₃ (\approx 23 fmol per cm² HSE). Hence, the generation of substantial amounts of calcitriol in our

Figure 6. Synthesis rates of VD₃ and calcitriol in UVB-irradiated HSE supplemented with increasing 7-DHC concentrations. HSE containing 0.53–5.94 nmol per cm² was irradiated at 300 nm ($D_{\rm eff}$ = 30 mJ per cm²) and further incubated for 16 h. Data are depicted as the mean ± SD (N = 3).

Figure 7. Influence of increasing UVB doses on the production of VD₃ and calcitriol as well as the viability of keratinocytes in HSE. Cultures containing 25 μM 7-DHC in the medium were irradiated at 300 nm at increasing UV doses up to D_{eff} = 45 mJ per cm² followed by constant 16 h incubation. Concentrations of VD₃ and 1\alpha,25(OH)_2D_3 and the cell viability are shown as mean \pm SD of three independent experiments; *p <0.05, **p <0.01 and ***p <0.001 compared to the unirradiated control.

HSE model requires a sufficiently high concentration of 7-DHC, the presence of keratinocytes, and UVB radiation. Experiments using HaCaT cells have shown that 7-DHC binds to the cell membrane and/or is transported into the cell when these cells are preincubated with physiologic concentrations of 7-DHC (Lehmann *et al*, 2000b). The cellular uptake of 7-DHC was measured to be approximately 20% of the total amount of 7-DHC (30 nmol) previously added to the cell culture. In these experiments, the corresponding levels of cellular VD₃ and calcitriol after irradiation at 297 nm followed by 16 h incubation at 37°C in the dark were about 37% of the total amount of both VD₃ and calcitriol formed in the original culture.

Two additional metabolites were found in the fractionated eluent of NP-HPLC that showed some cross-reactivity with 1α ,25(OH)₂D₃ in the radioreceptor assay. One of these metabolites (fractions between 6 and 8 min) had in derivatized form (trimethylsilyl ether derivative) a mass spectrum identical to synthetic 25OHD₃ (Coldwell *et al*, 1989). The identity of the other metabolite (fractions between 16 and 18 min) shown in **Fig 2** is not known at the present time. This finding indicates that 25OHD₃ is generated as an intermediary metabolite during the

Figure 8. Relationship between wavelengths of UVB light and the generation of VD₃ and 1α ,25(OH)₂D₃ in HSE. Cultures preincubated with 25 μ M 7-DHC (4.24 nmol per cm² HSE) were irradiated at several wavelengths between 285 nm and 315 nm ($D_{\rm eff} = 30$ mJ per cm²) followed by 16 h incubation. Each point represents mean \pm SD (N = 3).

UVB-induced metabolic conversion of 7-DHC to $1\alpha,25(OH)_2D_3$. We could not quantitatively determine 25OHD₃ in the same NP-HPLC step, however, by UV detection at 265 nm. This may be explained by the fact that 25OHD₃ is located within a coupled equilibrium VD₃ \leftrightarrow 25OHD₃ \leftrightarrow $1\alpha,25(OH)_2D_3$ and probably with other hydroxylated VD₃ metabolites. The Michaelis constant for the 1α -hydroxylation of 25OHD₃ [$K_m = 5.4 \times 10^{-8}$ M, determined in human keratinocytes (Bikle *et al*, 1986)] is considerably lower than the Michaelis constant for the 25-hydroxylation of VD₃ [$K_m = 10^{-5}$ M, determined in human liver mitochondria (Saarem *et al*, 1984)]; therefore, the equilibrium should be strongly shifted toward formation of calcitriol, which makes the quantitative determination of 25OHD₃ impossible with HPLC or by vitamin D binding protein assay (analytical sensitivity 2 ng per ml and 2.2 ng per ml).

