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Abstract

Smooth bounded convex domains equipped with their Hilbert metric provide nice examples of co
negatively curved Finsler manifolds. An important property of these models is that contrary to what h
in Riemannian setting the distance between two points moving at unit speed along intersecting geodes
necessarily convex. However we give sharp estimates of the asymptotic behaviour of such functions.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Riemannian negatively curved manifolds admit many convexity properties, in particular the di
between two points moving at unit speed along geodesics is a convex function. In this article w
that for Finsler constant negatively curved manifolds such a result is not true any longer and esti
sharply as possible the asymptotic behavior of this distance function for two intersecting geodes
Finsler–Hilbert geometry. In fact we restrict ourselves to Finsler–Hilbert geometry because any
connected, projectively flat, geodesically complete reversible Finsler manifold of constant ne
curvature is isometric to a Hilbert geometry [1,3,8].
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1.1. Hilbert geometry

A Hilbert geometryconsists of a bounded convex domainC of R
n equipped with its Hilbert metric

hk (whose definition follows) wherek is a real positive number. Any two distinct pointsx andy of C
determine an oriented line joiningx to y which intersects the closure ofC along an oriented chor
[x−, x+], the Hilbert distancehk(x, y) betweenx andy is then given by

hk(x, y)= 1

2
√
k

ln[x−, x, y, x+],
where[x−, x, y, x+] denotes the cross ratio ofx−, x, y andx+. If we sethk(x, x)= 0 thenhk is really a
metric onC which is moreover complete and defines the same topology asR

n [2,5,9].
Before explaining when a Hilbert geometry endowed a Finsler structure, let us precise

(reversible)Finsler manifoldis a manifoldM equipped with a LagrangianF :TM → R such that

– the restriction ofF to any tangent spaceTxM is a norm,
– the LagrangianF has classC2 outside the zero section,
– the matrix of second derivatives( ∂

2F 2

∂yi∂yj
(x, y))i,j is positive

definite for every nonzero vectory of TxM .
Under such hypotheses the problem of variations calculus is well defined andF provides a distanc

onM . A Hilbert geometry(C,hk) appears as the metric space induced by a Finsler manifold (we
sayFinsler–Hilbert geometry) if and only if the boundary ofC is aC2 hypersurface ofRn and for any
2-planeP of R

n the boundary of the sectionC ∩ P (when nonempty) has a nondegenerated Hes
everywhere except at most along one segment. For such Hilbert geometries, geodesics are exac
of lines and Finsler curvature is constant and equal to−k [4,6–8]. Notice that the Hilbert geometry of a
open ball of the usual Euclidean spaceR

n is the Klein model of constant negatively curved Riemann
manifolds.

1.2. Behaviour of the distance

Let (C,hk) be a Finsler–Hilbert geometry andβ and δ two distinct (oriented) geodesics such th
β(0)= δ(0). We want to know how the distance functiond : t ∈ R 
→ hk(β(t), δ(t)) behaves near infinity

These geodesicsβ andδ define a planeP andd just depends on the affine sectionP ∩ C. So from
now on we assumeC is a bounded convex domain ofR

2.
Two pointsη+ andη− can naturally be associated to any oriented geodesicη: the oriented line define

by η intersects the closure of the convex setC along the oriented chord[η−;η+].
Let us [AB] be the chord along which the oriented line(β+δ+) intersects the closure ofC. The

following four different cases can occur (see Fig. 1):
case e: C is not entirely contained in a half plane limited by(AB); soA= β+ andB = δ+;
case f: C is contained in a half plane limited by(AB) with A= β+ andB = δ+;
case g: chords[AB] and[β+δ+] have a single end-point in common;
case h: the chord[β+δ+] is included in the open chord]AB[.
Casee occurs whenβ andδ do not end on a same segment of the boundary, so in particular whC

is strictly convex. But notice that all these cases can occur for general Finsler–Hilbert geometry.
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Theorem. Let (C,hk) be a Finsler–Hilbert geometry whose boundary∂C is Cq with q � 2. Considerβ
andδ two distinct(oriented) geodesics withβ(0)= δ(0) and parameterized by their arc length. Then
functiond : t 
→ hk(β(t), δ(t)) verifies:

