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The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II
in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the
presence of oxygen in the Earth's atmosphere. The WOC is a manganese–calcium (Mn4CaO5(H2O)4) cluster
housed in a protein complex. In this review,we focus onwater exchange chemistry ofmetal hydrates and discuss
themechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological
cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water
exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is
part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Oxygenic photosynthesis is a fundamental biological process by
which cyanobacteria, algae, and plants reduce atmospheric CO2 to
energy-rich organic compounds using electrons extracted from water
during water-splitting [1]. Photosynthetic water-splitting takes place
in the water-oxidizing complex (WOC) of photosystem II (PSII), a
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large pigment-binding protein complex found in all oxygen-evolving
organisms. To understand the mechanism of photoinduced water-
splitting in PSII, a large number of studies have been carried out [1,2].
Pirson was the first to discover that Mn is essential for oxygenic
photosynthesis [2,3] and extensive research since then has led to the
establishment of the PSII pigment–protein complex to be responsible
for photosynthetic oxygen evolution [4]. X-ray crystallographic analysis
of thermophilic cyanobacterial PSII preparations has provided detailed
information on the catalytic center of oxygen evolution [5–8].

The1.9 Å resolution structural analysis (Fig. 1a) has revealed that the
WOC contains five O atoms in addition to Mn4Ca, forming a Mn4CaO5-
cluster, and that they are arranged in a distorted chair-like form
(Fig. 1a) [8]. In this chair form (Fig. 1a), three Mn (designated Mn1 to
Mn3), one Ca, and four O atoms form a cubane-like structure, whereas
the fourth Mn (Mn4) is located outside of the cubane and is associated
with the cubic structure by μ-oxo-bridges (Fig. 1a). Four water mole-
cules were found to serve as the terminal ligands to the metal cluster,
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Fig. 1. There are only a small fraction of the residues that come in direct contact with the
Mn–Ca cluster (image was modified from [8]) (a). Kinetic scheme (Kok cycle) describing
the Si state advancement by electron and proton removals from the WOC during water-
splitting in PSII. Water-binding within the cycle is based on FTIR data by Noguchi
[42,87]. Both waters likely represent ones that become substrates in the next cycle.
Image is from [68] (b).
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among which, two are ligated to Mn4 and the other two to the Ca ion.
Some of these water molecules may serve as the substrate for water-
splitting. For available kinetic, energetic, biochemical and structural
information on the WOC see Refs. [9–11].

2. Flash-induced oxygen evolution pattern — the Joliot experiment
and the Kok cycle

Afirst understanding of steps involved in oxygen evolution in photo-
synthesis became possible when short and intense light flashes, with
appropriate dark periods, were used and oxygen evolution was mea-
sured per flash in a sequence of flashes. Experiments by Joliot in 1969
showed that flash illumination produced an oscillating pattern in the
oxygen evolution and a maximum occurred on every fourth flash [12].
Water oxidation to produce one oxygen molecule requires the removal
of four electrons, and Kok et al. [13] proposed an explanation for the ob-
served oscillation of the oxygen evolution pattern. Kok's hypothesiswas
that in a cycle ofwater oxidation, a succession of oxidizing equivalents is
stored at the WOC, and when four oxidizing equivalents have accumu-
lated one by one, an oxygen molecule is spontaneously evolved [14].
Each oxidation state of the WOC is known as an “S-state”, with S0
being the most reduced state and S4 the most oxidized state in the
catalytic cycle (Fig. 1b) [13]. However, a tyrosine (YD) in PSII slowly ox-
idizes the WOC from S0 to S1 in the dark. States that are more reduced
than S0, such as S−1 and S−2, are also possible [15].

In order to explain the fact that the first maximum of oxygen evolu-
tion is after the 3rdflash, and then after the 7th and the11thflash, the S1
state was concluded to be dark-stable. The S4 → S0 transition is light
independent and in this state oxygen is evolved. All other S-state transi-
tions are initiated after photochemical oxidation of P680 at the PSII
reaction center [13].

Even after the availability of 1.9 Å atomic structure of WOC [8],
relatively little is known about the molecular mechanism of water
oxidation. In this context, information on when the substrate water
molecules bind to the catalytic site during the Si state cycle of the pho-
tosynthetic oxygen evolution would be of significant value because it
can provide a deeper insight into the mechanism of water oxidation.
In addition, mimicking this reaction with synthetic analogs is expected
to be of fundamental importance for bioinorganic chemistry of this sys-
tem [16–31]. Additionally, Mn based water oxidation catalysts are im-
portant candidates for the development of artificial photosynthetic
devices, i.e., systems for the synthesis of fuels such as hydrogen or
methanol using solar energy [16–31]. In this review, we will focus on
water exchange chemistry and explain different mechanisms and dif-
ferent factors in water exchange by metal ions. Then, we will consider
water exchange for the Mn compounds as water-oxidizing catalysts in
both artificial and natural photosynthetic systems.

3. Ion hydration/solvation

Manyphysico- and bio-chemical processes are directly controlled, or
indirectly conditioned by metal ions [32]. In aqueous solution, metal
ions are coordinated by water molecules, and, in addition to the first
coordinated group, there are some water molecules in the second
shell around the ions. The first solvation number, n, in M(H2O)n of
many metal ions has been determined directly by X-ray or neutron
diffraction. Regarding the first shell, if M(H2O)n exchangedwater mole-
cules rapidly (within amatter of seconds) it would be considered labile,
whereas if it substituted slowly, it would be considered inert. The rate of
exchange depends on the properties of the metal ion, the oxidation
state, the ratio of the charge to the radius of metal ions and many
other factors (Fig. 2) [13,33–35].

The water exchange is a substitution reaction. In a substitution reac-
tion, also known as single displacement reaction or single replacement
reaction, a group in a compound is replaced by another group [36,37].
For substitution reaction of metal complexes, Langford and Gray (1965)
proposed three different mechanisms [38] (see Fig. 3 [39]):

a) A dissociative (D) reaction with an identifiable intermediate of low
coordination number; it is called the D mechanism.

b) An associative (A) reaction with an identifiable intermediate of
higher coordination number; it is called the A mechanism.

c) An interchange (I) reaction where the bond making and breaking
were either synchronous or else took place within the pre-formed
aggregate; it is called the I mechanism which is subdivided into
dissociative-like (Id) or associative-like (Ia) mechanism. Thus, the
identification of an intermediate species is essential for the determi-
nation of the mechanism of reaction.

4. Activation parameters

By studying the effect of temperature or pressure on the water ex-
change rate, we expect to obtain useful information on the activation
parameters of these reactions [35].



Fig. 2.Mean lifetimes, τH2O, of a particularwater molecule in the first coordination shell of
a given metal ion and the corresponding water exchange rate kex at 298 K. The filled bars
indicate directly determined values, and the empty bars indicate values deduced from
ligand substitution studies.
Image and caption from Ref. [34].
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The effect of pressure on the rate constant of water exchange (k) at
constant temperature for a reaction gives us the volume of activation
[35]:

dlnk=dpð ÞT ¼ −ΔV≠
=RT ð1Þ

where, p and T are the pressure and temperature, andΔV≠ is the volume
of activation, k is the rate of exchange ofwatermolecules, and R is the gas
constant. Eq. (1) shows the partial molar volume change when the reac-
tants are converted to the activated complex. Thus, usually a ΔV≠ N 0
shows D, or Id, ΔV≠ ~ 0 shows I, and ΔV≠ b 0 shows A or Ia. Further,
ΔH≠ andΔS≠ refer to enthalpy (ameasure of the total energy of reactant
to activated complex) and entropy change when the reactants are
converted to the activated complex.

Regarding, the three parameters, ΔV≠, ΔH≠ and ΔS≠ especially
ΔV≠, we can find the mechanism for water exchange for metal com-
pounds such as the Mn–Ca cluster in PSII.

The kinetic parameters for water exchange by several metal ions are
shown in Tables 1–3.

The D mechanism is (Fig. 2):

M H2Oð Þ62þ→M H2Oð Þ52þ þH2O:

In other words, in this reaction, a water molecule will be separated
from M(H2O)62+. Thus,

ΔV% ¼ V M H2Oð Þ52þ
� �

þ V H2Oð Þ−V M H2Oð Þ62þ
� �

:

We know that V(M(H2O)62+) N V(M(H2O)52+) becauseM(H2O)62+ is
a bigger molecule than M(H2O)52+, ΔV≠ b V(H2O). The volume of one
mole of water molecules is 18 cm3 mol−1. Thus, ΔV≠ b 18 cm3 mol−1.

