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Calcium oxalate monohydrate crystals stimulate gene expression
in renal epithelial cells
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Calcium oxalate monohydrate crystals stimulate gene expression in
renal epithelial cells. Primary or secondary hyperoxaluria is associated
with calcium oxalate nephrolithiasis, interstitial fibrosis and progressive
renal insufficiency. Monolayer cultures of nontransformed monkey kidney
epithelial cells (BSC-1 line) and calcium oxalate monohydrate (COM)
crystals were used as a model system to study cell responses to crystal
interactions that might occur in the nephrons of patients during periods of
hyperoxaluria. To determine if COM crystals signal a change in gene
expression, Northern blots were prepared from total renal cellular RNA
after the cells were exposed to crystals. The immediate early genes c-myc,
EGR-i, and Nur-77 were induced at one hour, At two to six hours
stimulated expression of the genes encoding plasminogen activator inhib-
itor (PAl-i) and platelet-derived growth factor (PDOF)-A chain was
detected, but constitutive expression of urokinase-type plasminogen acti-
vator (u-PA) was not altered. Expression of connective tissue growth
factor (CTGF) was induced at one hour and persisted up to 24 hours. The
stimulation of gene expression by COM crystals was relatively crystal- and
renal cell-type specific. Thus the interaction of kidney epithelial cells with
COM crystals alters expression of genes that encode three classes of
proteins: transcriptional activators, a regulator of extracellular matrix
(ECM), and growth factors. Activation of PM-i gene expression without
a change in u-PA favors accumulation of ECM proteins, as does increased
expression of PDGF and CrOP which can also stimulate fibroblast
proliferation in a paracrine manner. These results suggest that COM
crystal-mediated stimulation of specific genes in renal tubular cells may
contribute to the development of interstitial fibrosis in hyperoxaluric
states.

Hyperoxaluria occurs as a primary or secondary disease that in
some cases is associated with the development of renal failure
[1—14]. The mechanisms that mediate renal injury in this condition
are largely unknown, although clues to pathogenesis may be
drawn from descriptions of kidney biopsies obtained from specific
patients. Interstitial and periglomerular fibrosis, as well as hyalin-
ization of glomeruli, were the most consistent abnormalities
observed in 16 of 18 biopsies of patients with hyperoxaluria
secondary to intestinal bypass [14]. Numerous reports describe
calcium oxalate crystals within tubular epithelial cells, extrusion of
crystalline material into the interstitium, interstitial nephritis and
fibrosis, and cell proliferation [1—16]. The association between
intracellular calcium oxalate crystals and extracellular fibrosis in
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these renal biopsies prompted us to look for mechanisms that
mediate the pathologic changes in hyperoxaluric states.

In the present study, monolayer cultures of nontransformed
monkey kidney epithelial cells (BSC-1 line) and calcium oxalate
monohydrate (COM) crystals were used as a model system to
investigate the molecular events that ensue when a crystal inter-
acts with a renal tubular cell. As interstitial fibrosis is character-
istic of the renal injury associated with hyperoxaluria, genes which
encode proteins that regulate the composition of extracellular
matrix (ECM) were examined. The results indicate that the
interaction between COM crystals and renal epithelial cells
induces and stimulates expression of specific genes which could
mediate interstitial fibrosis in patients with hyperoxaluria.

Methods

Cell culture

Renal epithelial cells of the nontransformed African green
monkey line (BSC-1), whose site of origin within the nephron is
uncertain, were used for study. Cells were grown in Dulbecco-
Vogt modified Eagle's medium containing 25 m glucose
(DMEM), 1.6 .LM biotin, and 1% calf serum at 38°C in a CO2
incubator. Under these conditions, BSC-1 cells achieved conflu-
ence at 106 cells/60-mm plastic dish (Nunc, Naperville, IL, USA).
High-density, quiescent cultures were prepared by plating 2 x 106
cells/dish. The spent medium was changed after three days so that
there were 3 to 4 x 106 cells/plate six days later. Medium was then
aspirated and replaced with fresh medium containing 16 jiM biotin
and 0.01% calf serum. The quiescent cells were ready for use
three days later.

Madin-Darby canine kidney (MDCK) cells, which appear to
originate from the distal tubule, were grown in DMEM containing
2% calf serum and 1.6 jiM biotin as described previously [17]. To
prepare high-density, quiescent cultures, 2 x 106 cells/60-mm dish
were plated in DMEM containing 2% calf serum and 1.6 jiM
biotin. Two days later the medium was aspirated and replaced
with fresh medium containing 0.5% calf serum and 1.6 jiM biotin.
One day later the cultures were used for study at a density of 4 x
106 cells/dish.