(i) the functiond is strictly increasing;
(ii) at infinity:

• in casee:

d(t)= 2t +
q−1∑
l=0

Kle
−2l

√
k t + o

(
e−2(q−1)

√
k t

)
withK0 � 0,

• in casef (respectivelyg);

d(t) and2t − d(t) (respectivelyt − d(t)) goes to+ ∞ with t.

(iii) for any given positive real numberε, the derivativeḋ satisfies fort sufficiently large:


2− ε < ḋ(t) < 2+ ε in casee,
0 � ḋ(t)� 2 in casef,
0 � ḋ(t)� 1+ ε in caseg,
0 � ḋ(t) < ε in caseh;

(iv) in case e the second derivative ofd vanishes at infinity and has positive values fort large enough,
i.e.,d is convex in an infinite neighbourhood.

Remarks.

• The sign ofK0 is obviously given by the triangular inequality.
• These results are optimum as it will be shown in Section 4, in particular everything can occur in
f , g andh for the derivatived̈.

• Some of these results stay true under weaker hypotheses as it will become clear through the
the theorem.

• Because Hilbert geometry is not uniform, I was not able to use general results on the varia
length and had to carry out straightforward computations with explicit formulas. It also seem
no uniform control on the behaviour of the geodesic distance can be expected. For strictly
domains, A.F. Beardon obtainedd(t) = 2t + O(1) under weaker hypothesis (see [2]) but did n
control O(1) uniformly.
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2. Preliminaries

Recall that the convex domainC can be assumed of dimension 2. Geodesicsβ and δ determine
two lines (β+δ+) and (β−δ−). These lines intersect outsideC (eventually at infinity) so there exists
projective map which sendsC onto a bounded convex setC ′ and the intersection point between(β+δ+)
and(β−δ−) to infinity. Then this map is an isometry between(C,hk) and(C ′, h′

k) which sendsβ andδ
onto two geodesics having the same relative position (casee, f , g or h) asβ andδ. Up to this isometry
we can then assume that(β+δ+) and(β−δ−) are parallel. Moreover asβ andδ have unit speed, we obta

Lemma 1. For all t the line(β(t)δ(t)) stays parallel to(β+δ+).

Proof. Let D andDt be the parallels to(β+δ+) throughβ(0) respectivelyβ(t). Thus[β−, β(0), β(t),
β+] = [(β−δ−),D,Dt, (β+δ+)] = [δ−, δ(0),Dt ∩ δ, δ+] as δ(0) = β(0). Since hk(δ(0), δ(t)) and
hk(β(0), β(t)) are equal, so are[δ−,p,Dt ∩ δ, δ+] and [δ−,p, δ(t), δ+]. Finally δ andDt meet at
δ(t). ✷

Let us now define the frame(p,�ı, �) we will use to estimate the asymptotic behavior of functiond.
The originp is β(0)= δ(0), the vector 2� is

−−−−→
β+δ+, the line(p,�ı) is the bisector ofβ andδ and the first

component ofβ+ is 1. We fix a scalar product by saying that this frame is orthonormal and denoter
the positive ratio−pβ+/pβ−.

AsC is aCq convex domain the intersection between∂C and the strip−1/r < x < 1 can be describe
as graphs of twoCq functions. The functionc+ (respectivelyc−) giving the upper part of the intersectio
(respectively the lower one) has to be concave (respectively convex). Asq � 2, notice thatc+ andc− are
derivable at 1 in case e and then verifyċ+(1) < 1 andċ−(1) >−1 by choice of the frame. In the oth
cases−ċ+ andċ− simultaneously tend to+∞ at 1. (See Fig. 2.)