In aqueous solution, ΔV≠ will be near +9 to +11 cm3 mol−1 for D
mechanism, and−11 cm3 mol−1 for A mechanism [35]. Thus, the des-
ignations Ia for V(II) and Mn(II), I for Fe(II), and Id for Co(II) and Ni(II)
are most appropriate for water exchange with these metal ions. As
shown in Tables 1–3: more t2g electron density, the less likely would
be the associative path since the entering water molecules will be
between the three-fold axes of the octahedral complex [35]. On the
other hand, more electrons in eg would increase instability of bond
between metal and water molecules, and D or Id mechanism is more
favorable.

The negative signs of ΔV≠ for M(H2O)63+ indicate an A mechanism
for Ti(H2O)63+ and Ia for other M(H2O)5(OH)2+ ions. It shows that the
positive charges onmetal causes an effect on interaction entering ligand
andmetal ion. Interestingly, a strong labilizing effect [40] is observed by
deprotonation:

M H2Oð Þ63þ→M H2Oð Þ5 OHð Þ2þ þHþ

that leads to a 102–103 fold enhanced rate for the hydroxy- over the
hexaaqua ion (compare Table 2 with Table 3). We can observe again
that the greater the t2g electron density decreases the A mechanism
shown by increasingly less negative Ti(III) to Fe(III).

The study of water exchange for terminal water coordinated to
Mn(III) is also interesting. However, Mn(H2O)63+ is not stable because
of disproportionation [41]:

Mn IIIð Þ H2Oð Þ63þ→Mn IIð Þ H2Oð Þ62þ þMn IVð ÞO2:

However, Mn(III) can be stabilized by some N-donor ligands [42].
Ivanovic´–Burmazovic's group studied the rate constants and the activa-
tion parameters for the water exchange process on Mn(III) porphyrins
(Fig. 4a) using 17O NMR techniques [43]. It is interesting to note that the
water exchange rates for these complexes are very fast (1.0–2.5 × 107)
almost identical to the rate in the case of [Mn(H2O)6]2+.

Ivanovic´–Burmazovic's group proposed that Jahn–Teller distortion
in the d4 high-spin electronic configuration of Mn(III) and the cis-
effect of porphyrin ligands are important factors for the fast water ex-
change of these complexes. Moderated to small values of ΔH# and ΔS#

show that an interchange water exchange mechanism is operative
under this condition independent of the complex charge and the nature
of the axial ligand. The volume of activation offers clearer mechanistic
insights, and its small positive values suggest that substitution of
coordinated water follows a dissociative interchange (Id) rather than a
pure interchange (I) mechanism. Ivanovic´–Burmazovic's group sug-
gested [43] that the fast water exchange is also observed for the four
waters of the WOC because most probably carboxylate instead of
porphyrin groups induces labialization for metal ions [44–47]. On the
other hand, OH and μ-O also enhance the reactivity of the boundwaters
[48].

5. Two and multinuclear metal complexes

The Spiccia group has studied the kinetics of water exchange in Cr
complexes, such as [(H2O)4Cr(μ-OH)2Cr(H2O)4]4+, using 18O
labeling at 298 K see [49]. Data shows that there are two rate constants
(ktrans = 3.6 × 10−4 s−1 and kcis = 6.6 × 10−5 s−1) corresponding to
the exchange of coordinated water molecules occupying trans and cis
positions to the bridging OH groups.

A correlation between exchange rates for OH/Cr ratio for both
bridging and terminal hydroxide groups was observed. The rates of
water exchange on fully protonated dimer (OH/Cr = 1) are 28 and
150 times faster than exchange on Cr(III) (OH/Cr = 0) for waters cis
and trans to the hydroxide bridges, respectively, as discussed by Leone
Spiccia's group [49]. The two corresponding rates of exchange are 27
and 70 times faster on mono-deprotonated dimer (OH/Cr = 1.5) than
on [CrOH]2+. Spiccia's group suggested that the degree of condensation
of the oligomer is one important factor, which will determine the rates
of water exchange on that oligomer. The rates of water exchange on the
Cr(III) dimer are in fact very similar to that reported for Cr(H2O)5OH2+

(OH/Cr = 1) for both monomer and dimer, and much faster than the
rate of exchange on Cr(H2O)63+. Thus, the bridging OH groups are
comparable to terminal OH group in terms of their effect on the rate
of substitution at Cr(III) [49].

image of Fig.�2


Fig. 3. Schematic representation of ligand exchange reactions proceeding by dissociative (D) mechanism (a), by associative (A) mechanism (b), and by interchange (I) mechanisms
(c). The blue circle in themiddle of the idealized ‘flat’ complex represents the central ion. The small open circles represent the bound ligands. The red circle represents the incoming ligand.
The large circles enclosing the small ones represent the boundaries of the first coordination sphere.
Images and captions from [39].
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Interestingly, inert Cr(III) and Cr(III) oligomers, by more condensa-
tion, convert into relatively labile ions. For example, exchange rates of
about 0.1, 100, and 104 s−l can be interpolated for ionswithOH/Cr ratios
of 2, 3, and 4, respectively.

The rates of isotopic oxygen exchange for [Mo3O4(OH)9]4+ (Fig. 4b)
were reported byRodgers' group. For the oxygens of type B and bridging
oxygens, the rate was much too slow to follow to any major extent
(Table 4) [50].
Table 1
Kinetic parameters for water exchange of divalent transition metal ions, M(H2O)62+ at 25 °C [1

Parameter V(II) Mn(II)

K (s−1) 89 2.1 × 107

ΔH≠ (kJ mol−1) 62 33
ΔS≠ (J·K−1·mol−1) −0.4 +6
ΔV≠ (cm3 mol−1) −4.1 −5.4
Electronic configuration (t2g)3(eg)0 (t2g)3(eg)2
From these data, Rodgers' group concluded that there was a natural
slowness of bridging oxygens (types A and B) in exchanging with the
solvent. Rodgers' group also suggested that themetal–metal interaction
most likely renders associative interactions energetically unfavorable.

In 1998, Van Eldik and his co-workers published high-pressure 17O
NMR studies on the dihydroxo-bridged rhodium(III) hydrolytic dimer
(see e.g., Fig. 4c) [51]. They found that the introduction of bridging OH
groups in the dimer labilized the bound waters but not to the same
7].

Fe(II) Co(II) Ni(II)

4.4 × 106 3.2 × 106 3.2 × 104

41 47 57
+21 +37 +32
+3.8 +6.1 +7.2
(t2g)4(eg)2 (t2g)5(eg)2 (t2g)6(eg)2

image of Fig.�3


Table 2
Kinetic parameters for water exchange of trivalent transition metal ions, M(H2O)63+ at
25 °C [17].

Parameter Ti(III) V(III) Cr(III) Fe(III)

k (s−1) 1.8 × 105 5.0 × 102 2.4 × 10−6 1.6 × 102

ΔH≠ (kJ mol−1) 43 49 109 64
ΔS≠ (J·K−1·mol−1) +1 −28 +12 +12
ΔV≠ (cm3 mol−1) −12.1 −8.9 −9.6 −5.4
Electronic configuration (t2g)1(eg)0 (t2g)2(eg)0 (t2g)3(eg)0 (t2g)3(eg)2
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extent as deprotonation of the monomer did. The kinetic results
suggested a limiting dissociative pathway (D) for water exchange in
both the cis and trans positions in this system.
Fig. 4.Mn(III) porphyrins studied for water exchange (a). The structure of [Mo3O4(OH)9]4+

(b). The structure of dihydroxo-bridged rhodium(III) hydrolytic dimer (c).
6. Mn-based metal complexes

Cooper et al. found that μ-O exchange occurred only at elevated
temperatures for [L2MnO2MnL2]3+, where L = 2,2′-bipyridine (bpy)
or 1,10-phenanthroline (phen) [17]. The isotopic exchange between
oxygens of water and μ-O bridges in the di-μ-O diMn complexes,
[(mes-terpy)2Mn2III/IV(μ-O)2(H2O)2](NO3)3 (4′-mesityl-2,2′:6′,2″-terpyridine)
(mes-terpy) and [(phen)4Mn2III/IV(μ-O)2](ClO4)3 (Fig. 5), was investigat-
ed by considering the kinetics of exchange [52]. In this method, the
isotope patterns from the mass spectra due to a given chemical species
are altered upon isotope exchange. In other words, heavier isotopes
were incorporated in place of lighter ones, thus it is observed that the
peak at the lowest mass in the isotope pattern decreases in intensity,
and the isotope pattern increases to higher masses. Crabtree and
Brudvig, regarding isotope pattern at any time, showed a superposition
of the isotope patterns due to unexchanged and exchanged species [52].
The signal intensities due to unexchanged and exchanged species are
deconvoluted from each spectrum and normalized against total intensi-
ty to obtain concentrations of unexchanged and exchanged species, as
explained below [52].