BALB/c3T3 fibroblasts were grown in DMEM containing 10%
calf serum as described [17]. To prepare high-density, quiescent
cultures, 7 X io cells were plated per 60-mm dish. Two days later
the medium was aspirated and replaced with fresh medium
containing 1% calf serum and 1.6 .LM biotin; the cells were used
one day later when a density of 17 X 106 cells/dish was reached.
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Materials

Crystals of COM, hydroxyapatite (HA) or brushite (BR) were
each prepared from supersaturated solutions by Y. Nakagawa
(University of Chicago) as previously described [17]. COM crys-
tals were cuboidal to spindle shaped, and uniformly small at 1 to
2 jim in diameter. HA crystals were 2 to 5 jim in size and nearly
spherical, whereas BR crystals were planar and irregularly shaped
at 1 to 3 jim in diameter. Latex beads (1.1 jim diameter) (Sigma
Chemical, St. Louis, MO, USA) were used as control particles of
similar size. Crystals were sterilized by heating to 180°C overnight.

X-ray crystallography (performed by S. Deganello, University of
Chicago) demonstrated that heating did not alter the structure of
COM crystals.

Northern blots

COM, HA, or BR crystals, or latex beads were each added
directly from a suspension in sterile water, which was stirred
rapidly to prevent aggregation, to the media of high-density,
quiescent cultures to achieve a final concentration of 200 jig/ml
(47.2 jig/cm2) [17]. No additions were made to control cultures.
Previous experiments suggest that COM crystals are nearly insol-
uble in DMEM [171. At specified times after the crystals or latex
beads were added, the medium was aspirated, cells were lysed in
guanidinium isothiocyanate, scraped off the dish, and RNA was
extracted as described [18]. Samples of total RNA (20 jig each)
were electrophoresed through a 1.4 agarose-6% formaldehyde
gel, and transferred to a nylon membrane (Nytran, Schleicher &
Schuell, Keene, NH, USA). DNA probes were labeled with
[a-32P]dCTP by random hexamer priming [19], and hybridized to
Northern blots at 42°C in a solution containing 1 M NaC1, 1%
sodium dodecylsulfate (SDS), 50% formamide, and 10% dextran
sulfate [20]. The blots were washed at 65°C in 2 X SSC buffer
(0.3 M NaCl, 0.03 M Na citrate) containing 0.1% SDS. An
autoradiogram of the blot was prepared at —70°C for 24 to 72
hours using X-ray film and two intensifying screens.

The following DNA probes were purchased from the American
Type Culture Collection (ATCC; Rockville, MD, USA): human
acidic fibroblast growth factor (2.2 kb insert in pUC18); human
collagenase (2.1 kb insert of pBR322); human gro (0.84 kb insert
in pGEM-3); human heat shock protein (HSP)-70 (1.6kb insert in
pBluescript SK-); human interleukin-la (2.4 kb insert in pMG-5);
human interleukin-113 (0.7 kb insert in pSM214); mouse interleu-
kin-6 (5.2 kb insert in pBluescript SK+); rat stromelysin (1.7 kb
insert from pUN121); mouse tissue-type plasminogen activator
(2.519 kb insert in pBluescript KS+), and human urokinase-type
plasminogen activator (1.5 kb insert in pEMBL8). The following
probes were obtained from laboratories at the University of
Chicago: human c-sis (1.0 kb in pAM 18), human platelet-derived
growth factor (PDGF)-A chain (1.3 kb insert in PUC 13), and
human transforming growth factor (TGF)-f31 (1.0 kb Nan frag-
ment of human TGF-131) were from G. Bell; mouse Nur-77 (2.5
kb insert in pGEM4Z) was from L. DeGroot; rat glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) (1.2 kb insert in pBR322)
was from M. Favus; mouse c-jun (2.6 kb insert in pGEM) was
from D. Hallahan, and mouse EGR-1 (2.2 kb insert in pUC13)
from V. Sukhatme. The probe for rat fibronectin (0.27 kb
Stul-EcoRl fragment in pGEM2) was obtained from R. Hynes
(Massachusetts Institute of Technology, Cambridge, MA, USA).
Human c-myc (1.8 kb Eco Ri fragment of the third exon of c-myc)

