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Intrauterine growth restriction (IUGR) is a unique and important issue for obstetricians. The
acute neonatal consequences of IUGR are perinatal asphyxia and neonatal adaptive problems.
However, the long-term outcomes of such neonates are less discussed because obstetricians
usually only care for pregnant woman until delivery. The aim of this article is to review the
sequelae, especially the long-term effects including the neurological, cardiovascular, renal,
and metabolic effects of the growth restriction in an obstetrician’s view.
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Introduction

An individual whose mother was exposed to a stimulus that
led to adverse intrauterine milieu during pregnancy would
be more susceptible to the development of adult diseases
[1=7]. A minor event that would cause minimal or no
damage in a healthy person could result in significant
unwanted health events in a susceptible individual [8,9].
Worse still, the effects do not stop at the exposed indi-
vidual but could be perpetuated across generations leading
to transgenerational impacts [10—15].

* Correspondence to: Yao-Lung Chang, Department of Obstetrics
and Gynecology, Chang Gung Memorial Hospital, 5, Fu-Shin Street,
Kwei-Shan, Tao-Yuan 333, Taiwan, ROC.
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Genes and imprinted genes transferred from mother to
offspring determine the genotype. The expression of genes
is time-specific and tissue-specific. Any events at a specific
time and on specific tissue can have significant effects on
the expression. There is growing evidence on the role of
epigenetic factors in intrauterine growth restriction (IUGR)-
related adult diseases [16—19].

In utero perturbations lead to fetal organ and functional
adaptations, a process known as fetal programming [20].
The adaptations lead to a ‘‘thrifty’”’ phenotype, which is
advantageous if poor diet is to be maintained postnatally.
When exposed to abundant postnatal supplies, the func-
tions of the programmed organs lead to the development of
adult diseases [3,21,22]. Growth patterns during infancy or
childhood contribute further to cardiovascular disease and
type 2 diabetes mellitus [23,24].
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With improved detection methods, antenatal surveil-
lance and management, and better neonatal care, there
will be increased perinatal and neonatal survival, and the
long-term effects of IUGR will have significant implications
on the world population. Globally, metabolic disorders such
as obesity, diabetes, and hypertension are on the rise.
Hence, the health surveillance of these children would be
a burden to healthcare systems.

The aim of this article is to review the sequelae of growth
restriction and to give an insight into what is new in the issue
of fetal programming. Our literature searches include
PubMed, Medline (OVID), the current contents and references
of initially identified relevant articles.

The keywords for the literature search were: IUGR, fetal
growth restriction (FGR), fetal programming, fetal origin of
adult disease (FOAD), developmental origin of adult disease
(DOAD), nutrition, cardiovascular, neurodevelopmental,
catch-up growth, kidney disorder, and metabolic disorder.
We only selected articles in the English language, and these
included both animal and human studies.

We found that studies have not been consistent in
defining the population sample and there was no standard
categorization of the severity of IUGR, partly because the
use of ultrasound Doppler imaging is a more recent
advance. Therefore, comparison of data was difficult.

Definition of IUGR

The terms IUGR or FGR suggest diminished growth velocity
in the fetus as documented by at least two intrauterine
growth assessments. The term “small for gestational age”
(SGA) refers to the size of the infant at birth. SGA and IUGR
are not synonymous. IUGR indicates the presence of
a pathophysiologic process occurring in utero that inhibits
fetal growth. A child who is born SGA has not necessarily
suffered from IUGR, and infants who are born after a short
period of IUGR are not necessarily SGA [25].

The art of standard antenatal assessment remains
important for one to suspect IUGR. Ultrasound is also an
important tool, not only for accurate dating, but also to
identify growth restriction due to placental diseases. It is
essential to exclude constitutionally small fetuses, aneu-
ploidy, and nonaneuploid syndromes where outcomes are
unlikely to be improved by intervention.

Manifestations of diagnostic value of growth restriction as
a result of placenta diseases were elaborated by Miller et al
[26]. Of late, we observe more usage of venous and arterial
Dopplerimaging for further categorization of IUGR, for timing
of delivery of the premature IUGR, or for prognostic infor-
mation [27]. Doppler is also capable of detecting changes that
precede biophysical parameters of IUGR [28—30].