The results show that thepresence of terminalwater-binding sites in
mes-terpy is a very important factor in water exchange in this complex.
As shown by Crabtree and Brudvig's groups, the dependence of initial
rates of μ-O exchange on [H2

18O] has a nearly linear and a nonlinear
saturation behavior in the same concentration range for mes-terpy
and phen, respectively [52]. These results show that water exchange
for both complexes occurs in at least one step, which affects the overall
rate of exchange. It is interesting that as the group indicated that the
exchange rates increased for mes-terpy with the addition of acid but
decreased for phen, indicating that the mechanisms of exchange in
mes-terpy and phen are different. On the other hand, free ligand had
no effect on the exchange rate for mes-terpy but decreased the
exchange rate for phen. Crabtree and Brudvig's groups proposed four
steps for water exchange for mes-terpy [52]:

(1) Two protonations of the bridging oxygen.
(2) Two deprotonations of the labeled water molecule.
(3) The breaking of two bonds between the bridging oxygen and the

two Mn ions being bridged.
(4) The formation of two bonds between theoxygen of labeledwater

and the two Mn ions to be bridged.
Table 3
Kinetic parameters forwater exchange of trivalent transitionmetal ions,M(H2O)5OH2+ at
25 °C [17].

Parameter Cr(H2O)5OH2+ Fe(H2O)5OH2+

k (s−1) 1.8 × 10−4 1.2 × 105

ΔH≠ (kJ mol−1) 110 42
ΔS≠ (J·K−1·mol−1) +55 +5
ΔV≠ (cm3 mol−1) +2.7 +7.0
Electronic configuration (t2g)3(eg)0 (t2g)3(eg)2
The bridge-opening step has been proposed as either associative
[53] or dissociative [54] (Fig. 6).

The temperature-dependence experiment for mes-terpy yields a
large negative entropy of activation, favoring an associative mechanism
(ΔS# and ΔH# are −151 J·K−1·mol−1 and 39, respectively) [52].
Table 4
τ1/2 for the exchange of different O atoms in [Mo3O4(OH)9]4+ shown in Fig. 4.

Oxygen type Protons Mo–O τ1/2 (temperature °C)

A 0 2.020 (3) 105 (0)
B 0 1.916 (7) 2 × 108 (22)
C 2 2.163 (3) 2 × 105 (0)
D 2 2.26 (2) 103 (0)

image of Fig.�4


Fig. 5. Different multinuclear Mn complexes that their μ-O and μ-OAc exchange processes were considered by Crabtree and Brudvig's groups.
Image from Ref. [52].
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The proposed mechanism for water exchange by phen is shown
in Fig. 7. In this mechanism a loss of phen is important and provides
explanation for the following (see Ref. [52]):

- The slow rate of μ-O exchange as compared to mes-terpy.
- Inhibition of exchange by added phen ligand.
- Inhibition of exchange by stoichiometric amounts of acid.

The group concluded that [52]:

- Water exchange for Mn(IV) oxidation state is much slower than
those which can switch between Mn(IV) and (III) states.

- The availability of terminal water-binding sites onMn enhances μ-O
exchange rates.

- It is very unlikely that the fast isotope exchange rates measured
in the WOC (800–4000 times greater than those in mes-terpy) are
μ-O exchange rates.

However, the μ-O exchange rate for mes-terpy up to a concentration
of 7.4MH2

18O gives a rate of 7.5 × 10−2 s−1 that is similar to the slowest
exchange ratemeasured in theWOC (2.2× 10−2) for the slowexchange
rate in the S1 state. It is important to note that the number is much
smaller than the fast exchange rates in all states and the slow exchange
rates in the S0, S2, and S3 states.

- Half-lives for dimericMn (III, IV) are between 5min and half an hour
at 20 °C. Mn catalase in its Mn(III)–Mn(IV) state has an even longer
time for the exchange [55].
In addition to mes-terpy and phen, Crabtree and Brudvig groups
considered μ-O and μ-OAc exchange processes for other complexes
(Fig. 5) [52]. The results are shown in Table 5.

In 2009, Spiccia and Casey's groups considered water exchange for a
tetranuclear Mn cluster, [Mn4O4L6], where L = [O2P(C6H4OCH3)2]−,
that has a “Mn4O4 cubane” core (Fig. 8) [56].

They added 10–40 μL H2
18O to a 0.125–0.500 mM solution of

[Mn4O4L6][ClO4], in 4 mL acetonitrile, and then following the incorpora-
tion of 18O into [Mn4O4L6]+ by electrospray ionizationmass spectroscopy
(ESI-MS). They also studied effects of temperature, water concentration,
concentration of [Mn4O4L6][ClO4] and the presence of different acids
[56]. Analysis of the temperature dependence of the oxygen exchange
from 20 to 60 °C yield shows ΔS# and ΔH# of−135 ± 22 J·K−1·mol−1

and 59 ± 7 kJ mol−1, respectively, for kA [56]. The negative value of
ΔS# indicates that the rate-limiting step for oxygen exchange in this
tetranuclearMn4O4 cluster is associative. They proposed that the reaction
involves binding of a water molecule with a Mn site on the cluster
followed by a cascade of bridge formation and cleavage processes that
ultimately result in μ3-O bridge exchange. They indicated that the
μ3-oxo groups in the [Mn4O4L6]+ cluster generally react with water on
a timescale on the order of ca. ten-hour half-life at 20 °C [56].

In 2013, Agapie has synthesized cuboidal Mn3CaO3 or Mn3CaO4

complexes as models for the WOC in PSII (Fig. 9) [57].
Mn(IV)3CaO4 showed no oxygen atom transfer to tri-methylphosphine

but the Mn(III)2Mn(IV)2O4 cubane reacts with tri-methylphosphine
within minutes to generate a novel Mn(III)4O3 partial cubane and

image of Fig.�5


Fig. 6. Proposed dissociative mechanism of μ-O exchange in 1, involving sequential oxo-bridge opening and labeled water coordination (a). Proposed associative mechanism of μ-O
exchange in 1, involving concerted oxo-bridge opening and labeled water coordination (b).
Images and captions from [28].
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trimethylphosphine oxide. Using quantum mechanics (QM) for the
oxygen transfer reaction from Mn(III)2Mn(IV)2O4 and Mn(IV)3CaO4,
they found that the preferred mechanism involves CH3COO− ligand
dissociation and coordination with PMe3 [57]. This reaction leads to a
five-coordinated phosphorus (P) transition state that is 5–10 kcal/mol
lower than when all CH3COO− ligands are attached. This dissociation

image of Fig.�6


Fig. 7. Ligand dissociation and water coordination 2 proposed as requirements for μ-O exchange.
Image and caption from [28].
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of the CH3COO− ligand occurs onlywhenMn(III) is present. Experimen-
tally, the rate of exchange betweenmetal-bound acetates and CD3COO−

was highest for Mn(III)2Mn(IV)2O4, in agreement with the calculations
[57]. These results indicate that even with a strong oxygen atom
acceptor, such as tri-methylphosphine, the oxygen atom transfer
chemistry from Mn3CaO4 cubanes is controlled by ligand lability, with
the Mn(IV)3CaO4 WOC model being unreactive. The group isolated
Mn(III)4O3 partial cubane upon oxygen atom transfer, without over re-
duction. The group also considered 18O-labeling experiments via two-
step conversions, from Mn(III)4O3 to Mn(III)2Mn(IV)2O4 (with H2

18O)
and back to Mn(III)4O3 (with phosphine). These results insight into
this two electron, two-proton process with respect to the position of
incorporation into the partial cubane structure and support reaction
mechanisms involving migration of oxide moieties within the cluster
and are not consistent with selective oxide incorporation at the site
available in the starting species, thus supporting the possibility of
such migration processes during water incorporation into the WOC
during turnover [57].
7. Water-oxidizing complex in photosystem II

In 2011, the research groups of Shen and Kamiya reported the
structure of WOC with high resolution (Fig. 1) [8].

Their structure has provided many more details concerning the
number and location of the bridged oxygens, the location of putative
substrate water molecules and the precise arrangement of the amino-
acid side chains [8]. In the structure [8], four Mn and one Ca ions, and
five oxygen atoms form a Mn4CaO5(H2O)4 cluster. However, mecha-
nism of water oxidation and O2 production by the enzyme is still un-
clear. The substrates are important for understanding the mechanism
of O\O bond formation, and one or two of four water molecules in
Table 5
Observed rate constants obtained at 20 °C for μ-O and μ-OAc exchange processes.
[Mn-complexes] = 600 μM, [H2

18O] = 260 mM, ([CD3COOD]) 550 μM. Rates measured
in solutions containing both 4 and 4ox (oxidized form from 4) represent the lower limit
and upper limit, respectively, for exchange processes in 4 and 4ox, to account for the
possibility of interconversion between 4 and 4ox. Data and caption are from Ref. [33,36].
The numbers 1–6 (including 4ox) correspond to the structure shown in Fig. 5.