was purchased from Oncor (Gaithersburg, MD, USA). Probes for
mouse 1-laminin (4.6 kb insert in pGEM 2) and mouse aIV-
collagen (0.85 kb insert in pGEM2) were provided by Y. Yamada
(NIH, Bethesda, MD, USA). Human plasminogen activator in-
hibitor (PAl-i) (2 kb insert in PAIB6) was obtained from D.
Ginsburg (University of Michigan). Bovine basic fibroblast growth
factor (4.2 kb insert in pGEM3Z) was obtained from R. Halaban
(Yale University, New Haven, Cl', USA). Human c-for probe (6.1
kb Ambrobe plasmid containing a 3.1 kb Xhol-Ncol fos gene
fragment) was obtained from Amersham (Arlington Heights, IL,
USA). Human connective tissue growth factor (CTGF) (1.1 kb in
pRc/CMV) was provided by G. Grotendorst (University of Miami,
Miami, FL, USA). TGF-132 cDNA was generated with the poly-
merase chain reaction using two nucleotide primers: one obtained
from position 402 to 421 and the other primer spanning 969 to 988
of the full-length monkey eDNA sequence of TGF-/32 [21].

No less than two blots were prepared and probed with each
gene of interest. Blots were subsequently reprobed with GAPDH
to verify that an equal amount of RNA was loaded in each lane of
the gel.

Results

Ciystals and human renal tissue

Renal tissue was obtained at biopsy from a patient with an
intestinal bypass who developed renal insufficiency. Crystals
within reactive tubular epithelial cells, and adjacent interstitial
fibrosis are seen (Fig. 1). The clinical history and histologic
appearance suggested that the crystals were composed of calcium
oxalate [22, 231. Similar pathologic changes were seen in a renal
biopsy obtained from a patient after a combined kidney-liver
transplant for primary hyperoxaluria which we previously re-
ported [151. To determine if these crystals could mediate the
observed pathologic changes, cultured kidney epithelial cells were
used as a model to assess the effect of COM crystals on gene
expression. High-density, quiescent monolayer cultures were used
to simulate the tubular epithelium along the nephron.

Effect of COM ciystals on gene expression in BSC-1 cells

Expression of immediate early genes (c-myc, EGR-1, c-fun,
c-for, and Nur-77) [24—26] was investigated in cells exposed to
COM crystals (200 jig/mi) for specified periods of time. RNA was
extracted from the cells and Northern blots were prepared and
hybridized with specific [a-32P]dCTP cDNA probes. The tran-
script for c-myc was induced as early as 15 minutes with maximal
expression at one hour (Fig. 2). The transcript for EGR-1 was
induced by 30 minutes with maximal expression at one to two
hours (Fig. 3). Similarly, the transcript for Nur-77 was induced at
two hours, and c-fun, (minimally expressed under control condi-
tions), also showed a maximal increase at that time. The transcript
for c-for was not detected in control cells, nor was it induced by
addition of crystals. However, the transcript was detected in RNA
isolated from cells exposed for one hour to the mitogen adenosine
diphosphate (200 jiM) [25] which served as a positive control.
GAPDH, an enzyme that mediates glycolytic metabolism, was
constitutively expressed and was not altered by addition of
crystals; it served to document equal loading of RNA in different
lanes of Northern blots.
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Fig. 1. Tissue sections of a kidney biopsy from a
patient with an intestinal bypass. Top. Low-
power view showing intracellular crystals
(arrow) that are surrounded by proliferating
reactive tubular cells containing hyperchromatic
and enlarged nuclei. Note extensive interstitial
fibrosis adjacent to crystals (H & B). Bottom.
High-power view showing intracellular crystals
(arrows) surrounded by reactive epithelial cells
which project into the lumen of a dilated tubule
(H & B).

Northern analysis was then performed using [a-32P]cDNA did not change significantly following exposure of the cells to
probes to study proteins that regulate the ECM composition.
Figure 4 shows that plasminogen activator inhibitor-i (PM-i) [27]
was expressed constitutively in cells as a double transcript (2.4 and
3.4 kb in size). In the presence of COM crystals the message
increased maximally between two and six hours, and returned
towards the control level by 12 hours. When the same blot was
hybridized with a probe for urokinase-type plasminogen activator
(u-PA) [28], constitutive expression of the gene was detected that

