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Abstract

Smooth bounded convex domains equipped with their Hilbert metric provide nice examples of constant
negatively curved Finsler manifolds. An important property of these models is that contrary to what happens
in Riemannian setting the distance between two points moving at unit speed along intersecting geodesics is no
necessarily convex. However we give sharp estimates of the asymptotic behaviour of such functions.
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1. Introduction

Riemannian negatively curved manifolds admit many convexity properties, in particular the distance
between two points moving at unit speed along geodesics is a convex function. In this article we show
that for Finsler constant negatively curved manifolds such a result is not true any longer and estimate a:
sharply as possible the asymptotic behavior of this distance function for two intersecting geodesics of a
Finsler—Hilbert geometry. In fact we restrict ourselves to Finsler—Hilbert geometry because any simply
connected, projectively flat, geodesically complete reversible Finsler manifold of constant negative
curvature is isometric to a Hilbert geometry [1,3,8].
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1.1. Hilbert geometry

A Hilbert geometryconsists of a bounded convex domdinof R” equipped with its Hilbert metric
h; (whose definition follows) wheré is a real positive number. Any two distinct pointsand y of C
determine an oriented line joining to y which intersects the closure @f along an oriented chord
[x~, x™], the Hilbert distancé, (x, y) betweenx andy is then given by

hi(x, y) : In[x™~ 1
X, ] X L, X, ), X )
kX, Y 2k y
where[x~, x, y, x™] denotes the cross ratio of , x, y andx™. If we seth; (x, x) = 0 thenh, is really a
metric onC which is moreover complete and defines the same topolo&y §3,5,9].
Before explaining when a Hilbert geometry endowed a Finsler structure, let us precise that a
(reversible)Finsler manifoldis a manifoldM equipped with a Lagrangiaf : T M — R such that

— the restriction ofF to any tangent spacg M is a norm,
— the LagrangiarF has clas€? outside the zero section,

— the matrix of second derivativeg% (x,y))i,; Is positive
vy

definite for every nonzero vectgrof 7, M.

Under such hypotheses the problem of variations calculus is well defined @navides a distance
on M. A Hilbert geometry(C, h;) appears as the metric space induced by a Finsler manifold (we will
say Finsler—Hilbert geometryif and only if the boundary ot is aC? hypersurface oR”" and for any
2-plane P of R” the boundary of the sectiof N P (when nonempty) has a nondegenerated Hessian
everywhere except at most along one segment. For such Hilbert geometries, geodesics are exactly trac
of lines and Finsler curvature is constant and equalkd4,6—8]. Notice that the Hilbert geometry of an
open ball of the usual Euclidean spdeis the Klein model of constant negatively curved Riemannian
manifolds.

1.2. Behaviour of the distance

Let (C, hy) be a Finsler—Hilbert geometry amgland § two distinct (oriented) geodesics such that
B(0) = 5(0). We want to know how the distance functidn: € R — h,(8(¢), (¢)) behaves near infinity.

These geodesics ands define a planeP andd just depends on the affine secti®n C. So from
now on we assume€ is a bounded convex domain BF.

Two pointspy* andn~ can naturally be associated to any oriented geodesite oriented line defined
by 5 intersects the closure of the convex €etlong the oriented choridy—; n*].

Let us [AB] be the chord along which the oriented ligg*5™) intersects the closure af. The
following four different cases can occur (see Fig. 1):

case e C is not entirely contained in a half plane limited b§B); soA = g+ andB =4§;

case f C is contained in a half plane limited A B) with A = 8t andB =4§;

case gchords[AB] and[B15"] have a single end-point in common;

case hthe chord8*5"] is included in the open chordi BJ.

Casee occurs wherg and$ do not end on a same segment of the boundary, so in particular @hen
is strictly convex. But notice that all these cases can occur for general Finsler-Hilbert geometry.
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Fig. 1.