Reactant Ligand
exchanged

kobs (s−1), τ1/2 (s) Oxidation
state of Mn

1 + H2
18O μ-O (2.5 ± 0.2) × 10−3, 280 ± 20 (III, IV)

2 + H2
18O μ-O (5.4 ± 0.2) × 10−4, 1280 ± 50 (III, IV)

3 + H2
18O μ-O (6 ± 1) × 10−4, 1200 ± 200 (III, IV)

4 + H2
18O μ-O (4.5 ± 0.2) × 10−4, 1540 ± 70 (III, IV)

4ox + H2
18O μ-O (5.0 ± 0.3) × 10−5, 13,900 ± 800 (IV, IV)

4 + CD3COOD μ-OAc ≥5.5 × 10−2, ≤13 (III, IV)
4ox + CD3COOD μ-OAc (1.6 ± 0.1) × 10−4, 4300 ± 300 (IV, IV)
5 + H2

18O μ-O ≤2 × 10−7, ≥3 × 106 (IV, IV, IV, IV)
6 + H2

18O μ-O ≤1 × 10−8, ≥6 × 107 (IV, IV, IV, IV)
addition to oxygen bridges in the cluster are proposed as substrate
for O2.

Water exchangemeasurements have been used to probe thebinding
of the substratewater at theWOC in PSII. Wydrzynski's group [33] used
H2
18O exchange kinetics to examine the interactions of Ca and Sr with

substrate water and to probe a number of point mutations surrounding
Fig. 8. Structure of theMn4O4 cubane core (top) and schematic structure showing three of
the six ligands (bottom). Mn ions in blue, inert phosphinate oxygen atoms in violet and
exchanging oxygen atoms in red.
Image and caption from [56].
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Fig. 9. The structure and procedure method to synthesis of Mn–Ca complex.
Image and caption from Ref. [57].
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the catalytic site by MIMS [58,59]. The MIMS method involves the
addition of 18Owater followedby timedependent sampling of the prod-
ucts. In this technique, two kinetic phases at m/e = 34, representing
separate 18O exchange rates for the two substrate water molecules,
were detected [33]. The slow and fast phases demonstrate that the
two substrate water molecules bind at two chemically distinct, no
Table 6
Si state dependence of substrate water exchange rates measured by MIMS in spinach
thylakoids with Ca and Sr-substituted BBY [11].

Si ks (Ca) (s−1) kf (Ca) (s−1) ks (Sr) (s−1) kf (Sr) (s−1)

S0 ~10 N120 – –

S1 ~0.02 N120 ~0.08 N120
S2 ~2.0 ~120 ~9.0 N120
S3 ~2.0 ~40 ~6.0 ~23
equivalent sites. In addition to four water molecules found in the
WOC, μ-O groups and water molecules around the WOC are proposed
as a substrate for water oxidation. The results show that the slow site
in S0 exchange is more tightly bound in S1 by (500 times) regarding
Mn oxidation [33]. However, the slow site is less tightly bound in S2
(100 times) and remains unchanged in the S3 state (Table 6).

If we consider the results forMn ions in theMn–Ca cluster in PSII, we
may suggest that the rate of water exchange in the cluster should be
faster than mononuclear metal ions because:

a) The cluster is a delocalized system and charge on eachMn ion is less
than a separated Mn ion. Thus, the rate of water exchange is most
probably faster in a cluster than with separated ions.

b) Regarding the 102–103 fold enhanced rate for the hydroxy- over the
hexaaqua ion, most probably the cluster with μ-O group provides
higher rates of water exchange as shown by some groups and in

image of Fig.�9


Fig. 10. A proposed mechanism for S1 to S2 state transitions. Orange and green Mn ions are Mn(IV) and Mn(III), respectively. Regarding our hypothesis, deprotonation for a coordinated
water molecule to Mn ion, increases water exchange for the oxygen shown with black arrows.
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different complexes as we discussed in previous sections. The in-
creased rate of water exchange in S1 to S2 can be related to a depro-
tonation in two nearby water molecules. This can be due to two
coordinated water molecules or μ-OH groups to a Mn ion during S1
to S2 transition, one of them being deprotonated. In the transition
state, the oxidation occurs for another Mn ion (Fig. 10). The intrinsic
proton releasing pattern from theWOC in the S transitions (S0→ S1,
S1→ S2, S2→ S3, and S3→ [S4]→ S0) appears to be 1, 1, 1, 1 in spin-
ach PSII core preparations and around 1, 0, 1, 2 in preparations that
include more protein subunits [60,61]. If we accept 1, 0, 1, 2 pattern
for proton releasing, then the S1 to S2 transition may implicate an
intra-molecular proton transfer between the μ-O orwatermolecules
in the Mn–Ca cluster.

c) The mechanism of water exchange for the Mn ions in the WOC is
most probably D or Id substitution reaction because each Mn ion in
the structure is coordinated to at least one O or OH groups.

Thus, it is likely that the oxidation number of a Mn ion changes but
deprotonation occurs for a water molecule coordinated to another Mn
ion. From the summarized data, we suggest a high rate of water
exchange for Mn(H2O)63+ above 1.6 × 102 observed for Fe(H2O)63+

because of a Jahn–Teller effect. As we discussed before, rates of
1.0–2.5 × 107 were reported for Mn(III) porphyrin and rates faster
than 1.2 × 105 were observed for Mn(H2O)5(OH)2+. However, a very
slow rate is suggested for Mn(H2O)64+, but it is important to note that
this ion is strongly acidic, and hydrolyzes to:

Mn H2Oð Þ64þ→Mn H2Oð Þ5 OHð Þ3þ þHþ

Mn H2Oð Þ5 OHð Þ3þ→Mn H2Oð Þ4 OHð Þ22þ þ Hþ

Mn H2Oð Þ5 OHð Þ22þ→Mn H2Oð Þ4 OHð Þ3þ þHþ
:

We may assume rates less than 2.4 × 10−9 s−1 for Mn(H2O)64+

with (t2g)3 electronic configuration similar to Cr(III), but it is more
positive than Cr(H2O)63+. However, considering the three deproton-
ation steps for Mn(H2O)64+ (103 × 103 × 103), the rate will be ~1 for
Mn(H2O)3(OH)3+. Hence, a rate of 0.02–2 for Mn(IV)–O is possible. On
the other hand, other ligands in the compound may increase the rate
of water exchange. For example, rates of ∼102 s−1 were postulated,
for both water exchange and intramolecular OH-bridge formation, for
ions with a OH−/Cr(III) ratio of 3 [49]. Mn(IV) is expected to be less
labile than Cr(III), but three O2−, OH− or \COO− groups per Mn site
as spectator ligands may increase the water exchange for the ion in
the WOC. A bridged μ-oxo is probably too inert to exchange in the
range of 0.02–200 s−1. However, two interconvertible structures
could explain the spectroscopic properties of the WOC of PSII in the S2
state [62]. Such interconvertible structures could help to increase
water exchange (Fig. 11). This would be compatible with the mecha-
nism suggested by Siegbahn for the S2 to S3 transition [63] that involves
an additional H2O binding at Mn1 of structure 1, but allows in principle
for other possibilities if structure 2 also advances to S3 (Fig. 11). Pantazis
et al. believe that the presence of an open coordination site along the
Mn(III) pseudo Jahn–Teller axis is an inescapable result of the optimiza-
tion of the photoreduced X-ray diffraction (XRD) structure and appears
as a fundamental structural element of the S2-state (Fig. 11) [62].

Cox and Lubitz studied the hyperfine couplings of coordinating 17O
nuclei using W-band (94 GHz) electron–electron double resonance
(ELDOR) to show three exchangeable O in the WOC during 15 s: one
μ-oxo bridge, a terminal Mn–OH/OH2 ligand, andMn/Ca–H2O ligand(s).
In other words, they showed that one of the μ-oxo bridges and, at least,
one of the two terminal water ligands of Mn(4) contributed to themea-
sured 17O-EDNMR (ELDOR-detected NMR) signal as seen usingW-band
EPR spectroscopy. The observation that a μ-oxo can exchange on this
time scale is very interesting [64]. In 2013, Siegbahn studied water
exchange in the S1, S2, and S3 states using density functional theory
(DFT) methods [63]. He suggested that water exchange at a reasonable
rate for theWOC occurs with a water molecule bound to anMn(III) site.
The calculations show that Mn(3) has to be reduced to an Mn(III) state
to release the bond to the substrate oxygen [63,65]. In other words, the
mechanism of water exchange is more complicated than previously
assumed [66].