The staging system for IUGR may be valuable in deter-
mining more timely delivery of IUGR fetuses, especially
premature IUGR fetuses. Using nonstress testing and
umbilical artery (UA) Doppler velocimetry categorizing
IUGR, Pardi et al grouped fetuses into three groups: Group
I, normal nonstress test and UA Doppler, there was no fetal
acidosis or hypoxemia; Group Il, normal nonstress with
abnormal UA Doppler, 5% rate of hypoxia or acidemia;
Group Ill, abnormal nonstress test and abnormal UA
Doppler, 60% rate of hypoxia or acidemia [31].

Mari et al proposed a staging using fetal biometry,
Doppler cardiovascular changes, amniotic fluid, and clinical
parameters: Stage I, an abnormal UA pulsatility index (UA-
PlI) and middle cerebral artery pulsatility index (MCA-PI);
Stage I, an abnormal UA absent/reversed diastolic flow
(UA-A/REDF), MCA peak systolic velocity (MCA-PSV), UV
pulsation and an abnormal ductus venosus pulsatility index
(DV-PI); Stage lll, reversed flow at the umbilical vein (UV-
RF) or reversed flow at the ductus venosus (DV-RF) or an
abnormal tricuspid E wave (early ventricular filling)/A wave
(late ventricular filling) ratio, and tricuspid regurgitation
(TR). Each stage was divided into A (amniotic fluid index
[AF1] < 5 cm) and B (AFl > 5 cm). The presence of maternal
abnormalities was also reported [28,32].

A defined diagnosis and standardized staging system may
also allow comparison of long-term outcome data for IUGR
fetuses.

Causes of IUGRs

IUGR has heterogeneous causes, from fetal causes, such as
aneuploidy, syndromes, and infection, to a long list of
maternal causes that lead to uteroplacental insufficiency.
Among the maternal causes are hypertensive disorders,
pregestational diabetes, cyanotic cardiac disease, toxic
exposure (smoking, alcohol, drugs, cocaine), malnutrition,
infection, low socioeconomic status, racial background,
smoking, and many others [33—36].

The above conditions lead to adverse or suboptimal
intrauterine milieu that expose the fetus to hormones,
growth factors, cytokines, or adipocytokines that alter
metabolic or immune systems, vascular hemodynamics,
brain and renal functions and growth parameters. In later
life, the risks to the individuals are insulin resistance, type
2 diabetes, hypertension, cardiovascular disease, obesity,
and heart disease. The risks were further enhanced by
postnatal over-nutrition or lifestyle [37].

Animal studies have helped to clarify pathogenetic and
pathophysiologic (fetal programming) aspects of IUGR that
enable us to understand and associate it to the DOAD in
humans [21]. Various methods of inducing placenta insuf-
ficiency in animal studies include manipulation of nutrients
(global food restriction, caloric restriction, low protein
diet, salt diet, glucocorticoid administration), manipulation
of uteroplacental circulations (uterine horn ligation, bilat-
eral uterine ligation, umbilical—placental embolization),
and soluble fms-like tyrosine kinase-1 (sFLt-1)-induced
preeclampsia, which was used to induce chronic anemia,
hypoxemia, and acidemia [38—41].

Catch-up growth of IUGR fetus

After a period of intrauterine growth deficit, upon delivery,
the SGA infant returns to its genetic trajectory. The intra-
uterine growth deficit is made up very early in postnatal
life, especially during the first 3 months of life [42]. The
catch-up growth is a growth velocity (centimeters per year)
that is greater than the median for chronological age and
gender. It may occur at any stage of growth, but is most
commonly observed in the first 1 or 2 years of life, and
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pronounced catch-up growth postnatally is often seen after
severe intrauterine growth restraint.

Reduced fetal growth has been shown to be associated
with an increased risk of insulin resistance, obesity,
cardiovascular disease, and type 2 diabetes mellitus. The
majority of the pathology is seen in adults who show
spontaneous catch-up growth as children. At 5 years of age,
children with postnatal catch-up growth were fatter and
had more central fat distribution [43]. Rapid weight gain
during the first 3 months of life was inversely associated
with several determinants of cardiovascular disease and
type 2 diabetes in adults aged 18—24 years [24].

Nutritional intervention could alter the catch-up growth
during the first months of postnatal life, and the effects of
the intervention persisted for at least 9 months beyond the
period of intervention [44].