crystals.
Northern blot analysis of mRNA encoding PDGF-A and -B

chains [29, 30] is shown in Figure 5. Three transcripts encoding
PDGF-A chain (2.8 kb, 2.3 kb, and 1.8 kb) are seen in control
cells. Expression increased maximally between two to six hours
after exposure to crystals, a time course similar to that observed
for PM-i. The gene encoding PDGF-B chain (c-sis), was consti-
tutively expressed and changed little after exposure to crystals.
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Fig. 2. Northern blot analysis of total
RNA from high-density, quiescent renal
epithelial cells (BSC-1 line) after
exposure to COM ciystals (200 ug/ml)
for specified periods of time. Total
cellular RNA (20 jig) was extracted
and electrophoresed through a 1.4%
agarose gel containing formaldehyde,
and then transferred to a Nytran
filter. The filter was hybridized with
an [a-32P]cDNA probe for c-myc or
GAPDH. The transcript for c-myc
was induced as early as 15 minutes,
with maximal expression at 1 hour.

Connective tissue growth factor (CTGF) is a cysteine-rich protein
that exhibits PDGF-like biological and immunologic activities
[31]. Its transcript was not detected under control conditions, but
was induced after one hour of exposure to crystals and thereafter
was expressed continuously for up to 24 hours (Fig. 6).

Table 1 shows that six genes (left panel) which contribute to the
composition and regulation of ECM were constitutively expressed
by BSC-1 cells, but their expression was not altered by exposure to
COM crystals. Nine genes (right panel) that could play a role in
fibrogenesis and proliferation were not expressed in BSC-1 cells
nor did crystals induce their expression.

Specificity of gene expression
To determine if the capacity of COM crystals to stimulate gene

expression is crystal-type specific, the effect of two calcium-
containing crystals, BR or HA, and a non-crystalline particulate,
latex beads, were studied. Cells were exposed to each particulate
(200 j.g/ml) for specified periods of time, RNA was isolated, and
Northern blots were prepared and probed with [cs-32P]PDGF-A
chain cDNA. Only COM crystals induced gene expression (Fig.
7). To evaluate crystal-type specificity for PAl-i, cells were
exposed to each particulate (200 g/ml) for 1, 3, 6, 12, or 24 hours,
RNA was isolated, and Northern blots were prepared and probed
with [a-32PIPAI-1 cDNA. The transcript for PAl-i was detected
under control conditions, whereas its expression was increased
from 3 to 24 hours only after exposure to COM crystals (data not
shown).

To determine whether stimulation of gene expression by COM
crystals was cell-type specific, experiments were performed using
cultures of canine renal epithelial cells (MDCK line) and BALB/
3T3 fibroblasts. High-density, quiescent MDCK or 3T3 cells were
exposed to COM crystals (200 j.tglml) for 1, 3, 6, 12, or 24 hours,
and expression of PAl-i, a gene that regulates the ECM compo-

sition, and EGR-1 as a representative immediate-early gene were
studied. Because preliminary experiments using 20 g of total
RNA showed no signal when blots prepared from 3T3 or MDCK
cells were hybridized with [a-32P]PAI-1 cDNA, a greater quantity
(80 j.g) of RNA was subsequently used. Induction of the PAl-i
transcript in MDCK cells was detected three hours after exposure
to COM crystals, whereas expression in 3T3 fibroblasts was not
detected under control conditions or in the presence of crystals
(data not shown). To look for cell-type specificity of COM
crystal-induced immediate-early gene expression, MDCK cells or
3T3 fibroblasts were exposed to crystals (200 p.g/ml) for 1, 3, 6, 12
or 24 hours, and Northern blots (20 g total RNA per lane) were
prepared. The crystals stimulated expression of EGR-1 in MDCK
cells (at six hr) but not in 3T3 fibroblasts (data not shown).

These results suggest that the capacity of COM crystals to
stimulate gene expression in renal epithelial cells is relatively
crystal- and cell-type specific.

Discussion

The results demonstrate that genes encoding diverse classes of
proteins are activated in renal epithelial cells exposed to COM
crystals. There is rapid and transient induction of c-myc, EGR-1
and Nur-77 transcripts which peaks at one to two hours, enhanced
expression of PAl-i and PDGF-A chain at two to six hours, and
induction of CTGF at one hour that persists for 24 hours
following the cell-crystal interaction. COM crystal-mediated stim-
ulation of gene expression is relatively crystal- and renal cell-type
specific. As far as we are aware, these findings represent the first
evidence that the most common crystal in renal stones, COM, can
activate gene and protooncogene expression in kidney cells.