The newmechanism of water exchange in S1 is limited by a hydrox-
ide exchange on theMn(3) in aMn(III) oxidation state. The calculations
show that the high energy barrier of 21.7 kcal/mol is due to both an
unfavorable electron transfer fromMn(4) toMn(3), and a costly change
of Jahn–Teller axis required for the hydroxide exchange (Fig. 12a).

Water exchange in S2 may occur through a similar mechanism, but
here the electron transfer from Mn(1) to create a Mn(III) state for
Mn(3) occurs via a proton-coupled electron transfer (PCET) process,
which has a lower rate limiting barrier of 17.6 kcal/mol. Siegbahn stated
that it is not certain that the correctmechanism has been found but other
mechanisms involving much higher barriers cannot be right (Fig. 12b).

Very recently, to assign the two substrate water sites of the WOC,
pulsed EPR spectroscopy was used to demonstrate that one of the five
oxygen bridges (μ-oxo) exchanges unusually rapidly with bulk water
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Fig. 11. Two interconvertible structures could explain the spectroscopic properties of the WOC of PSII in the S2 state.
Images are from [70].
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and is thus a likely candidate for one of the substrates. Previous report
by Britt shows that NH3 binds to the Mn4O5Ca cluster [67]. In new
experiments by W. Lubitz and N. Cox groups, a combination of EPR
and time-resolved MIMS shows that the binding of ammonia perturbs
the exchangeable μ-oxo bridge without drastically altering the binding/
exchange kinetics of the two substrates [68]. These experiments in
addition to broken-symmetry DFT show [68]:

i) O5 is the exchangeable μ-oxo bridge (Fig. 9b)
ii) W1 (Fig. 9b) is displaced by ammonia, because of W1 is trans to

O5, ammonia binding elongates the Mn(4)\O5 bond, leading to
the perturbation of the μ-oxo bridge resonance and to a small
change in the water exchange rates.

iii) Regarding Siegbahn's mechanism [69], O\O bond formation
between O5 and possibly an oxyl radical as proposed by and ex-
clude W1 as the second substrate water.

This data constitutes of the first reports of highly exchangeable μ-O
in the multinuclear Mn compounds. Mn compounds usually show
slow water exchange for μ-O. Future details of water exchange for the
WOC will be very important in understanding the mechanism of
water oxidation in nature [48,66,70–80].

8. Mechanism of water oxidation by nano-layered Mn oxides:
lessons from water exchange in a model compound

The synthesis and characterization of various Mn complexes
aimed at simulating the WOC of PSII were reported by some groups
[16,18–25,29,58,81–85]. These Mn complexes, besides modeling the
WOC, would be highly desirable as key components for artificial
photosynthesis — water splitting into H2 and O2, which is currently
much discussed as a promising route for the conversion of solar,
wind, ocean currents, tides or waves energy into hydrogen as “fuel”
[16,18–25,29,58,81–85].

However, as shown by H2
18O isotope-labeling experiments coupled

with membrane-inlet mass spectrometry (MIMS), few Mn complexes
discovered so far are able to act as catalysts for real water oxidation
[58,84]. However, Mn oxides, and most importantly nano-sized Mn
oxides were reported as efficient catalysts for water oxidation.

Oxygen evolution byMn oxides in H2
18Owas studied in the presence

of H2O2, hydrogen persulfate (HSO5
−), cerium(IV) ammonium nitrate

(Ce(IV)) and [RuIII(bpy)3]3+ [85]. As Mn oxides are structural and
functional models for the WOC in PSII [23,86], these studies are very
interesting. Kurz and Messinger' groups used the method of MIMS
[58] to detect the oxygen produced in reactions of Mn oxides in the
presence of H2O2, HSO5

−, Ce(IV) and [RuIII(bpy)3]3+ in H2
18O [64].

In a MIMS, gas molecules from the sample solution pervaporate
through a gas-permeable membrane into a magnetic sector field mass
spectrometer. They detected clear signals for the O2 isotopologues
16O2 (m/z = 32), 16O18O (m/z = 34) and 18O2 (m/z = 36) [85].

For these experiments, the fraction of 18O atoms in the total O2

produced was calculated according to 18α = ([18O2] + 0.5[16O18O])/
[O2]total. MIMS provides [O2] measurements and traces of the develop-
ment of 18α over time could then be plotted for the course of the cata-
lytic O2-formation [85]. The incorporation of oxygen atoms from μ-O
of the (Ca) Mn oxide into the released O2 during the early stages of
the reaction can be monitored with this method [85]. As reported by
Kurz and Messinger' groups, the reaction of these Mn oxides with
H2O2 or HSO5

− is not water oxidation. In other words, the reaction of
these Mn oxides with H2O2 constitutes a very fast oxygen evolution
reaction but no incorporation of 18O from the bulk water into the O2

product was observed. On the other hand, the reaction of HSO5
− with

these Mn oxides produced oxygen at lower rates and in contrast with
H2O2, 16O18O was detected [85].

The reaction of Ce(IV) or [RuIII(bpy)3]3+, as single-electron, non-
oxygen-transferring oxidants, is a real water reaction. The detection
of oxygen in the reaction of CaMn2O4·H2O and Ce(IV) in water
(5% H2

18O) is shown in Fig. 13.
The 16O2, 16O18O and 18O2 species quickly rise after the addition of

the oxidant and, in contrast to the H2O2 and HSO5
−, the formation of

18O2 is detected. 18α shows that the theoretically expected 18O fraction
of 5% is reachedwithin only 30 s after the addition of Ce(IV) to the oxide
suspension. These results show that the oxygen formed in reactions
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Fig. 12. Schematic mechanism for water exchange in the S1 state of theWOC (a). Schematic mechanism for water exchange in the S2 state of theWOC. The substrate oxygen is colored in
red (b).
Image and caption from Ref. [71].
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Fig. 13. (a)Oxygen evolution traces for the reaction of CaMn2O4·H2Owith Ce(IV) detected
by MIMS for 16O2 (m/z = 32; solid gray trace), 16O18O (m/z = 34; solid black trace), and
18O2 (m/z = 36; black dashed trace). A solution of Ce(IV) in H2

18O enriched water was
injected into the (non-enriched) oxide suspension at t = 0 s. Final CaMn2O4·H2O and
Ce(IV) in the MIMS cell were 1 mg·mL−1 and 100 mM, respectively. H2

18O enrichment
of the reaction mixture: 5%. The pH of the medium was approximately 2. The absolute
scale refers to an amplification factor of 1. (b) Change in A. The nano-sized layered Mn
oxides show even more rate of water oxidation.
Image and caption are from Ref. [64].

Fig. 14. Proposed mechanism of water oxidation by Mn oxides in the presence of Ce(IV).
RedMn ions showoxidizedMn ions. 16O and 18O are shown in pink and blue, respectively.
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with Ce(IV) indeed originates from the oxidation of bulk water. The re-
sults in the presence of [RuIII(bpy)3]3+ are similar to Ce(IV) but with
slower oxygen evolution. From these experiments the group concluded
as follows (routes a to c) [85]:

a) μ-O atoms on the surface are themselves not involved in the O\O
bond formation (Fig. 14).

b) μ-O atoms on the surface are oxidized to form O2 but also exchange
with the bulk solution very rapidly.

c) The oxygen atoms of the oxide surface are involved in O\O bond
formation, but the number of catalytic sites on the oxide surface is
extremely small.

In addition, to find the possibility of reaction route c, the groups per-
formed reactions in which a low concentration of Ce(IV) (6 mM) and a
much higher 18O–water labeling (50%) were used to observe the early
stages of the oxygen evolution reaction that were not resolved in
lower 18O–water labeling experiments and this allowed the detection
of the concentrations of 16O18O and 18O2 for extended time periods
without saturating the detector cups. From these experiments, they
concluded that even in the early stages of the reaction of Ce(IV) with
mes-terpy the possible incorporation of μ-O atoms on the surface is
low (Fig. 15). Discrimination between routes a) or b) is not possible dur-
ing these experiments. However, many of μ-O groups on the surface of
Mn oxides are coordinated to three Mn ions and thus the water
exchange is very slow for these μ-O.

From the results provided by several groups as discussed in previous
sections, the time for water exchange of all μ-O is most probably longer
than 30 s; thus if μ-O atoms on the surface are oxidized to formO2, lower
values are expected for 18α (Fig. 13a,b). Thus, the mechanism of water
oxidation is most probably similar to the mechanism shown in Fig. 14.