3. Proof of the theorem

The situation is the one described in the previous section. Moreover by definition of Hilbert m
it’s enough to prove the theorem for 2

√
k = 1 what we assume now.
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3.1. Why is the functiond strictly increasing?

For eacht the oriented line(β(t), δ(t)) meets the boundary ofC successively atB−
t andB+

t . Then
d(t) = ln[(pB−

t ), β, δ, (pB
+
t )]. Lemma 1 allows us to draw the illustration (shown in Fig. 3) fort ′ > t

which ends the proof.

3.2. The first component ofβ(t)

As lines (β+δ+) and (β(t)δ(t)) stays parallel (Lemma 1), pointsγ (t) and δ(t) have the same firs
component denoted byx(t). Thus, sinceβ is parameterized by its Hilbert arc length, we obtain

(1)x(t)= et − 1

et + r and 1− x(t)= r + 1

r + et
·

We recover thatx(t) tends to 1 whent goes to+∞ and obtain the useful identities

(2)ẋ = (1− x)− r

r + 1
(1− x)2,

(3)ẍ = −(1− x)+ 3r

r + 1
(1− x)2 − 2

(
r

r + 1

)2

(1− x)3.

3.3. Computation ofd

Making explicit the cross ratio defining functiond, it follows thatd = d+ + d− with d+ andd− the
functions of classCq on R:

d+ = ln
c+ ◦ x + x
c+ ◦ x − x and d− = ln

c− ◦ x − x
c− ◦ x + x .

As c−(1)� −1< 1 � c+(1), the increasing functiond goes to infinity witht in all cases except case
in which it converges to a finite limit.

Moreover functionsc+ andc− can be chosen independently except that their first derivative mu
simultaneously finite or infinite at 1 and the study of the following cases gives the behaviour ofd+:

casee′: ċ+(1) is finite and soc+(1)= 1,
casef ′: ċ+(x) goes to−∞ whenx tends to 1 andc+(1)= 1,
caseh′: ċ+(x) goes to−∞ whenx tends to 1 andc+(1) > 1.
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3.4. Proof of property (ii)

• For casee′. Using Taylor developments ofc+ ◦ x − x andc+ ◦ x + x at 1 we show, asc+(1)= 1 and
ċ+ < 1, that there exits two constantsk0 andk1 such thatd+ = k0 − ln(1− x)+ k1(x− 1)+ o(1− x).
Thus, using expression (1) ofx−1, we obtaind+(t)= t+K+

0 +K+
1 e−t +o(e−t ) in a neighbourhood

of infinity with K+
0 andK+

1 two constants.
If q > 2, this proof immediately showsd+ expands on the scale e−lt with l ∈ {0,1, . . . , q − 1}.

• For casef ′. The convexity ofC and its regularity gives the following inequality:

(4)−ċ+ ◦ x < c
+ ◦ x − c+(1)

1− x .

Hereċ+ diverges at 1, we have then

1− x = o
(
c+ ◦ x − c+(1)) and c+ ◦ x − x = (c+ ◦ x − 1)

(
1+ o(1)

)
.

It follows c+ ◦ x + x = 2+ o(1) sincec+(1)= 1 and finallyd+ = − ln(c+ ◦ x − c+(1))+ O(1).
• For caseg′. In this particular cased+ has a finite limit at infinity.
• Conclusion.Similar computation ford− leads to the looked for expansion ofd = d+ + d− at infinity

by using the independence ofc+ andc− and the fact that in casef ′ the function 1− x is negligible
with respect toc+ ◦ x − c+(1) and of the same order as e−t .

3.5. Proof of property (iii)

The first derivatived+ is given by

(5)ḋ+ = ẋ(ċ+ ◦ x + 1)

c+ ◦ x + x − ẋ(ċ+ ◦ x − 1)

c+ ◦ x − x = 2ẋ(c+ ◦ x − xċ+ ◦ x)
(c+ ◦ x + x)(c+ ◦ x − x) .