The response of IUGR fetuses towards
intrauterine insult

Perturbations in the maternal environment increase
placental vascular resistance causing structural and func-
tional abnormalities of the placenta. There is a decrease in
insulin growth factor-1 (IGF-1), a significant increase in IGF
binding protein-1 (IGFBP-1) mRNA, and overexpression of
the IGFBP-1 receptor leading to poor fetal growth [17,45].
The activity of the placental type 2 isoform of 11-beta-
hydroxysteroid dehydrogenase (11-BHSD) is decreased
leading to an increase fetal exposure to maternal cortisol,
which programs the fetus for later adult diseases [16,46].
Perturbations in the maternal compartment may affect the
methylation status of placental genes and increase
placental oxidative/nitrative stress, resulting in changes in
placental function [18,47].

The increased placenta vascular resistance subjects the
fetal heart to increased work load that leads to cardiovas-
cular responses in the fetus. Following uteroplacental insuf-
ficiency, redistribution of blood flow has been reported even
before biometry or hemodynamic evidence of IUGR. Rizzo
et al found profound reduction in the placenta/combined
cardiac output (P/CCO) fraction and reduced umbilical vein
(UV) flow as early as 20—24 weeks at the stage of normal fetal
size and arterial and venous Pl index values [30].

In fetuses who already have biometric and hemodynamic
signs of IUGR, the reduction in both UV flow and placenta/
CCO fraction suggest that the volume of fetal blood flow
towards the placenta is reduced, and a more extensive
recirculation of umbilical blood in the fetal body develops
in an attempt to achieve more efficient extraction of
oxygen and nutrients [48,49].

As a result of the blood redistribution, there is an
increase in blood flow to major organs like the heart and
brain, accompanied by a reduction in the supply to the
kidneys, liver, gastrointestinal system, and muscular skel-
etal system [50,51].

Programming of the IUGR fetus

In IUGR fetuses, the organs and their functions adapt to the
adverse intrauterine milieu. The adaptations or

programming are very much dependent on the severity, the
duration, the gestational age, and the gender of the fetus.
Severe short-term umbilical—placental embolization has
resulted in minor morphologic changes in placenta without
significant tissue damage, growth restriction with reduced
fetal weight, and morphologic changes in the liver, but the
fetal membranes and kidneys were normal [52].

Early gestational hypoxia causes the epicardium (source
of growth factors for the myocardium) to detach from the
myocardium leading to thin myocardium and reduced heart
size [53]. Late gestational hypoxia (at the critical period of
cardiovascular maturation) results in lower cardiomyocyte
binucleation, suggestive of retarded cardiomyocyte matu-
ration, and has enhanced reactivity and mechanical prop-
erties of coronary arteries towards vasoconstrictors,
angiotensin Il, and thromboxane analogue [39]. Prolonged
hypoxia in late gestation also increases the heart-to-body
weight ratio in fetuses, neonates, and adults.

Although vascular changes are evident in both genders,
only males show overt functional changes that could
contribute to increased peripheral vascular resistance and
cardiovascular disease [54].

The effects of fetal programming
Mortality and survival of the IUGR

In order to survive, the IUGR fetus goes through a series of
adaptations that seem to benefit it in the short term, that is
immediate survival during fetal and neonatal life. The
mortality rate of IUGR babies should be largely influenced
by gestational age of delivery; delivery at lower gestational
age would cause more mortality [56,57]. Most mortality in
babies happened within 2 years of delivery; after that,
mortality was seldom seen. There is also more illness in
infancy [55] and more sudden unexplained infant deaths.

In the Growth Restriction Intervention Trial (GRIT), brain
development was compared between early deliveries (to
pre-empt intrauterine hypoxia) and delayed deliveries for
as long as possible (to gain maturity). At 2 years after
delivery, the overall rate of death was 11.5%. There were
more deaths when IUGR babies were delivered at 24—30
weeks as compared to 31—36 weeks gestation (24% vs. 6.6%)
[58]. The overall rate of disability at 2 years was 5.6%; if
dividing into gestational age of delivery, it was 9.5% in
babies born between 24 weeks and 30 weeks, and 5.1% in
babies born between 31 weeks and 36 weeks [58].