Casey, Rustad, and Spiccia reviewed water exchange for
aqueous oxide and hydroxide clusters [87]. They concluded that
rates of water exchange bound to nanometer-sized oxides and
most probably mineral surfaces, are robust and predictable by
coupling experiments with rare-event simulation methods. They
also proposed that the pathways for isotope exchanges at bridging
oxygen atoms in nanometer-size clusters are extraordinarily
counterintuitive. The proposed pathways appear to involve
concerted motions of many ions to form a metastable structure
that allows facile interaction with water (Fig. 16) [87].

Recently, Najafpour's groups used diffuse reflectance infrared
Fourier transform spectroscopy to estimate the rate of H2

18O
exchange for μ-O groups on the surface of nanolayered Mn–K
oxide [89]. The results show that the rate of exchange for μ-O
groups on the surface of the Mn–K oxide is too slow. These results
in addition to results from previously reported MIMS provide
new insights into mechanism of water oxidation by nanolayered
Mn oxide [88]. The group proposed that the μ-O is not directly
involved in O\O bond formation. O\O bond may be formed by
(1) attack of an outer-sphere water to OH coordinated to high-
valent Mn ion in oxide structure or (2) by the reaction between
two OH that are coordinated to high-valent Mn ion(s). They have
been observed two areas for water oxidation for Mn oxides: the
first area for water oxidation that is near to the peak related to
Mn(III)/Mn(IV) and another is 0.5 V higher than the first area.
The group relates these points to pathways 2 and 1 in Fig. 14,
respectively [88].

These results, in addition to results from previously reported
membrane-inlet mass spectrometry, provide new insights into mecha-
nism of water oxidation by nanolayered Mn oxide.

9. Conclusions

In conclusion, we reviewed the studies on water exchange for mono
and multi-nuclear Mn compounds. Terminal water molecules usually
exchange faster and bridged oxygen atoms very slowly. It is noted that
terminal water ions help to improve the efficiency of bridged oxygen
exchange. These data on water exchange and finding the ratio of
32O2:34O2:36O2 in water oxidation are suggested to be very helpful to
understand the mechanism of water oxidation in both artificial and
natural systems.

image of Fig.�13
image of Fig.�14


Fig. 15. A view of the surface of layered Mn oxide (red: O and Mn: green).

Fig. 16. All structural sites in a nanometer-size oxide ion respond to changes in solution pH. Here the rates of isotopic exchange and dissociation are shown for the decaniobate ion, which
exhibit a profound pHdependence even at conditions underwhich themolecule is unprotonated. All oxygen atoms in thismolecule respond to changes in solution composition. The rates
of oxygen-isotope exchanges could be measured for the decaniobate ion at the seven oxygen sites (a). The 17O NMR signal from the m6-oxo group changes with time only when the
molecule begins to dissociate. Thus, the pH dependence of rates of steady oxygen isotope exchange can be compared to the rates of dissociation (b).
Image and caption are from [57].

1408 M.M. Najafpour et al. / Biochimica et Biophysica Acta 1837 (2014) 1395–1410

image of Fig.�15
image of Fig.�16


1409M.M. Najafpour et al. / Biochimica et Biophysica Acta 1837 (2014) 1395–1410
Acknowledgements

MMN and MAI are grateful to the Institute for Advanced Studies in
Basic Sciences and the National Elite Foundation for financial support.
SIA was supported by grants from the Russian Foundation for Basic
Research (Nos: 13-04-91372, 14-04-01549, 14-04-92102) byMolecular
and Cell Biology Programs of the Russian Academy of Sciences. Authors
thank professor Govindjee for his nice comments.
References

[1] T.J. Wydrzynski, K. Satoh, Photosystem II: The Light-Driven Water: Plastoquinone
Oxidoreductase, Springer, Dordrecht, The Netherlands, 2005. 1–786.

[2] C. Eyster, Micronutrient requirements for green plants, especially algae, in: D.F.
Jackson (Ed.), Algae and Man, Plenum Press, New York, 1961, pp. 86–119.

[3] A. Pirson, L. Bergmann, Manganese requirement and carbon source in Chlorella,
Nature 176 (1955) 209–210.

[4] M.M. Najafpour, M.Z. Ghobadi, B. Haghighi, T. Tomo, R. Carpentier, J.-R. Shen, S.I.
Allakhverdiev, A nano-sized manganese oxide in a protein matrix as a natural
water-oxidizing site, Plant Physiol. Biochem. (2014), http://dx.doi.org/10.1016/j.
plaphy.2014.01.020.

[5] N. Kamiya, J.-R. Shen, Crystal structure of oxygen-evolving photosystem II from
Thermosynechococcus vulcanus at 3.7 Å resolution, Proc. Natl. Acad. Sci. U. S. A. 100
(2003) 98–103.

[6] A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauss, W. Saenger, P. Orth, Crystal struc-
ture of photosystem II from Synechococcus elongatus at 3.8 Å resolution, Nature 409
(2001) 739–743.

[7] K.N. Ferreira, T.M. Iverson, K. Maghlaoui, J. Barber, S. Iwata, Architecture of the
photosynthetic oxygen-evolving center, Science 303 (2004) 1831–1838.

[8] Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Crystal structure of oxygen-evolving
photosystem II at a resolution of 1.9 Å, Nature 473 (2011) 55–60.

[9] D.J. Vinyard, G.M. Ananyev, G.C. Dismukes, Photosystem II: the reaction center of
oxygenic photosynthesis, Annu. Rev. Biochem. 82 (2013) 577–606.

[10] J. Barber, P.D. Tran, From natural to artificial photosynthesis, J. R. Soc. Interface 10
(2013) 20120984.

[11] R. Pokhrel, G.W. Brudvig, Complex systems: photosynthesis, in: J. Reedijk, K.
Poeppelmeier (Eds.), Second edition, Comprehensive Inorganic Chemistry II, vol.
3, Elsevier, Amsterdam, The Netherlands, 2013, pp. 385–422.

[12] P. Joliot, G. Barbieri, R. Chabaud, Un nouveanmodele des centres photochimiques du
systeme II, Photochem. Photobiol. 10 (1969) 309–329.

[13] B. Kok, B. Forbush, M. McGloin, Cooperation of charges in photosynthetic O2

evolution. A linear four stepmechanism, Photochem. Photobiol. 11 (1970) 457–475.
[14] P. Joliot, B. Kok, Oxygen evolution in photosynthesis, in: Govindjee (Ed.), Bioener-

getics of Photosynthesis, Academic Press, New York, 1975, pp. 387–412.
[15] J. Messinger, G. Renger, Generation, oxidation by the oxidized form of the tyrosine of

polypeptide D2, and possible electronic configuration of the redox states S0, S−1, and
S−2 of the water oxidase in isolated spinach thylakoids, Biochemistry 32 (1993)
9379–9386.

[16] C.W. Cady, R.H. Crabtree, G.W. Brudvig, Functional models for the oxygen-evolving
complex of photosystem II, Coord. Chem. Rev. 252 (2008) 444–455.

[17] S.R. Cooper, M. Calvin, Mixed valence interactions in di-μ-oxo bridged manganese
complexes, J. Am. Chem. Soc. 99 (1977) 6623–6630.

[18] M.M. Najafpour, Manganese compounds as water oxidizing catalysts in artificial
photosynthesis, in: M.M. Najafpour (Ed.), Artificial Photosynthesis, Tech Publica-
tions, Rijeka, Croatia, 2012, pp. 37–52.

[19] M.M. Najafpour, Hollandite as a functional and structural model for the biological
water oxidizing complex: manganese–calcium oxide minerals as a possible evolu-
tionary origin for the CaMn4 cluster of the biological water oxidizing complex,
Geomicrobiol J. 28 (2011) 714–718.

[20] M.M. Najafpour, S.I. Allakhverdiev, Manganese compounds as water oxidizing cata-
lysts for hydrogen production via water splitting: from manganese complexes to
nano-sized manganese oxides, Int. J. Hydrogen Energy 37 (2012) 8753–8764.

[21] M.M. Najafpour, S. Nayeri, B. Pashaei, Nano-size amorphous calcium–manganese oxide
as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis:
back to manganese, Dalton Trans. 40 (2011) 9374–9378.

[22] M.M. Najafpour, B. Pashaei, S. Nayeri, Nano-sized layered aluminium or zinc–
manganese oxides as efficient water oxidizing catalysts, Dalton Trans. 41 (2012)
7134–7140.

[23] M.M. Najafpour, F. Rahimi, E.-M. Aro, C.-H. Lee, S.I. Allakhverdiev, Nano-sized manga-
nese oxides as biomimetic catalysts for water oxidation in artificial photosynthesis: a
review, J. R. Soc. Interface 9 (2012) 2383–2395.