As c+(1)� 1 we deduce from formula (2) that at infinity

ḋ+ ∼ 2(1− x)(c+ ◦ x − xċ+ ◦ x)
(c+(1)+ 1)(c+ ◦ x − x) .

• For casee′. Taylor formula leads toc+ ◦ x − x = (ċ+(1)− 1)(x − 1)+ o(x − 1). As ċ+(1) < 1 and
c+(1)= 1 it follows thatḋ+ admits 1 as limit at+∞.

• For casef ′. Herec+(1)= 1, the derivativėc+ diverges at 1 and 1−x = o(c+ ◦ x − c+(1)) at infinity,
so near infinity

ḋ+ ∼ − (1− x)ċ+ ◦ x
c+ ◦ x − c+(1) .

This equivalent is positive near infinity and bounded by 1 because of inequality (4). Thusḋ+ is
positive and bounded by any real number strictly bigger than 1. In factḋ+ is bounded by 1 nea
infinity. In order to prove that, let us search the sign ofḋ+ − 1 that is the one ofS = (ḋ+ − 1)(c+ ◦
x + x)(c+ ◦ x − x). A direct computation using formulas (5) and (2) leads toS = T1 + T2 + T3 with

T1 = 2r

r + 1
(1− x)2(ċ+ ◦ x − 1),

T2 = −[
c+ ◦ x − c+(1)+ (1− x)][c+ ◦ x − c+(1)− (1− x)],
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T3 = 2
[
c+ ◦ x − c+(1)+ (1− x)ċ+ ◦ x]

[
−1+ (1− x)− r(1− x)2

r + 1

]
.

As ċ+ tends to infinity 1, the concavity ofc+ shows thaty−1 = o(c+(y)−c+(1)) and(y−1)ċ+(y)=
O(c+(y)− c+(1)) for y near 1. We have then near infinity

T1 = o
((
c+ ◦ x − c+(1))2)

,

T2 ∼ −(
c+ ◦ x − c+(1))2

,

T3 ∼ −2
(
c+ ◦ x − c+(1)+ (1− x)ċ+ ◦ x).

Equivalents ofT2 andT3 are negative. ThenS is negative at infinity which ends the proof.
• For caseh′. Herec+(1) > 1, the derivativėc+ diverges at 1, so at infinity

ḋ+ ∼ − 2(1− x)ċ+ ◦ x
(c+(1)+ 1)(c+(1)− 1)

.

By inequality (4) the derivativėd+ vanishes at infinity.
• Conclusion.With same methods we prove analogous results forḋ−. As d = d+ + d− andc+ and as
c− are independent, the result immediately follows.

3.6. Proof of property (iv)

The derivative of expression (5) ofḋ+ leads to

d̈+(t)= ẍ(ċ+ ◦ x + 1)+ ẋ2c̈+ ◦ x
c+ ◦ x + x −

(
ẋ(ċ+ ◦ x − 1)

c+ ◦ x + x
)2

− ẍ(ċ+ ◦ x − 1)+ ẋ2c̈+ ◦ x
c+ ◦ x − x +

(
ẋ(ċ+ ◦ x − 1)

c+ ◦ x − x
)2

.

Expressions (2) and (3) oḟx and ẍ show thatd̈+ can be expressed as a compounded functionD ◦ x.
And we can expandD on the powers of(x − 1) using Taylor formulas forc+, ċ+ andc̈+ at 1 (we are in
case e). A direct computation leads to

D(y)=
(

r

r + 1
+ c̈+(1)

2(ċ+(1)− 1)
− ċ+(1)+ 1

2

)
(1− y)+ o(1− y).

So, as going fromd+ to d− is just exchangingc+ by −c−, we obtaind̈(t)= S(1 − x(t))+ o(1− x(t))
with

S = 2r

r + 1
+ c̈+(1)

2(ċ+(1)− 1)
− ċ+(1)+ 1

2
+ c̈−(1)

2(ċ−(1)+ 1)
+ ċ−(1)− 1

2
.