The survival of IUGR fetuses is increasing with improved
prenatal diagnosis, the use of steroids, and improved
neonatal backup, and this has led to increasing long-term
sequelae of IUGR issues.

IUGR/SGA fetus who adapts and survives (the long-
term effects)

Fetal programming leads to durable physiological effects on
multiple biological systems. Diseases that have been found
associated with IUGR include: cardiovascular disease, type-
2 diabetes, abnormal lipid metabolism, hypertension, end-
stage renal disease, obesity, and even psychiatric disorders
[24,59,60]. Clinical manifestations of the diseases usually
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occur in early childhood or later in life. Subclinical mani-
festations have been observed during fetal life, at birth,
and in childhood [20,30].

The “brain sparing effects” to fetuses of IUGR

Fetal circulatory redistribution occurs so that the brain is
preferentially perfused, however it does not completely
protect IUGR individuals from cerebral palsy (CP), neuro-
developmental disorders, or behavioral and psychiatric
disorders.

CP rate of IUGR fetuses

An association between CP and IUGR has been suspected for
some time but is difficult to prove because information
about antenatal growth is usually not available in cohort
studies large enough to assess CP as an outcome [61]. The
risk of CP appears to be highest in preterm small children
whose gestational age at birth was greater than 33 weeks
[62,63]. In the Western Australia Study, the risk of spastic
CP associated with poor intrauterine growth appeared to
depend on gestational age, with infants delivered at 34—37
weeks of gestation being at the highest risk (odds ratio of
CP for children 34—37 weeks of gestation and third
percentile at birth: 19.6, 95% ClI 8.1—47), followed by those
at term. There was no association between FGR and CP at
lower gestations [62].

The risk of CP appears to be highest in preterm small
children whose gestation at birth was greater than 33
weeks [62,63]. In babies who were delivered at 34—37
weeks of gestation, the problem of prematurity is less
important than those delivered below 34 weeks. Generally,
it was considered that the effect of very preterm birth with
its greatly increased risk of CP from perinatally acquired
brain injuries may overwhelm the lesser association
between IUGR and CP [64].

However, recently, Petersen et al focused on the severe
growth restriction fetus where the estimated fetal weight
(EFW) was less than 501 g and with umbilical artery-absent
or reversed end diastolic flow (UA-A/REDF). They found
a low overall perinatal survival rate for pregnancies
complicated by early onset, severe growth restriction.
When delivery occurred due to fetal indications, the
majority of these women required classical cesarean
sections. The short-term neonatal morbidity was high
although none of the survivors had CP [65].

It is tempting to hypothesize that a prolonged period of
reduced intrauterine nutrition will put the baby at
increased risk of developing CP. This notion would be
consistent with evidence from magnetic resonance imaging
studies, which suggest that approximately 75% of brain
lesions associated with CP occur in the early or middle part
of the third trimester. While early delivery may lead to
neonatal and delayed complications associated with
prematurity, including CP, spontaneous preterm labor
following IUGR could, in many instances, be a fetal adap-
tive response, an ‘‘escape’’ from an unfavorable intra-
uterine environment [61].

The low CP rates in extreme premature IUGR fetuses
seemingly cannot be fully explained by previous

explanations. Term singletons with severely SGA birth
weights had a five- to sevenfold risk of developing CP
compared to gestational age-matched infants with birth
weights within normal limits. For children born preterm,
SGA was not more likely to be present in cases than in
controls [61]. The risk of developing CP is linked to the
severity of restricted growth status at birth and that this is
only the case if the pregnancy had reached term. In babies
born preterm, there was no difference between cases and
controls [61].

Neurodevelopmental function of IUGR fetuses

Children with IUGR were observed to have a small tendency
to catch up in weight at 3 years of age, but at preschool age
(6—7 years old), they are not only lagging behind in somatic
growth but also in neurodevelopmental performance and
cognitive function, when compared to appropriate for
gestational age (AGA) control children [66]. They had been
reported to be associated with lower intelligence, poor
academic performance, and demonstrated a specific profile
of neurocognitive difficulties at school age, accounting for
lower school achievements after 10 years follow-up [65].
Difficulties in executive functioning, inflexibility—creativity,
and language, indicative of frontal lobe dysfunction, were
typically affected by IUGR [67].