Theorem. Let (C, k) be a Finsler—Hilbert geometry whose bounda is C? with g > 2. Considerpg
andsé two distinct(oriented geodesics witls (0) = § (0) and parameterized by their arc length. Then the
functiond :t — hi(B(t), §(¢)) verifies

() the functiond is strictly increasing
(i) at infinity:
e in casee:
qg—1
d(t) =2t + Z Ke 2k o(e‘z(q‘l)ﬁ’) with Ko <0,
=0
e in casef (respectivelyg);
d(t) and2t — d(¢) (respectively — d(¢)) goes to+ oo with ¢.
(iii) for any given positive real number the derivatived satisfies for sufficiently large

2—ec<d()<2+¢ incasee,

0<d(r) <2 in casef,
0< c_l(t) <1l+¢ in caseg,
0<d@®) <¢ in caseh;

(iv) in case e the second derivatived¥anishes at infinity and has positive values fdarge enough,
i.e.,d is convex in an infinite neighbourhood.

Remarks.

e The sign ofKy is obviously given by the triangular inequality.

e These results are optimum as it will be shown in Section 4, in particular everything can occur in cases
f, g andh for the derivatived.

e Some of these results stay true under weaker hypotheses as it will become clear through the proof o
the theorem.

e Because Hilbert geometry is not uniform, | was not able to use general results on the variation of
length and had to carry out straightforward computations with explicit formulas. It also seems that
no uniform control on the behaviour of the geodesic distance can be expected. For strictly convex
domains, A.F. Beardon obtainet{r) = 2r + O(1) under weaker hypothesis (see [2]) but did not
control Q1) uniformly.
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A=, (1)) B=(1c"(1)
pgr=(@1,-1) B =(=1/r1/r)

it =(1,1) 6~ =(—=1/r,—1/7)

Fig. 2.

2. Preliminaries

Recall that the convex domai@ can be assumed of dimension 2. Geodegicand § determine
two lines (B*8%) and (8~87). These lines intersect outside (eventually at infinity) so there exists a
projective map which sends onto a bounded convex s€t and the intersection point betweési™ ™)
and(p~47) to infinity. Then this map is an isometry betwegn, ;) and(C’, h;) which sends and$
onto two geodesics having the same relative position (eageg or 1) asg ands. Up to this isometry
we can then assume thgt™ ™) and(B~8 ") are parallel. Moreover g&ands have unit speed, we obtain

Lemma 1. For all ¢ the line(B(1)5(r)) stays parallel taB*5).

Proof. Let D and D, be the parallels tg8*5™) throughp(0) respectivelyB(z). Thus[B~, B(0), B(1),

Bt =[(B~87),D, D, (B8] = [67,8(0), D, N 8,5%] as 8§(0) = B(0). Since hy(8(0),5(r)) and
hi(B(0), B(t)) are equal, so ar§~, p, D, N 8,87 and [§~, p,8(t),87]. Finally § and D, meet at
6(r). O

Let us now define the framg, 7, 7) we will use to estimate the asymptotic behavior of functibn
The originp is B(0) = §(0), the vector 7 is W the line(p, 1) is the bisector of8 ands and the first
component of3™ is 1. We fix a scalar product by saying that this frame is orthonormal and denete by
the positive ratio- pS+/pp—.

As C is aC? convex domain the intersection betwesn and the strip-1/r < x < 1 can be described
as graphs of tw@? functions. The functiorn™ (respectivelyc~) giving the upper part of the intersection
(respectively the lower one) has to be concave (respectively convey)>A3, notice that* andc™ are
derivable at 1 in case e and then verdf{(1) < 1 and¢™ (1) > —1 by choice of the frame. In the other
cases—¢t and¢™ simultaneously tend te-oo at 1. (See Fig. 2.)

3. Proof of thetheorem

The situation is the one described in the previous section. Moreover by definition of Hilbert metrics
it's enough to prove the theorem fox/2 = 1 what we assume now.
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3.1. Why is the functiod strictly increasing?

For eacty the oriented ling 8(r), §(r)) meets the boundary & successively aB;” and B;". Then
d@) =In[(pB;), B,8, (pB;H)]. Lemma 1 allows us to draw the illustration (shown in Fig. 3)fos ¢
which ends the proof.

3.2. The first component @f(z)

As lines (B78%) and (B(r)8(¢)) stays parallel (Lemma 1), poinis() and§(¢) have the same first
component denoted by(¢). Thus, since3 is parameterized by its Hilbert arc length, we obtain

€ -1 r+1

t)=— and 1-x(t) = . 1

x(t) e xr x(t) Tt e (1)
We recover that (¢) tends to 1 whem goes to+oo and obtain the useful identities
r

t=(1—x)— ——(1—x)? 2
x=(01-x) r+l( X)4, (2)
SR S PRI (R WP 3)
X = X P 1 X P l X) .