[24] M.M. Najafpour, D.J. Sedigh, Water oxidation by manganese oxides, a new step
towards a complete picture: simplicity is the ultimate sophistication, Dalton
Trans. 42 (2013) 12173–12178.

[25] M.M. Najafpour, D.J. Sedigh, B. Pashaei, S. Nayeri, Water oxidation by nano-layered
manganese oxides in the presence of cerium(IV) ammonium nitrate: important
factors and a proposed self-repair mechanism, New J. Chem. 37 (2013)
2448–2459.

[26] W. Ruttinger, G.C. Dismukes, Synthetic water-oxidation catalysts for artificial photo-
synthetic water oxidation, Chem. Rev. 97 (1997) 1–24.

[27] A. Singh, L. Spiccia, Water oxidation catalysts based on abundant 1st row transition
metals, Coord. Chem. Rev. 257 (2013) 2607–2622.
[28] R. Tagore, R.H. Crabtree, G.W. Brudvig, Oxygen evolution catalysis by a dimanganese
complex and its relation to photosynthetic water oxidation, Inorg. Chem. 47 (2008)
1815–1823.

[29] H.J.M. Hou, Structural andmechanistic aspects of Mn-oxo and Co-based compounds
in water oxidation catalysis and potential applications in solar fuel production, J.
Integr. Plant Biol. 52 (2013) 704–711.

[30] R. Brimblecombe, A. Koo, G.C. Dismukes, G.F. Swiegers, L. Spiccia, Solar driven water
oxidation by a bioinspired manganese molecular catalyst, J. Am. Chem. Soc. 132
(2010) 2892–2894.

[31] R.K. Hocking, R. Brimblecombe, L.-Y. Chang, A. Singh, M.H. Cheah, C. Glover, W.H.
Casey, L. Spiccia, Water-oxidation catalysis by manganese in a geochemical-like
cycle, Nat. Chem. 3 (2011) 461–466.

[32] Metals in biology, in: G.R. Hanson, L.J. Berliner (Eds.), Biological Magnetic Reso-
nance, Springer, New York, 2010.

[33] W. Hillier, T. Wydrzynski, 18O–water exchange in photosystem II: substrate binding
and intermediates of the water splitting cycle, Coord. Chem. Rev. 252 (2008)
306–317.

[34] L. Helm, A.E. Merbach, Inorganic and bioinorganic solvent exchange mechanisms,
Chem. Rev. 105 (2005) 1923–1960.

[35] R.G. Wilkins, The Study of Kinetics and Mechanism of Reactions of Transition Metal
Complexes, Allyn and Bacon, Boston, 1974. 1–183.

[36] N.S. Imyanitov, Is this reaction a substitution, oxidation–reduction, or transfer?
J. Chem. Educ. 70 (1993) 14–16.

[37] Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, in: J. March
(Ed.), John Wiley & Sons, New York, 1992, pp. 1–1512.

[38] C.H. Langford, H.B. Gray, Ligand substitution processes, in: R. Breslaw, N. Karplus
(Eds.), Frontiers in Chemistry, Benjamin, W.A. Inc., New York, 1966, pp. 33–111.

[39] A.L. Petrou, M. Economou-Eliopoulos, Platinum-groupmineral formation: evidence of
an interchange process from the entropy of activation values, Geochim. Cosmochim.
Acta Ac73 (2009) 5635–5645.

[40] J.V. Quagliano, L.E.O. Schubert, The trans effect in complex inorganic compounds,
Chem. Rev. 50 (1952) 201–260.

[41] H. Diebler, N. Sutin, The kinetics of some oxidation–reduction reactions involving
manganese(III), J. Phys. Chem. 68 (1964) 174–180.

[42] T. Takashima, K. Hashimoto, R. Nakamura, Inhibition of charge disproportionation of
MnO2 electrocatalysts for efficient water oxidation under neutral conditions, J. Am.
Chem. Soc. 134 (2012) 18153–18156.

[43] D. Lieb, A. Zahl, T.E. Shubina, I. IvanovicÌ-BurmazovicÌ, Water exchange on manga-
nese (III) porphyrins. Mechanistic insights relevant for oxygen evolving complex
and superoxide dismutation catalysis, J. Am. Chem. Soc. 132 (2010) 7282–7284.

[44] E. Balogh, Z. He, W. Hsieh, S. Liu, E. Toth, Dinuclear complexes formed with the
triazacyclononane derivative ENOTA4−: high-pressure 17O NMR evidence of an asso-
ciative water exchange on [MnII2 (ENOTA)(H2O)2], Inorg. Chem. 46 (2007) 238–250.

[45] A. Dees, A. Zahl, R. Puchta, N.J.R. van Eikema Hommes, F.W. Heinemann, I. Ivanovic-
Burmazovic,Water exchange on seven-coordinateMn(II) complexeswithmacrocyclic
pentadentate ligands: insight in themechanism of Mn(II) SODmimetics, Inorg. Chem.
46 (2007) 2459–2470.

[46] J. Maigut, R. Meier, A. Zahl, R.v. Eldik, Triggering water exchange mechanisms via
chelate architecture. Shielding of transition metal centers by aminopolycarboxylate
spectator ligands, J. Am. Chem. Soc. 130 (2008) 14556–14569.

[47] T. Schneppensieper, A. Zahl, R. van Eldik, Water exchange controls the complex-
formation mechanism of water-soluble iron(III) porphyrins: conclusive evidence
for dissociative water exchange from a high-pressure 17O NMR study, Angew.
Chem. Int. Ed. 40 (2001) 1678–1680.

[48] J.R. Houston, P. Yu,W.H. Casey,Water exchange from the oxo-centered rhodium(III)
trimer [Rh3(μ-O)(μ-O2CCH3)6(OH2)]3+: a high-pressure 17O NMR study, Inorg.
Chem. 44 (2005) 5176–5182.

[49] S.J. Crimp, L. Spiccia, H.R. Krouse, T.W. Swaddle, Swaddle, early stages of the
hydrolysis of chromium(III) in aqueous solution. Kinetics of water exchange on
the hydrolytic dimer, Inorg. Chem. 33 (1994) 465–470.

[50] K.R. Rodgers, R.K. Murmann, E.O. Schlemper, M.E. Shelton, Rates of isotopic
oxygen exchange with solvent and oxygen atom transfer involving
nonaaquatetraoxotrimolybdenum ((4+)([Mo3O4(OH2)9])4+), Inorg. Chem.
24 (1985) 1313–1322.

[51] A. Drljaca, A. Zahl, R. van Eldik, High-pressure 17O NMR study of the dihydroxo-
bridged rhodium(III) hydrolytic dimer. Mechanistic evidence for limiting dissocia-
tive water exchange pathways, Inorg. Chem. 37 (1998) 3948–3953.

[52] R. Tagore, H. Chen, R.H. Crabtree, G.W. Brudvig, Determination of μ-oxo exchange
rates in di-μ-oxo dimanganese complexes by electrospray ionization mass spec-
trometry, J. Am. Chem. Soc. 128 (2006) 9457–9465.

[53] W.H. Casey, B.L. Phillips, M. Karlsson, S. Nordin, J.P. Nordin, D.J. Sullivan, S.
Neugebauer-Crawford, Rates and mechanisms of oxygen exchanges between sites
in the AlO4Al12 (OH)24(H2O)127+(aq) complex and water: implications for mineral
surface chemistry, Geochim. Cosmochim. Acta 64 (2000) 2951–2964.

[54] J.R. Rustad, J.S. Loring, W.H. Casey, Oxygen-exchange pathways in aluminum
polyoxocations, Geochim. Cosmochim. Acta 68 (2004) 3011–3017.

[55] I.L. McConnell, V.M. Grigoryants, C.P. Scholes, W.K. Myers, P.-Y. Chen, J.W.
Whittaker, G.W. Brudvig, EPR-ENDOR characterization of (17O, 1H, 2H) water in
manganese catalase and its relevance to the oxygen-evolving complex of photosys-
tem II, J. Am. Chem. Soc. 134 (2012) 1504–1512.