The earlier in gestation that the slowing of intrauterine
head growth was identified the poorer was the neuro-
developmental outcome [64]. Adolescents who were born
SGA were more likely to experience learning difficulties
than the AGA counterparts (>10th percentile), with
a higher prevalence in those of birth weight less than the
third percentile [68]. The preterm IUGR babies whose
median gestational age of delivery was 32 weeks scored
lower in the Hammersmith Infant Neurological Examination
but median global score was within the optimal range at 18
months after delivery follow-up [69]. Regardless of socio-
economic background, full term IUGR babies have
increased risk of neurodevelopmental difficulties at 8
months and at 4 years of age [70].

IUGR with abnormal fetal blood flow is associated with
impaired executive cognitive functions in young adults [71].
umbilical artery- absent end diastolic flow (UA-AEDF) is well
recognized as a marker of fetal compromise, which is
associated with acute perinatal sequelae but it is not
associated with adverse neurodevelopmental outcome.
However, UA-REDF was found to be associated with a wide
range of problems at school age, suggesting that UA-REDF
represents intrauterine decompensation, which may have
adverse effects on the developing brain [72]. UA-AEDF is
not severe enough to be an indicator of association with
poor neurodevelopmental outcome but UA-REDF is severe
enough to be associated with neurodevelopmental
outcome.

Baschat et al, in his prospective studies of 2-year
neurodevelopment in IUGR secondary to placental
dysfunction, further confirm that UA-REDF are at risk of
abnormal neurodevelopment. CP, hearing deficit, and
global delay were related to UA-REDF. Contrary to their
hypothesis, elevation of DV Doppler and umbilical vein
pulsations did not increase the likelihood of
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developmental abnormalities. Neither brain sparing
(middle cerebral artery Pl > 2.0 standard deviation (SD))
nor deterioration of biophysical profile (BPP) was statis-
tically associated with an increased likelihood of abnormal
developmental outcome. They conclude that mild deteri-
oration of venous Doppler parameters and BPP does not
appear to have a negative impact on neurodevelopment
[73].

Cardiovascular (atherosclerosis, hypertension,
coronary heart disease) effects of fetuses of
IUGR

Postnatal physiological adaptation and maturation of IUGR
infants is slower than normal, therefore they remain in
a physiologically immature state for a longer period. The
higher heart rates and greater cortisol excretion in such
infants may be precursors to the hypertension and cardio-
vascular disease seen in adults [74]. IUGR fetuses with
abnormal aortic flow in utero have smaller aortic dimen-
sions and higher resting heart rate at 18 years of age. This
indicates that IUGR with abnormalities in fetal blood flow
caused by placental insufficiency is associated with
a general effect on vascular growth that persists into young
adulthood in both male and female persons [75].

The clinical complications of atherosclerosis (ischemic
heart disease, stroke) occur in adult life, but the process
of atherogenesis begins in childhood. Intima thickening
appears as changes in atherosclerotic lesions. It was found
that the intima thickening of abdominal aorta (alMT)
results in the first atherosclerotic lesions. It is now possible
to visualize the abdominal aorta and measuring alMT might
provide a better index of preclinical atherosclerosis in high
risk children than the intima thickness of carotid artery
(cIMT) and the intima thickness of coronary artery that has
not been affected in IUGR children [76—78]. IUGR
neonates have significant alMT and lumen diameter with
decreased serum IGF-1 and leptin levels. Mean alMT was
negatively correlated with serum IGF-1 and was positively
correlated with gestational age in the neonates with IUGR
[79].

Disruption of the aortic internal elastic laminal (IEL) is
an early feature of atherosclerotic pathology [41]. Elastic
properties of arteries largely depend on the presence of
elastin. The rate of elastin synthesis is highest in utero and
during infancy and falls rapidly thereafter with a half-life of
approximately 40 years. At birth, investigation of the
umbilical artery of IUGR and elevated resistance in feto-
placental circulation, Bukhart [80] found umbilical arteries
that are thinner and stiffer, lower plasma levels of IGF-1
(a known regulator of elastin synthesis), increased arterial
stiffness correlated inversely with IGF-1 plasma levels, and
umbilical artery walls containing less elastin [81].