Blocking experiments with ketoconazole, a cytochrome P450 enzyme inhibitor (Wilkinson *et al*, 1974), showed the involvement of intracellularly located cytochrome P450 mixed-function oxidases in the formation of 1α ,25(OH)₂D₃. In contrast, 1,2-dianilino-ethane, a known radical scavenger and antioxidant (Sietsema and DeLuca, 1982), exerted only a marginal quench effect on the hydroxylations of VD₃. These and our previous results point to the presence of both 1α -and 25-hydroxylase activities in keratinocytes.

The time course of UVB-triggered calcitriol synthesis in HSE shows an almost continuous increase up to 24 h after UVB exposure. Of note, the corresponding time course of UVB-induced calcitriol formation in HaCaT cells obtained after UVB irradiation at 297 nm ($D_{\text{eff}} = 30 \text{ mJ per cm}^2$) was characterized by a maximum at 16 h after irradiation (Lehmann et al, 2000b). This is similar to experiments where when exogenous VD3 was added instead of being generated by UVB calcitriol reached a peak 6 h after addition of VD₃ and then continuously fell until 24 h (Lehmann et al, 1998, 2000a). These differences in the continuity of calcitriol synthesis in keratinocytes are difficult to explain. Based on the fact that calcitriol induces its own catabolism to calcitroic acid (Ray et al, 1995) and, in addition, causes inhibition of 1α -hydroxylase (Bikle et al, 1986; Lehmann, 1997) we assume that these processes may be differently developed in keratinocytes. Both the catabolism of calcitriol by the 24-hydroxylase and the inhibition by calcitriol of the 1α hydroxylase are mediated by the vitamin D receptor (VDR) (Chen et al, 1994; Takeyama et al, 1997). As it has been reported that UVB dose-dependently and potently downregulates the expression of VDR mRNA and protein within a few hours after

irradiation in cultured keratinocytes (Courtois *et al*, 1998), a stronger UVB-induced suppression of gene expression of VDR in keratinocytes of our HSE model compared to HaCaT cells might explain our finding of sustained calcitriol synthesis in the former model.

Within 16 h after irradiation at 300 nm ($D_{\text{eff}} = 30 \text{ mJ per cm}^2$) 0.015% (equal to 636 finol) of 7-DHC added is converted to 1α ,25(OH)₂D₃. For comparison, the concentration of 1α ,25- $(OH)_2D_3$ in human serum is 68 \pm 27 fmol per ml (Hollis, 1986). The concentration of 7-DHC used in our experiments (30 nmol per 1.2 ml medium equivalent to 4.24 nmol per cm² HSE) is comparable to the level of 7-DHC (≈2.7 nmol per cm²) found in hypopigmented Caucasian human leg skin (Holick et al, 1980) and in human neonatal foreskin (≈6.1 nmol per cm⁻²) (Obi-Tabot et al, 2000). In contrast to the HSE model published by Obi-Tabot et al (2000), which has a basal 7-DHC content similar to that of human neonatal foreskin, our HSE model showed under basal conditions only marginal concentrations of 7-DHC. The reason why the two HSE models differ in their 7-DHC content is not known. Obi-Tabot et al supposed that the interaction between keratinocytes and fibroblasts in their HSE model has a downregulating effect on the 7-DHC reductase that results in a higher intracellular pool of 7-DHC. This hypothesis is supported by the finding that, in cell culture without heterologous cell contacts, both keratinocytes and fibroblasts show barely detectable levels of 7-DHC (Nemanic et al, 1985). We assume that the Δ^7 -reductase in our HSE model is probably more active than is the enzyme in the HSE model of Obi-Tabot et al and in whole skin.

In our experiments the synthesis rate of both VD₃ and calcitriol closely depends on the 7-DHC concentration added before UVB exposure. Also, the rate of synthesis of 1α ,25(OH)₂D₃ from VD₃ showed a close relation to the UVB dose ($D_{\text{eff}} = 7.5-45.0$ mJ per cm²) with which keratinocytes were irradiated. For comparison, an effective dose of 30 mJ per cm² at 297 ± 2.5 nm corresponds to ≈1.5 minimal erythema dose for hypopigmented Caucasian skin.¹ The inhibition of calcitriol synthesis observed with high UVB doses can be explained by UVB-mediated inactivation of intracellular hydroxylases at $D_{\text{eff}} \ge 30$ mJ per cm², whereas nonenzymatic synthesis of VD₃ remains unaffected.