Recent studies in this and other laboratories indicate that the
interaction of COM crystals with kidney cells in culture can result
in specific responses. The crystals can bind to the apical cell
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Fig. 3. Northern blot an4sis of total RNA from
BSC-1 cells after exposure to COM crystals for
EGR-1, Nur-77, c-juts c-fo and GAPDH.
Transcripts for EGR-1 and Nur-77 were
induced and c-jun was stimulated rapidly and
transiently for one to two hours, whereas c.fos
was not expressed under control conditions nor
stimulated by addition of crystals.

surface [32—34], undergo internalization [35], and in some cells
initiate proliferation [17]. Each of these three responses appears
to be under the control of a different set of extracellular factors
[17, 35,36]. Crystal binding to the apical plasma membrane can be
blocked by diverse anions found in urine such as the glycoproteins
nephrocalcin and uropontin, specific glycosaminoglycans, and
citrate [36]. After crystals adhere they can be internalized by the
cells, a process which can be stimulated (epidermal growth factor,
adenosine diphosphate, calf serum), or inhibited [Tamm-Horsfall
glycoprotein, heparin, transforming growth factor-132, tetrapep-
tide arginine-glycine-aspartate-serine (RGDS)] by diverse agents
[35]. Uptake of COM crystals is associated with an increased
probability of cell division [17]. The internalized crystals appear to
be distributed to daughter cells at mitosis and can persist for at
least two weeks within the cells [34], suggesting that theyare not
perceived as toxic.

Whether intracellular crystals in vivo serve as a nidus for
additional crystal growth, are eventually exocytosed into the
interstitium, or slowly dissolve inside the cell remains unknown.
Previous experiments have shown that internalization is crystal-
type specific. HA and BR crystals appear to be internalizedby 7%
and 3% of BSC-1 cells, respectively, whereas 42% of cells are able

to engulf a COM crystal after one hour [17]. In the present study
renal epithelial cells responded to an interaction with COM
crystals, but not other particulates, by altering expression of
specific genes (Fig. 7). It is possible that the extent of internaliza-
tion of different crystals by these renal cells accounts for or
contributes to the apparent crystal-type specificity. The results of
the present study do not identify the genes whose expression is
triggered by specific events such as adhesion of a crystal or its
internalization by the cell.

Specific responses to crystals also occur in nonrenal cells. Basic

calcium phosphate crystals induce c-fos and c-myc protooncogene
expression [37] and initiate mitogenesis in BALB/3T3 fibroblasts
[38—40]. A role for cytokines in cell-crystal interactions has also
been reported [41—43]. Monosodium urate, calcium pyrophos-
phate dihydrate, and hydroxyapatite crystals each stimulated
interleukin (IL)-6 production by synoviocytes and monocytes
grown in culture [42], and monosodium urate crystals triggerrelease of IL-8 from cultured monocytes [43]. The plasminogen-
activating system plays a key role in regulating the ECMcompo-
sition [44]. As progressive accumulation ofextracellular proteins
is a central feature of interstitial fibrosis [45], genes which regulate
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Fig. 4. Effect of COM ciystals on expression of PAl-i, u-PA, and GAPDH in BSC-1 cells. PAl-i was expressed constitutively and was stimulated maximally
from 2 to 6 hours after exposure to crystals. Constitutive expression of u-PA was unchanged.

Fig. 5. Northern blot analysis of RNA from BSC-1 cells after exposure to COM ciystalsforPDGF-A chain, c-si and GAPDH. Expression of PDGF-A chain
was constitutive under control conditions and increased from 2 to 6 hours after exposure to crystals, whereas expression of c-sis was unchanged.

the components of the plasminogen-activating system were stud-
ied. Plasmin is an extracellular broad spectrum protease that is
activated when its precursor, plasminogen, is cleaved [46]. Plas-
minogen is the target of two other highly specific proteases,
urokinase-type plasminogen activator (u-PA) and tissue-type plas-
minogen activator (t-PA) [46]. U-PA is primarily responsible for

plasmin generation in processes involving degradation of ECM
and basement membranes, whereas t-PA appears to mediate
plasmin generation during fibrinolysis. Fast-acting plasminogen
activator inhibitor (PAl-i) is an important component of this
system. PAl-i regulates plasmin activity by blocking the action of
both tissue- and urokinase-type plasminogen activators which
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Fig. 6. Effect of COM c,ystals on expression of
CTGF in BSC-1 cells. Expression of CTGF was
not detected under control conditions, was
induced after exposure to crystals for 1 hour,
and persisted up to 24 hours.