In term IUGR of mothers who were exposed to substance
use during pregnancy, 24% of the children developed
hypertension by the age of 6 years [59]. In a prospective
follow-up study of adults born in 1925—1949 at four major
delivery units in Sweden, FGR constitutes a strong perinatal
risk factor for ischemic heart disease, whereas neither low
birth weight nor short gestational duration per se increases
risk [5].

Prenatal stress per se does not dramatically change
a given structure or function, but it affects resilience and
renders individuals more susceptible to pathophysiological
outcomes when further insults occur during adulthood [8].
Postnatal nutrition and catch-up growth increased cardio-
vascular risk. It was found that there was reduced insulin
sensitivity, serum low HDL cholesterol levels, and increased
waist circumference in early adulthood of IUGR individuals
who had rapid catch-up growth [24].

The generation R study by Verburg et al [20] is a large
population-based prospective cohort study from fetal life
to young adulthood that found that cardiovascular perfor-
mance in reduced fetal growth is consistent with increased
afterload and increased end-diastolic ventricular filling
pressure. The adaptive hemodynamic changes were
observed even before the stage of clinically apparent
growth restriction. The children are currently being fol-
lowed up to determine whether the hemodynamic changes
persist into childhood and whether they are related to
cardiac function and blood pressure development in post-
natal life.

Renal function of IUGR fetuses

Sixty percent of nephrogenesis occur during the third
trimester and ends on the 36th week of gestation. In
premature infants, nephrogenesis continues after birth for
another 40 days, but not beyond. Nephrogenesis is further
compromised by renal failure that commonly occurs in
severely premature births. Both prematurity and IUGR can
impair nephrogenesis.

Late impairment of fetal growth during the third
trimester has been shown to inhibit nephrogenesis and
decrease glomerular number. Consequent to reduced
nephrogenesis, there is increased mean glomerular volume
due to compensatory glomerular enlargement. There is also
increased apoptosis and plasma sodium concentration, and
suppression of renin and angiotensinogen [82,83]. However,
these adaptations or hyperfiltration cause proteinuria,
glomerular hypertension, glomerular sclerosis, and arterial
hypertension in the long term [84].

In the Generation R study, Verburg et al [85] found
decreased kidney volume (indirect index of nephrons) in
late fetal life of IUGR fetuses with signs of raised placental
resistance and fetal blood flow redistribution. Rakow et al
[86] found no significant changes in kidney volume (indirect
index of nephrons) and function in school-aged children of
premature, term SGA, or term AGA. The long-term renal
outcome of children in the Generation R study would be an
interesting finding.

Postnatal overfeeding to obtain early catch-up growth
with high energy and protein intake is usually recom-
mended; however, there is a risk of enhanced fetal
programming that causes glomerular hyperfiltration from
increased solute load.

Diabetes associated with IUGR fetuses

Both intrauterine and postnatal environments contribute to
an increased diabetes risk [87,88]. Animal research has
provided an insight into the mechanisms responsible; the



196

H. Ismail, Y.-L. Chang

pancreas was shown to have decreased cell mass, prolif-
eration, islet number and size, insulin content, insulin
response to glucose and amino acids, and blood flow that
lead to diabetes [40,89—91]. The IGF-1 and peroxisome
proliferator-activated receptor (PPAR) genes play an
important role in the regulation of glucose, lipid, and
metabolism.

Pdx1, a pancreatic and duodenal homeobox 1 tran-
scription factor, is required for prenatal pancreas devel-
opment and B cell differentiation as well as postnatal
maintenance of insulin production and the glucose-sensing
system in beta cells. Pdx1 was found absent or silent in
IUGR fetuses [40,92] .

Park et al [92], in an animal study, demonstrate how
intrauterine stress can initiate a disturbing epigenetic
cascade of progressive transcriptional repression linked to
beta cell failure. The author found reduced beta cell mass
(—70%), absent first phase insulin secretion, and nearly
absent Pdx1 expression. Their results demonstrate that
IUGR induces a self-propagating epigenetic cycle. The
corepressor/histone deacytelase (mSin3A/HDAC) complex
is first recruited to the Pdx1 promoter, histone tails are
subjected to deacetylation, and Pdx1 transcription is
repressed. At the neonatal stage, this epigenetic process is
reversible. However, histone 3 lysine 9 (H3K9me2) accu-
mulates, DNA methyltransferase 3A (DNMT3A) is recruited
to the promoter and initiates de novo DNA methylation
(which locks in the silenced state in the IUGR adult
pancreas), and the result is diabetes.