The rate of formation of 1α , $25(OH)_2D_3$ depended on the UVB wavelength used for irradiation and is very similar to that of VD₃, showing a maximum at around 302 nm. This finding demonstrates a close relation between UVB-induced VD₃ synthesis and formation of 1α , 25(OH)₂D₃. It is likely that the concentration of VD₃ determines the synthesis rate of 1α , $25(OH)_2D_3$ in our cell system. It cannot be ruled out, however, that the enzymatic activity of the 1α -hydroxylase and/or the 25-hydroxylase shows a dependence on the UVB wavelength used. The UVB wavelength around 302 nm corresponding to maximal VD₃ synthesis is in accordance with observations made in rat skin (Takada, 1983), where the optimum wavelength for the synthesis of VD₃ (305 nm) was longer than in organic solvents (295 nm). It is conceivable that cellular phospholipid/pre-VD₃ interactions (Tian and Holick, 1999) are influenced by wavelength-dependent photodegradation of membrane phospholipids resulting in different rates of VD₃ formation. Such wavelength-dependent processes also may explain changes in the VD₃ production between 285 and 292 nm. In agreement with the literature (MacLaughlin et al, 1982), we found no synthesis of VD₃ at wavelengths > 315 nm.

More recently, our finding of an autonomous calcitriol pathway in epidermal cells was indirectly confirmed by experiments demonstrating the UVB-induced expression of 24-hydroxylase, the most sensitive 1α ,25(OH)₂D₃ response gene, in UVB-irradiated keratinocytes pretreated with 7-DHC and a 7-DHC reductase inhibitor.² This effect was abolished by preincubation with

¹Personal communication.

²Segeart S, Bouillon R: Epidermal keratinocytes as source and target cells for vitamin D. Paper presented at the 11th Workshop on Vitamin D, Nashville, TN, May 27–June 1, 2000

ketoconazole, and thus a UVB-induced generation of 1α ,25(OH)₂D₃ in cultured keratinocytes was demonstrated. In contrast, our study directly demonstrates the generation of 25OHD₃ and 1α ,25(OH)₂D₃ in an HSE enriched with 7-DHC and irradiated with UVB. Additional experiments should indicate to what extent the UVB-triggered epidermal calcitriol synthesis regulates genomic and nongenomic processes. It is noteworthy in this context that calcitriol has a photoprotective effect against UVB injury of keratinocytes provoked by induction of the synthesis of metallothionein, a protein with antioxidant properties (Karasawa *et al*, 1987; Hanada *et al*, 1995; Lee and Youn, 1998). Furthermore, we ask whether the known antiproliferative and immunomodulatory effects of calcitriol may be connected to the therapeutic effect of UVB in hyperproliferative skin diseases such as psoriasis.

The skillful technical assistance of Mrs A. Kämpf is gratefully acknowledged.