Table 1. Effect of COM crystals on gene expression in BSC-1 cells

Constitutive expression not altered Not expressed or induced

Laminin Stromelysin
Collagen Collagenase
Fibronectin Interleukin-1j3, -in, -6
Transforming growth factor-/31, -/32 gro
Heat shock protein-70 Tissue-type plasminogen activator

Basic fibroblast growth factor
Acidic fibroblast growth factor

COM crystals were added to cultures of high-density, quiescent cells
and RNA was extracted at eight different times (0 to 24 hours) there-
after. Northern blots were prepared and hybridized with each of the
[a-32P]cDNA probes listed in the table.

decreases formation of plasmin [46]. Reduced plasmin production
could thereby permit accumulation of ECM proteins. In the
present study, expression of PAT-i was induced, u-PA was un-
changed, and t-PA was not expressed in renal cells exposed to
COM crystals. Increased expression of PAl-i without a change in
u-PA could result in decreased plasmin production; enhanced
accumulation of ECM proteins and eventual fibrosis would be the
predicted result. Augmented expression of the gene encoding
PDGF-A chain was also detected. This growth factor is a potent
mitogen for cells of mesodermal origin such as fibroblasts, stim-
ulates connective-tissue forming cells to synthesize and release
collagen, proteoglycans and elastic fiber proteins, and serves as a
chemoattractant for fibroblasts and monocytes [47—49]. Increased
availability of PDGF in the extracellular space would favor
fibrosis. CTGF is a peptide originally identified as a secreted
product of human vascular endothelial cells that has properties
similar to PDGF; it is mitogenic and chemotactic for connective
tissue cells such as fibroblasts and smooth muscle cells [31, 48].
induction of the transcript for CTGF at one hour and its
persistent expression for the next 23 hours suggests that secreted
CTGF protein could stimulate fibroblast proliferation in a para-
crine manner, as does PDGF [31, 50]. Of the 15 genes studied
which regulate ECM composition, only three (PM-i, PDGF-A
chain, CTGF) exhibited increased expression after exposure of
the cells to COM crystals (Table 1). These observations suggest
that certain genes within specific classes are selectively induced or
stimulated by exposure of the cell to COM crystals. The transcrip-
tional control mechanisms that coordinate induction or stimula-
tion of these specific genes remain to be explored. Studies to
determine the effect of blockade of crystal adhesion and/or
internalization on gene expression could provide additional in-

sight into how the interaction of a crystal with a renal cell activates
transcription.

Hyperoxaluria can be classified as either primary or secondary
and is often associated with interstitial fibrosis and renal failure
[1—14]. Primary hyperoxaluria is a genetically distinct inborn error
of oxalate metabolism, whereas secondary hyperoxaluria occurs in
several gastrointestinal malabsorptive states, during pyridoxine
deficiency, and following ethylene glycol ingestion and methoxy-
flurane anesthesia [51]. Koten et a! have suggested that calcium
oxalate crystals deposited in the interstitium cause marked inflam-
mation and fibrosis of the renal parenchyma [6]. An autopsy study
of persons with normal kidney function, acute renal failure or
chronic renal failure revealed that the incidence and severity of
tubular and interstitial calcium oxalate deposition was a function
of the duration of renal failure which in turn is correlated with an
elevated plasma oxalate concentration [8]. Therefore calcium
oxalate deposits in the kidney are associated with both interstitial
fibrosis and loss of renal function [1—10]. Severe hyperoxaluria
induced in rats by an intraperitoneal injection of sodium oxalate
immediately produces intraluminal calcium oxalate crystals which
appear to attach to the apical membrane of tubular epithelial cells
and are subsequently deposited in the interstitium [52—54]. There-
fore, the results of this and previous studies suggest that during
periods of hyperoxaluria COM crystals can nucleate and grow
within tubules, undergo endocytosis, and initiate release of factors
from tubular cells that could stimulate fibroblast proliferation by
a paracrine pathway, and ECM accumulation via the plasmin
system. The end result of this scenario would be interstitial fibrosis
and progressive kidney failure. This hypothesis could be tested in
the human kidney by utilizing cDNA and antibody probes sug-
gested by the results of the present study.

In summary, the response of renal epithelial cells to COM
crystals is characterized by increased expression of specific genes
which encode transcriptional activators (c-myc, EGR-1, Nur-77,
and c-fun), a regulator of ECM composition (PM-i), and growth
factors (PDGF-A chain and CTGF). The protein products of
these genes could contribute to interstitial fibrosis observed in
kidneys of patients with primary or secondary hyperoxaluria.
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