3.3. Computation of

Making explicit the cross ratio defining functiaf it follows thatd = d, + d_ with d, andd_ the
functions of clas€? onR:
n _
d+=lnM and d_ =<2~
ctox—x cTox—+x
Asc (1) < -1 <1< " (1), the increasing functiod goes to infinity withr in all cases except case h
in which it converges to a finite limit.
Moreover functions* andc~ can be chosen independently except that their first derivative must be
simultaneously finite or infinite at 1 and the study of the following cases gives the behavigur of
casee’: ¢ (1) is finite and s (1) =1,
casef’: ¢*(x) goes to—oo whenx tends to 1 and™* (1) =1,
caseh’: ¢t (x) goes to—oo whenx tends to 1 and™* (1) > 1.
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3.4. Proof of property (ii)

e For casee’. Using Taylor developments of ox —x andc™ o x + x at 1 we show, as™ (1) = 1 and
¢t < 1, that there exits two constarkigandk; such that/, =ko—In(1—x) +ki(x — 1) +0(1—x).
Thus, using expression (1) of- 1, we obtaind,. (r) =t + K; + K€" +0(e™") in a neighbourhood
of infinity with K§ and K" two constants.

If ¢ > 2, this proof immediately shows, expands on the scale’éwith [ € {0,1,...,q9 — 1}.

e For casef’. The convexity ofC and its regularity gives the following inequality:

+ —ct(1
oy Sox—ad (4)
1—x
Herec¢™ diverges at 1, we have then
1—x =O(C+ ox —c+(l)) and ctox—x=(ctox— 1)(1+O(1)).

It follows ¢™ o x +x =2+ 0(1) sincect (1) = 1 and finallyd, = —In(ct ox — ¢ (1)) + O(1).

e For caseg’. In this particular casé, has a finite limit at infinity.

e Conclusion.Similar computation for/_ leads to the looked for expansiondt d, + d_ at infinity
by using the independence of andc™ and the fact that in casg’ the function 1— x is negligible
with respect ta™ o x — ¢ (1) and of the same order as’e

3.5. Proof of property (iii)

The first derivatived, is given by
_ X(¢Tox+1) 3 X(¢Tox—=1) _ 2x(cTox —x¢éT ox)
ctox+x ctox—x (ctox+x)(ctox —x)
As c¢* (1) > 1 we deduce from formula (2) that at infinity
N 21 —x)(cT ox —x¢T ox)

T et @+ Dictox —x)

d, (®)

e For casee’. Taylor formula leads tot ox —x = (¢"(1) — 1) (x — 1) +o(x —1). As¢™ (1) <1 and
¢t (1) =1 it follows thatd, admits 1 as limit at-oc.

e Forcasef’. Herect (1) = 1, the derivative’* diverges at 1 and 4+ x = o(c* o x — ¢t (1)) atinfinity,
so near infinity

(1—x)¢Tox
ctox—ct(1)’

This equivalent is positive near infinity and bounded by 1 because of inequality (4).dLhiss
positive and bounded by any real number strictly bigger than 1. Indfads bounded by 1 near
infinity. In order to prove that, let us search the signief— 1 that is the one of = (d — 1)(c* o
x +x)(ct o x — x). A direct computation using formulas (5) and (2) leadSte T, + T + Ts with
2 2 .y
T, = . +l(l x)(¢Tox —1),
T, = —[c+ ox —ct (1) + (l—x)][c+ ox—ct(1)—(1—- x)],

d+'\’—
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1— 2
Ty=2[ct ox — ¢t (1) + (1 — )" ox][—l-l— (1—x)— u]
r+1
As ¢ tends to infinity 1, the concavity ef" shows thaty — 1 =o0(c*(y) —ct (1)) and(y —1)¢* (y) =
O(c*(y) — ¢t (D)) for y near 1. We have then near infinity
Ty =0((c* ox — (D)%),
Ty~ —(c* ox —c* (D)7,
T3~ —2(6Jr ox —ct)+ A —-x)¢t ox).
Equivalents off, and T3 are negative. The§ is negative at infinity which ends the proof.
e For casel’. Herec™ (1) > 1, the derivative:* diverges at 1, so at infinity
. 2(1—x)¢Tox
T HDED -

By inequality (4) the derivative, vanishes at infinity. )
e Conclusion.With same methods we prove analogous resultg/forAsd = d, + d_ andc™ and as
¢~ are independent, the result immediately follows.