REFERENCES

- Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T: Living tissue formed *in vitro* and accepted as skin equivalent tissue of full-thickness. *Science* 211:1052–1054, 1981
 Bikle DD, Nemanic MK, Gee E, Elias P: 1,25-Dihydroxyvitamin D₃ production by
- Bikle DD, Nemanic MK, Gee E, Elias P: 1,25-Dihydroxyvitamin D₃ production by human keratinocytes. J Clin Invest 78:557–566, 1986
- Chen ML, Heinrich G, Ohyama YI, Okuda K, Omdahl JL, Chen TC, Holick MF: Expression of 25-hydroxyvitamin D₃ hydroxylase mRNA in cultured human keratinocytes. *Proc Soc Exp Biol Med* 207:57–61, 1994
- Coldwell RD, Trafford DJH, Varley MJ, Kirk DN, Makin HLJ: Measurement of 25hydroxyvitamin D₂, 25-hydroxyvitamin D₃, 24,25-dihydroxyvitamin D₂ and 25,26-dihydroxyvitamin D₂ in a single plasma sample by mass fragmentography. *Clin Chim Acta* 180:157–168, 1989
- Courtois SJ, Segaert S, Degreef H, Bouillon R: Ultraviolet B suppresses vitamin D receptor gene expression in keratinocytes. *Biochem Biophys Res Commun* 246:64–69, 1998
- Hanada K, Sawamura D, Nakano H, Hashimoto I: Possible role of 1,25dihydroxyvitamin D₃ -induced metallothionein in photoprotection against UVB injury in mouse skin and cultured rat keratinocytes. J Dermatol Sci 9:208– 208, 1995
- Haussler MR: Vitamin D receptors: nature and function. Annu Rev Nutr 6:527–562, 1986
- Holick MF: Vitamin D photobiology, metabolism, and clinical applications. In: DeGroot LJ, et al, eds. *Endocrinology*. Philadelphia, PA: Saunders, 1995:pp 990– 1013
- Holick MF, Frommer JE, McNeal SC, Richtand NM, Henley JW, Potts JT: Photometabolism of 7-dehydrocholesterol to previtamin D₃ in skin. *Biochem Biophys Res Commun* 76:107–115, 1977
- Holick \hat{MF} , MacLaughlin JA, Clark MB, Holick SA, Potts JT: Photosynthesis of previtamin D_3 in human skin and the physiologic consequences. *Science* 210:203–205, 1980
- Hollis BW: Assay of circulating 1,25-dihydroxyvitamin D involving a novel single cartridge extraction and purification procedure. *Clin Chem* 32:2060–2063, 1986
- Hosomi J, Hosoi J, Abe E, Suda T, Kuroki T: Regulation of terminal differentiation of cultured mouse epidermal cells by 1α,25-dihydroxyvitamin D₃. *Endocrinology* 113:1950–1957, 1983
- Isler O, Brubacher G: Vitamine I. Fettlösliche Vitamine 2. Die D-Vitamine. Stuttgart, New York: Georg Thieme Verlag, 1982:pp 90–125 Karasawa M, Hosoi J, Hashiba H, et al: Regulation of metallothionein gene
- Karasawa M, Hosoi J, Hashiba H, et al: Regulation of metallothionein gene expression by 1α,25-dihydroxyvitamin D₃ in cultured cells and in mice. Proc Natl Acad Sci USA 84:8810–8813, 1987
- Lee JH, Youn JI: The photoprotective effect of 1,25-dihydroxyvitamin D3 on

ultraviolet light B-induced damage in keratinocyte and its mechanism of action. J Dennatol Sci 18:11–18, 1998