Obesity associated with IUGR fetuses

Following uteroplacental insufficiency, the decrease in
substrate availability causes a decrease in IGF-1 that leads
to poor fetal growth. In response, for survival, the IUGR
fetus increases its adipocyte sensitivity to insulin, and this
is accompanied by increased levels of insulin receptors in
adipocytes. These expose the IUGR fetus to a high risk of
developing metabolic disorders such as impaired glucose
tolerance and hyperinsulinemia and adiposity [93].

IUGR newborns are prone to central redistribution of
adipose tissue. The fat-sparing may occur because it
confers a survival advantage in the neonatal period. Post-
natally, the excess of fat may persist and lead to increased
insulin resistance. Abdominal obesity plays a key role in the
development of insulin resistance because of the high
lipolytic rate of visceral adipose tissue and its secretion of
adipocytokines.

Adipocytokines are hormones secreted by adipose
tissues, which are important in modulating metabolism and
intrauterine growth [94]. They are classified according to
their putative physiological role into two groups: (1) “insulin
resistance-inducing factors’ such as resistin, tumor necrosis
factor alpha (TNF-a), interleukin-6 (IL-6), PAI-1, ghrelin,
angiotensinogen, adipsin, acylation-stimulating protein
(ASP), and retinol binding protein-4 (RBP-4); and (2)
‘insulin-sensitizing factors’ such as adiponectin, leptin, and
visfatin. Leptin, the adipocyte-derived protein encoded by
the Ob gene, is important for neuroendocrine regulation of
body fat, feeding behavior, energy homeostasis, reproduc-
tion, puberty, and pregnancy [95].

Lower leptin, normal or lower adiponectin, and higher
ghrelin, as well as visfatin fetal/neonatal concentrations in
the IUGR state, probably holds implications for suscepti-
bility to long-term development of obesity and insulin
resistance [9]. Leptin administration to protein-restricted
dams inhibits suppression of 11-BHSD [96], which could be
one intervention pathway.

Excessively rapid weight gain in the first 16 postnatal
weeks after FGR increases body mass index (BMI) [97].
Some studies showed no association between IUGR and
obesity; IUGR children gain weight at a much faster rate but
do not fully catch up by the age of 9 years [98].

Windows for intervention

Minimizing the long-term adverse effects of IUGR could be
done at different stages: to prevent IUGR, to halt the fetal
programming when IUGR already occurred, and to prevent
enhancement of fetal programming during the catch-up
period. However, interventions may jeopardize the short-
term advantages for fetal intrauterine adaptations. Many
potential interventions are observed in the growing number
of animal studies.

Identification and assessment of child-bearing age women
with “‘prior risk’’ of developing IUGR is important for early
preventive measures: prepregnancy nutritional advice and
supplementations, adequate prepregnancy management of
maternal disorders or behavior, especially cessation of
smoking [99—101]. There is growing evidence that maternal
nutritional status can alter the epigenetic state of the fetal
genome. Promoting optimal nutrition will not only ensure
optimal fetal development, but will also reduce the risk of
chronic diseases. Improvement in primary healthcare
systems, targeted nutrition and education of child-bearing
age women, and political measures in reducing poverty and
inequalities affect overall fetal growth [102].

In the high-risk pregnancy

(a) Identification of the subclinical stage of the IUGR fetus
by Doppler imaging of a decreased placenta/CCOP
fraction could offer a window for interventions. Prom-
ising interventions that are ongoing such as altering
placental growth and nutrient transport by adminis-
tration of IGF, altering maternal levels of methyl
donors, and leptin during pregnancy could prevent or
alleviate fetal programming [96].

(b) Timely delivery of the IUGR fetus with clinical ultra-
sound manifestations.