3.6. Proof of property (iv)

The derivative of expression (5) df_leads to

¥(tox+ 1) +i2Tox  [i(Tox—1)\?
ctox+x

di(1)= Foxtx

¥(Tox—1)+x%t ox N <5c(c'+ox—l)>2

ctox—x ctox—x

Expressions (2) and (3) of and X show thatd. can be expressed as a compounded funciiosx.
And we can expand on the powers ofx — 1) using Taylor formulas for™, ¢t and¢t at 1 (we are in
case e). A direct computation leads to

r & (1) ) +1

D(y):(r+1+2(c'+(l)—l)_ 2

So, as going froml* to d~ is just exchanging™ by —c¢—, we obtaind (1) = S(1 — x (1)) + o(1 — x(t))
with

)(1—y)+0(1—y)-

2 &t () ) +1 ¢ (1) (-1
_r+1+2(c'+(1)—1) a 2 2(¢- (L) + 1) 2
But in casee, the convexity of the domaid’ gives the way the tangent line taC at §* and the line
(B~8) (respectively the tangent line At and (5~ 1)) are placed: in coordinates (1) < —X and

1+1/r
()= i‘ri;: Finally we have

S (1) ¢ (1)
T2t -1 2+
which provesS is positive.

S
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4. Examples and counter-examples

The aim of this section is to show by examples that the results we obtained are optimal. We are still in
the situation of Section 2 and we just describe the part of the boundary we are interested in. We can dc
that because there exists a smooth boundary extending the given part. More precisely one has just to pe
attention to the given points of the boundary: they have to be out of the interior of the convex hull of the
described part.

For all the examples we take/Z = 1 and so the first componentr) is tanh(z/2).

4.1. About property (iv)

Property (iv) of the theorem assures that in cas&inctiond is convex forz sufficiently large but
nothing forces!/ to be convex on alR as for negatively curved Riemannian manifolds. In fact there exist
convex domains of clag® whose boundary has a not degenerated Hessian everywhere and geodesics of
this Hilbert geometry for which the distandes not globally convex.

Otherwise let us consider an open convex bounded doMaihclassC? whose boundary contains an
unigue segmerjub] with a # b and has nondegenerated Hessian everywhere oliigitleNow equipC
with the Hilbert distancé; and chose two distinct points andd’ on Jab[ and two points:” andd” of
dC such thatla”b”) and(ab) are parallel anda”b’) and(b”a’) intersect inC. We defines (respectively
B) as the oriented geodesic of speed 1 and of support the oriente@Tibig¢ (respectively(”a’)) such
thats§(0) (respectivelys(0)) is the intersection poinia”’b’) N (b"a’). For any positive real numberthe
line (B(#)8(¢)) is parallel to(ab) (Lemma 1). Conside€, an open convex bounded domain such that the
boundary ofC, is of classC? with a nondegenerated Hessian everywhere, the pards afidC lying in
the half plane limited by(8(¢)3(¢)) containinga” coincide andC, contains points’ andd’. Equip this
convexC, with its Hilbert metrich’ of parameter 1. Map8 and g8 are still geodesics of speed one for
(C;, h") thus for anys in [0, t] we haveh;(8(s), B(s)) = h'(8(s), B(s)). Finally if property (iv) assure
d is convex on allR*, we would obtain that € R* — h1(B(¢), 5(¢)) is convex which cannot be as it
admits a finite limit at infinity.

4.2. What can happen in cagé for the derivatived. ?

We saw the derivative,, is bounded by 0 and 1 near infinity. In fact it happens this function admits
a limit and any limit between 0 and 1 can be obtained, in other hand it occurs fumGtisnbounded
without having any limit at infinity. The following examples illustrate all these situations:

— The derivatived, vanishes at infinity for a boundary described fom [1 — €2, 1[ by: ¢*:x >
1-1/In(1—x).