- Lehmann B: HaCaT cell line as a model system for vitamin D₃ metabolism in human skin. J Invest Dermatol 108:78–82, 1997
- Lehmann B, Pietzsch J, Kämpf A, Meurer M: Human keratinocyte line HaCaT metabolizes 1α hydroxyvitamin D₃ and vitamin D₃–1α,25-dihydroxyvitamin D₃ (calcitriol). J Dermatol Sci 18:118–127, 1998
- Lehmann B, Rudolph T, Pietzsch J, Meurer M: Conversion of vitamin D₃–1 α ,25-dihydroxyvitamin D₃ in human skin equivalents. *Exp Dermatol* 9:97–103, 2000a
- Lehmann B, Knuschke P, Meurer M: UVB-induced conversion of 7dehydrocholesterol to 1α,25-dihydroxyvitamin D₃ (calcitriol) in the human keratinocyte line HaCaT. *Photochem Photobiol* 72:803–809, 2000b
- MacLaughlin JÁ, Anderson RR, Holick MF: Spectral character of sunlight modulates photosynthesis of previtamin D₃ and its photoisomers in human skin. *Science* 216:1001–1003, 1982
- Matsumoto K, Azuma Y, Kiyoki M, Okumura H, Hashimoto K, Yoshikawa K: Involvement of endogenously produced 1,25-dihydroxyvitamin D-3 in the growth and differentiation of human keratinocytes. *Biochim Biophys Acta* 1092:311–318, 1991
- Mawer EB, Hayes ME, Heys SE, Davies M, White A, Stewart MF, Smith GN: Constitutive synthesis of 1,25-dihydroxyvitamin D_3 by a human small cell lung cancer cell line. J Clin Endocrinol Metab 79:554–560, 1994
- McLane JA, Katz M, Abdelkader N: Effect of 1,25-dihydroxyvitamin D₃ on human keratinocytes grown under different culture conditions. In Vitro Cell Devel Biol 26:379–387, 1990
- Nemanic MK, Whitney J, Elias PM: In vitro synthesis of vitamin D-3 by cultured human keratinocytes and fibroblasts: action spectrum and effect of AY-9944. Biochim Biophys Acta 841:267–277, 1985
- Obi-Tabot ET, Tian XQ, Chen TC, Holick MF: A human skin equivalent model that mimics the photoproduction of vitamin D₃ in human skin. *In Vitro Cell Dev Biol Anim* 36:201–204, 2000
- Poon PM, Mak KYT, Pang CP: Gas chromatographic-mass fragmentographic determination of serum 1α,25 dihydroxyvitamin D₃. *Clin Biochem* 26:461–469, 1993
- Prunieras M, Regnier M, Woodley D: Methods for cultivation of keratinocytes with an air-liquid interface. J Invest Dermatol 81:28S-33S, 1983
- Ray S, Ray R, Holick MF: Metabolism of ³H-1α,25-dihydroxyvitamin D₃ in cultured human keratinocytes. *J Cell Biochem* 59:117–122, 1995
- Saarem K, Bergseth S, Oftebro H, Pederson JI: Subcellular localization of vitamin D₃ 25-hydroxylase in human liver. J Biol Chem 259:10936–10940, 1984
- Schroeder NJ, Trafford DJH, Cunningham J, Jones G, Makin HLJ: In vivo dihydrotachysterol₂ metabolism in normal man: 1α- and 1β-hydroxylation of 25-hydroxydihydrotachysterol₂ and effects on plasma parathyroid hormone and 1α,25-dihydroxyvitamin D₃ concentrations. J Clin Endocrinol Metab 78:1481– 1487, 1994
- Sietsema WK, DeLuca HF: Retinoic acid 5,6-epoxidase: properties and biological significance. J Biol Chem 257:4265, 1982
- Smith EL, Walworth NC, Holick MF: Effect of 1α,25-dihydroxyvitamin D₃ on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free conditions. J Invest Dermatol 86:709–714, 1986
- Takada K: Formation of fatty acid esterified vitamin D_3 in rat skin by exposure to ultraviolet radiation. J Lipid Res 24:441–448, 1983
- Takeyama KI, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S: 25– Hydroxyvitamin D₃ 1α-hydroxylase and vitamin D synthesis. Science 277:1827–1829, 1997
- Tian XQ, Holick MF: A liposomal model that mimics the cutaneous production of vitamin D₃. J Biol Chem 274:4174–4179, 1999
- Tian XQ, Chen TC, Matsuoka LY, Wortsman J, Holick MF: Kinetic and thermodynamic studies of the conversion of previtamin D_3 to vitamin D_3 in human skin. J Biol Chem 268:14888–14892, 1993
- Wilkinson CF, Hetnarski K, Cantwell GP, Di-Carlo FJ: Structure-activity relationships in the effects of 1-alkylimidazoles on microsomal oxidation in vitro and in vivo. Biochem Pharmacol 23:2377–2386, 1974