Timing of delivery is important, not only to prevent peri-
natal mortality but also to prevent or halt the programming
process. In IUGR fetuses between 28 weeks and 31 weeks of
gestation, the best predictor for intact survival and
neonatal mortality is A/REDF in ductus venosus and delivery
is always immediate. In severely preterm IUGR fetuses
between 25 weeks and 29 weeks of gestation, A/REDF in
the DV, Picconi et al proposed the S-wave/isovolumetric A-
wave (SIA) index to distinguish fetuses likely to survive after
delivery (SIA index < 2) from fetuses that would not benefit
from aggressive management [103].
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After delivery

Identification of the IUGR newborn, in order to give special
appropriate neonatal management, is crucial to prevent
mortality and reduced morbidity, while at the same time
targeting the minimization of long-term effects [104].

Nutrition

Optimal nutritional management to minimize hyper-
insulinemia and insulin resistance may potentially improve
neurodevelopment and facilitate catch-up growth with normal
body composition [105]. However, what is the optimum?

(i) Leptin

The administration of leptin to protein-restricted dams
during pregnancy and lactation produces offspring that have
an increased metabolic rate. When the offspring are fed on
ahigh-fat diet, they do not become obese orinsulin resistant.
In pregnancy with high levels of glucocorticoids, leptin
inhibits suppression of 11-BHSD type 2, which could be one of
the preventive mechanisms of metabolic diseases [96,106].

(ii) Long-chain polyunsaturated fatty acids (LCPUFAs)

LCPUFAs are low in IUGR newborns, diabetes, hyperten-
sion, and coronary heart disease (CHD). LCPUFAs enhance
endothelial nitric oxide synthesis, suppress the production of
the pro-inflammatory cytokines TNF and IL-6, attenuate
insulin resistance, and have anti-atherosclerotic properties.
LCPUFAsimprove fetal and postnatal growth and are usefulin
the management of hyperlipidemia. If given during critical
periods of growth, especially from the second trimester of
pregnancy to age 5 years, they prevent CHD in adult life [80].

Growth hormone

Children of IUGR fetuses who do not display catch-up growth
would be shorter in height than the average child [107]. They
are usually treated with growth hormone. There are many
studies that showed that administration of growth hormone
does not worsen metabolic diseases [108,109].

Exercise

Sedentary conditions predispose IUGR offspring to the
development of obesity. Moderate daily exercise activates
enhanced metabolic flexibility in the muscle that effectively
prevents prenatal-induced obesity of fetal programming
[110,111]. These highlight the importance of tailoring
obesity prevention strategies that improve long-term health.

Adipocytes

Interventions aimed at normalizing fat partitioning in
childhood could prevent insulin resistance and metabolic
syndrome in subjects born small for gestational age [95].

Epigenetic factor

The epigenetic process during the neonatal stage of
development is reversible. This would be another potential
window of intervention [92].

Health surveillance plan for IUGR children

With many data supporting the DOAD, it is wise to have
a further health surveillance monitoring plan, especially in
IUGR infants with rapid postnatal catch-up growth. Growth
monitoring during the early postnatal period provides
useful information, and different growth patterns may be
identified in infants as young as 3 months of age [112]. The
rapid catch-up growth might be a window for intervention
and prevention of associated adult diseases [22].

Conclusions and recommendations

The identification of mothers with ‘‘priori risk’’ could lead
to earlier diagnosis of IUGR. Intensive maternal and fetal
monitoring of such patients could avoid severe fetal dete-
rioration and allow the optimal time for delivery. Identifi-
cation at preclinical manifestations of adult disease at
birth, childhood, and adulthood, with an individualized
health surveillance plan of susceptible individuals, would
prevent or halt the programming of organs (and their
functions) towards the progression of disease.

Continuous improvement in the Doppler technique, the
standardized definition of IUGR, and the standardized
staging of IUGR should be incorporated into future studies
of DOAD. These would lead to better understanding or
better identification of the stage of the IUGR fetus that is
likely to progress into specific fetal programming sequelae.
We would like to emphasize the recommendation made by
Mari and Picconi [32] to differentiate IUGR fetuses with and
without placenta insufficiency, and to divide different
types of IUGR with placenta insufficiency based on fetal and
maternal pathology, which can be categorized according to
severity and etiology in future clinical trials.

In the future, we may observe institutions for treatment at
preclinical or clinical stages of IUGR (fetal therapy), further
improvement in neonatal care especially identification of
optimal nutrients or micronutrients, and the best environment
for the IUGR newborn. Future fetal programming issues should
account more for epigenetic factors, especially in explaining
the causative role, and open new windows for intervention.
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