But in casee, the convexity of the domainC gives the way the tangent line to∂C at δ+ and the line
(β−δ+) (respectively the tangent line atβ+ and(δ−β+)) are placed: in coordinateṡc+(1)� −1−1/r

1+1/r and

ċ−(1)� 1−1/r
1+1/r . Finally we have

S � c̈+(1)
2(ċ+(1)− 1)

+ c̈−(1)
2(ċ−(1)+ 1)

which provesS is positive.
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4. Examples and counter-examples

The aim of this section is to show by examples that the results we obtained are optimal. We are
the situation of Section 2 and we just describe the part of the boundary we are interested in. We
that because there exists a smooth boundary extending the given part. More precisely one has ju
attention to the given points of the boundary: they have to be out of the interior of the convex hull
described part.

For all the examples we take 2
√
k = 1 and so the first componentx(t) is tanh(t/2).

4.1. About property (iv)

Property (iv) of the theorem assures that in casee, function d is convex fort sufficiently large but
nothing forcesd to be convex on allR as for negatively curved Riemannian manifolds. In fact there e
convex domains of classC2 whose boundary has a not degenerated Hessian everywhere and geod
this Hilbert geometry for which the distanced is not globally convex.

Otherwise let us consider an open convex bounded domainC of classC2 whose boundary contains a
unique segment[ab] with a �= b and has nondegenerated Hessian everywhere outside[ab]. Now equipC
with the Hilbert distanceh1 and chose two distinct pointsa′ andb′ on ]ab[ and two pointsa′′ andb′′ of
∂C such that(a′′b′′) and(ab) are parallel and(a′′b′) and(b′′a′) intersect inC. We defineδ (respectively
β) as the oriented geodesic of speed 1 and of support the oriented line(a′′b′) (respectively(b′′a′)) such
thatδ(0) (respectivelyβ(0)) is the intersection point(a′′b′) ∩ (b′′a′). For any positive real numbert the
line (β(t)δ(t)) is parallel to(ab) (Lemma 1). ConsiderCt an open convex bounded domain such that
boundary ofCt is of classC2 with a nondegenerated Hessian everywhere, the parts ofCt andC lying in
the half plane limited by(β(t)δ(t)) containinga′′ coincide andCt contains pointsa′ andb′. Equip this
convexCt with its Hilbert metricht of parameter 1. Mapsδ andβ are still geodesics of speed one f
(Ct , h

t) thus for anys in [0, t] we haveh1(δ(s), β(s)) = ht(δ(s), β(s)). Finally if property (iv) assure
d is convex on allR+, we would obtain thatt ∈ R

+ 
→ h1(β(t), δ(t)) is convex which cannot be as
admits a finite limit at infinity.

4.2. What can happen in casef ′ for the derivativeḋ+?

We saw the derivativėd+ is bounded by 0 and 1 near infinity. In fact it happens this function ad
a limit and any limit between 0 and 1 can be obtained, in other hand it occurs functionḋ+ is bounded
without having any limit at infinity. The following examples illustrate all these situations:

– The derivativeḋ+ vanishes at infinity for a boundary described forx in [1 − e−2,1[ by: c+ :x 
→
1− 1/ ln(1− x).

– For any real numberµ in ]0;1[, a boundary which coincides forx in [0,1[ with the graph of
c+ :x 
→ 1+ (1− x)−u/µ leads to a functiond+ whose derivative tends toµ at infinity.

– The derivativeḋ+ tends to 1 at infinity whenC is described on[1 − e−1,1] by c+(x) = 1 − (1 −
x) ln(1− x).

– For a boundary whose restriction to[1/2,1] is given by the mapc+ :x 
→ 1 + 2[8 + cos(ln(1 −
x))]√1− x, neither ḋ+ nor d̈+ admit any limit at infinity. Howeverd̈+ stays bounded and tak
negative and positive values at any neighborhood of infinity.
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4.3. What can happen in casesf ′ or h′ to d̈?