— For any real numbep in 10; 1[, a boundary which coincides for in [0, 1[ with the graph of
ctix—> 14 (1—x)" u/un leads to a functio@, whose derivative tends @ at infinity.

— The derivatived, tends to 1 at infinity wherC is described ofil —e ™, 1] by ¢t (x) =1 — (1 —
x)In(1—x).

— For a boundary whose restriction ftb/2, 1] is given by the mag™:x — 1+ 2[8 + cogIn(1 —
x)]v/I—=x, neitherd, nor d, admit any limit at infinity. Howeverd, stays bounded and take
negative and positive values at any neighborhood of infinity.
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4.3. What can happen in casgsor 1’ to d?

As d is bounded, the only possible limit iR for d is zero. Otherwise/ can stay bounded without
having any limit or be unbounded. In fact any of those situations occurs as following examples illustrate
it.

First notice that, as the functiom$ andc~ can be chosen independently, it is enough to prove all the
previously described situations can happendfpin casesf’ andh’.

Before looking for examples, obsende more precisely: using equivalents forand i given by the
formulas (2) and (3), inequality (4) and continuity ©f, we obtain

" 2.x%x¢t ox { O(1) for casef’
d+ ==

B (ctox —x)(ctox+x) o(1) forcasen'. ©)

e Examples wherd, vanishes at infinity.
The first three examples of Section 4.2 are such situations of fyp& boundary whose upper part
can be described by the graph of the nedp x € [0, 1] — 2+ 24/1 — x corresponds to cage and
d.. vanishes at infinity.

e Examples for whichi, is bounded without having any limit.
Such a situation in casg' is given by the last example of Section 4.2. Let us nhow build an example
for casen’.
First consider the continuous functighdefined on0, 1[ by —1 except on the intervald — 1/n —
1/n* 1—1/n+1/n*], n e N\[0, 1, 2}, where f (x) = =1 — n? + |x — 1+ 1/n|n®. In fact f is just
a triangle function which satisfies1 — 1/(x — 1)2 < f < —1. Now observe thag:y € [0, 1[—
fO’ £ (u) du is a nonincreasing negative function, continuou$®n] asg(1—1/n + 1/n*) converges

whenn goes to infinity. Functior™ : x € [0, 1] > — fxlg(y) dy + 21— x + 2 is then concave, of
classC? on |0, 1[, C* on [0, 1] and tends to 2 1 at 1. Furthermore its first derivative™ diverges to
—oc at 1. Thus it describes a situation of typeand formula (6) becomes

2(1+0(1)x%¢tT ox

dy =~ 3 +o(D),
that is by formula (2)
. 2(1—x)? ( 1 )
di=—"——""x|fox————=)(1+0(1) + o).
+ 3 X o/ T—% xS ( )

Thanks to choice of this last term is bounded but does not have any limit (the sequence defined by
x, =1—1/n respectively - 1/n — 1/n* tend to 23 respectively zero); s gives the looked for
example.
e Examples wherd, is unbounded.
Formula (6) shows that it* describes a situation of typg’ where d, is unbounded then
¢t — ¢t (1) + 1 will give an example of a cas¢’ whered, is unbounded. So we are just going
to give an example for casg.
Let f be the continuous triangle functighdefined or{0, 1] by —1 except on the intervald —1/n —
1/n* 1 —1/n + 1/n*), n e N\{0, 1, 2}, where f(x) = —1 — n®+ |x — 1+ 1/n|n’. Now observe
that the mapg:y € [0, 1[—~ fg f(u)du is a nonincreasing negative function of clagson [0, 1]
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which tends to—oo at 1 becausg(l — 1/n + 1/n*) diverges to infinity withn. A straightforward
computation offll__ll//;”ﬂ)g(u) du shows these terms are the one of a convergent sum, so that the

integralfo1 g(u) du is convergent. Then the functiefi : x € [0, 1[— — fxl g(y) dy+2is well defined,

concave, of clasg? on [0, 1] and tends to 24 1 at 1. Asc¢™ divergg_s to—oo at 1, the described
situation is of typer’ and here formula (6) leads th (1 — %) ~ % sod, is unbounded here.
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