As ḋ is bounded, the only possible limit inR for d̈ is zero. Otherwisëd can stay bounded withou
having any limit or be unbounded. In fact any of those situations occurs as following examples ill
it.

First notice that, as the functionsc+ andc− can be chosen independently, it is enough to prove al
previously described situations can happen ford̈+ in casesf ′ andh′.

Before looking for examples, observëd+ more precisely: using equivalents forẋ and ẍ given by the
formulas (2) and (3), inequality (4) and continuity ofc+, we obtain

(6)d̈+ = − 2·x2xc̈+ ◦ x
(c+ ◦ x − x)(c+ ◦ x + x) +

{
O(1) for casef ′
o(1) for caseh′.

• Examples wherëd+ vanishes at infinity.
The first three examples of Section 4.2 are such situations of typef ′. A boundary whose upper pa
can be described by the graph of the mapc+ :x ∈ [0,1] 
→ 2+ 2

√
1− x corresponds to caseh′ and

d̈+ vanishes at infinity.
• Examples for whichd̈+ is bounded without having any limit.

Such a situation in casef ′ is given by the last example of Section 4.2. Let us now build an exam
for caseh′.
First consider the continuous functionf defined on[0,1[ by −1 except on the intervals[1− 1/n−
1/n4,1− 1/n+ 1/n4], n ∈ N\{0,1,2}, wheref (x)= −1− n2 + |x − 1+ 1/n|n6. In fact f is just
a triangle function which satisfies−1 − 1/(x − 1)2 � f � −1. Now observe thatg :y ∈ [0,1[
→∫ y

0 f (u)du is a nonincreasing negative function, continuous on[0,1] asg(1−1/n+1/n4) converges

whenn goes to infinity. Functionc+ :x ∈ [0,1] 
→ − ∫ 1
x
g(y)dy + 2

√
1− x + 2 is then concave, o

classC2 on [0,1[, C1 on [0,1] and tends to 2�= 1 at 1. Furthermore its first derivativėc+ diverges to
−∞ at 1. Thus it describes a situation of typeh′ and formula (6) becomes

d̈+ = −2(1+ o(1))ẋ2c̈+ ◦ x
3

+ o(1),

that is by formula (2)

d̈+ = −2(1− x)2
3

×
(
f ◦ x − 1

2
√

1− x3

)(
1+ o(1)

) + o(1).

Thanks to choice off this last term is bounded but does not have any limit (the sequence defin
xn = 1− 1/n respectively 1− 1/n− 1/n4 tend to 2/3 respectively zero); soc+ gives the looked for
example.

• Examples wherëd+ is unbounded.
Formula (6) shows that ifc+ describes a situation of typeh′ where d̈+ is unbounded then
c+ − c+(1) + 1 will give an example of a casef ′ where d̈+ is unbounded. So we are just goi
to give an example for caseh′.
Letf be the continuous triangle functionf defined on[0,1[ by −1 except on the intervals[1−1/n−
1/n4,1 − 1/n + 1/n4], n ∈ N\{0,1,2}, wheref (x) = −1 − n3 + |x − 1+ 1/n|n7. Now observe
that the mapg :y ∈ [0,1[
→ ∫ y

0 f (u)du is a nonincreasing negative function of classC1 on [0,1[
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at the

5) 74 (10)

162.
. Z. 30

e Univ.

–28.

sbourg),
which tends to−∞ at 1 becauseg(1 − 1/n+ 1/n4) diverges to infinity withn. A straightforward
computation of

∫ 1−1/(n+1)
1−1/n g(u)du shows these terms are the one of a convergent sum, so th

integral
∫ 1

0 g(u)du is convergent. Then the functionc+ :x ∈ [0,1[
→ − ∫ 1
x
g(y)dy+2 is well defined,

concave, of classC2 on [0,1[ and tends to 2�= 1 at 1. Asċ+ diverges to−∞ at 1, the described
situation is of typeh′ and here formula (6) leads töd+(1− 1

n
)∼ 2n

3 so d̈+ is unbounded here.
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