[56] C.A. Ohlin, R. Brimblecombe, L. Spiccia, W.H. Casey, Oxygen isotopic exchange in an
MnIIIMn3

IV-oxo cubane, Dalton Trans. (2009) 5278–5280.
[57] J.S. Kanady, J.L. Mendoza-Cortes, E.Y. Tsui, R.J. Nielsen, W.A. Goddard Iii, T. Agapie,

Oxygen atom transfer and oxidative water incorporation in cuboidal Mn3MO n
complexes based on synthetic, isotopic labeling, and computational studies, J. Am.
Chem. Soc. 135 (2013) 1073–1082.

http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0005
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0005
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0400
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0400
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0010
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0010
http://dx.doi.org/
http://dx.doi.org/
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0410
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0410
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0410
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0020
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0020
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0020
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0025
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0025
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0030
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0030
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0035
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0035
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0040
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0040
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0415
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0415
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0415
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0045
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0045
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0050
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0050
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0420
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0420
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0055
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0060
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0060
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0065
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0065
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0425
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0425
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0425
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0075
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0075
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0075
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0075
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0075
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0080
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0080
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0080
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0085
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0085
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0085
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0090
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0090
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0090
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0095
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0095
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0095
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0100
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0100
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0100
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0105
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0105
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0105
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0105
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0110
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0110
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0115
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0115
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0120
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0120
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0120
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf9000
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf9000
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf9000
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0125
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0125
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0125
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0130
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0130
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0130
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0435
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0435
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0140
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0140
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0140
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0140
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0145
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0145
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0150
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0150
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0155
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0155
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0440
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0440
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0445
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0445
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0450
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0450
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0450
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0165
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0165
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0170
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0170
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0175
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0175
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0175
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0175
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0180
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0180
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0180
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0185
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0190
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0190
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0190
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0190
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0195
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0195
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0195
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0200
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0200
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0200
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0200
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0200
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0205
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0210
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0210
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0210
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0215
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0220
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0220
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0220
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0220
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0225
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0225
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0225
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0230
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0235
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0235
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0240
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0240
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0240
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0240
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0240
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0240
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0240
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0245
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0245
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0245
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0245
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0245
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0250
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0250
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0250
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0250
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0250


1410 M.M. Najafpour et al. / Biochimica et Biophysica Acta 1837 (2014) 1395–1410
[58] K. Beckmann, J. Messinger, M.R. Badger, T. Wydrzynski, W. Hillier, On-line mass
spectrometry: membrane inlet sampling, Photosynth. Res. 102 (2009) 511–522.

[59] A. Bergmann, I. Zaharieva, H. Dau, P. Strassera, Energy Environ. Sci. 6 (2013)
2745–2755.

[60] N. Birkner, S. Nayeri, B. Pashaei, M.M. Najafpour, W.H. Casey, A. Navrotsky, Energetic
basis of catalytic activity of layered nanophase calcium manganese oxides for water
oxidation, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 8801–8806.

[61] F. Jiao, H. Frei, Nanostructured manganese oxide clusters supported on mesoporous
silica as efficient oxygen-evolving catalysts, Chem. Commun. 46 (2011) 2920–2922.

[62] E.A. Karlsson, B.L. Lee, T. Åkermark, E.V. Johnston, M.D. Kärkäs, J. Sun, Ö. Hansson, J.E.
Bäckvall, B. Åkermark, Photosensitized water oxidation by use of a bioinspired
manganese catalyst, Angew. Chem. Int. Ed. 123 (2011) 11919–11922.

[63] M. Yagi, M. Kaneko, Molecular catalysts for water oxidation, Chem. Rev. 101 (2001)
21–36.

[64] D. Shevela, S. Koroidov, M.M. Najafpour, J. Messinger, P. Kurz, Calcium manganese
oxides as oxygen evolution catalysts: O2 formation pathways indicated by
18O-labelling studies, Chem. Eur. J. 17 (2011) 5415–5423.

[65] M.M. Najafpour, A.N. Moghaddam, Y.N. Yang, E.-M. Aro, R. Carpentier, J.J. Eaton-Rye,
C.-H. Lee, S.I. Allakhverdiev, Biological water-oxidizing complex: a nano-sized man-
ganese calcium oxide in a protein environment, Photosynth. Res. 114 (2012) 1–13.

[66] W.H. Casey, J.R. Rustad, L. Spiccia, Minerals as molecules — use of aqueous oxide and
hydroxide clusters to understand geochemical reactions, Chem. Eur. J. 15 (2009)
4496–4515.

[67] L. Konermann, J. Messinger,W. Hillier, Mass spectrometry-basedmethods for study-
ing kinetics and dynamics in biological systems, in: T.J. Aartsma, J. Matysik (Eds.),
Biophysical Techniques in Photosynthesis, Springer, Dordrecht, The Netherlans,
2008, pp. 167–190.

[68] N. Cox, J. Messinger, Reflections on substrate water and dioxygen formation,
Biochim. Biophys. Acta 1827 (2013) 1020–1030.

[69] J. Lavergne, W. Junge, Proton release during the redox cycle of the water oxidase,
Photosynth. Res. 38 (1993) 279–296.

[70] D.A. Pantazis, W. Ames, N. Cox, W. Lubitz, F. Neese, Two interconvertible structures
that explain the spectroscopic properties of the oxygen-evolving complex of photo-
system ii in the S2 state, Angew. Chem. Int. Ed. 51 (2012) 9935–9940.

[71] P.E.M. Siegbahn, Substrate water exchange for the oxygen evolving complex in PSII
in the S1, S2 and S3 states, J. Am. Chem. Soc. 135 (2013) 9442–9449.

[72] L. Rapatskiy, N. Cox, A. Savitsky,W.M. Ames, J. Sander, M.M. Nowaczyk, M. RoÌˆgner,
A. Boussac, F. Neese, J.Messinger, Detection of thewater-binding sites of the oxygen-
evolving complex of photosystem II using W-band 17O electron–electron double
resonance-detected NMR spectroscopy, J. Am. Chem. Soc. 134 (2012) 16619–16634.

[73] Primary Processes of Photosynthesis: Principles and Apparatus, in: G. Renger (Ed.),
Royal Society of Chemistry, Cambridge, 2008, pp. 1–496.

[74] P.E.M. Siegbahn, Mechanisms for proton release during water oxidation in the S2 to S3
and S3 to S4 transitions in photosystem II, Phys. Chem. Chem. Phys. 14 (2012)
4849–4856.
[75] R.D. Britt, J.L. Zimmermann, K. Sauer, M.P. Klein, Ammonia binds to the catalytic
manganese of the oxygen-evolving complex of photosystem II. Evidence by electron
spin-echo envelope modulation spectroscopy, J. Am. Chem. Soc. 111 (1989)
3522–3532.

[76] M.P. Navarro,W.M. Ames, H.k. Nilsson, T. Lohmiller, D.A. Pantazis, L. Rapatskiy, M.M.
Nowaczyk, F. Neese, A. Boussac, J. Messinger, Ammonia binding to the oxygen-
evolving complex of photosystem II identifies the solvent-exchangeable oxygen
bridge (μ-oxo) of the manganese tetramer, Proc. Natl. Acad. Sci. U. S. A. 110
(2013) 15561–15566.

[77] R.D. Britt, K.A. Campbell, J.M. Peloquin, M.L. Gilchrist, C.P. Aznar, M.M. Dicus, J.
Robblee, J. Messinger, Recent pulsed EPR studies of the photosystem II oxygen-
evolving complex: implications as to water oxidation mechanisms, Biochim.
Biophys. Acta 1655 (2004) 158–171.

[78] G.W. Brudvig, Water oxidation chemistry of photosystem II, Philos. Trans. R. Soc.
Lond. B 363 (2008) 1211–1219.

[79] H.-A. Chu, Fourier transform infrared difference spectroscopy for studying the mo-
lecular mechanism of photosynthetic water oxidation, Front. Plant Sci. (2010),
http://dx.doi.org/10.3389/fpls.2013.00146.

[80] A. Galstyan, A. Robertazzi, E.W. Knapp, Oxygen-evolving Mn cluster in photosystem
II: the protonation pattern and oxidation state in the high-resolution crystal struc-
ture, J. Am. Chem. Soc. 134 (2012) 7442–7449.

[81] A. Grundmeier, H. Dau, Structural models of the manganese complex of photosys-
tem II and mechanistic implications, Biochim. Biophys. Acta 1817 (2012) 88–105.

[82] C.W. Hoganson, G.T. Babcock, A metalloradical mechanism for the generation of
oxygen from water in photosynthesis, Science 277 (1997) 1953–1956.

[83] N. Ioannidis, J.H.A. Nugent, V. Petrouleas, Intermediates of the S3 state of
the oxygen-evolving complex of photosystem II, Biochemistry 41 (2002)
9589–9600.

[84] J. Limburg, V.A. Szalai, G.W. Brudvig, A mechanistic and structural model for the
formation and reactivity of a MnV_O species in photosynthetic water oxidation,
J. Chem. Soc. Dalton Trans. (1999) 1353–1362.

[85] V.L. Pecoraro, M.J. Baldwin, M.T. Caudle, W.-Y. Hsieh, N.A. Law, A proposal for water
oxidation in photosystem II, Pure Appl. Chem. 70 (1998) 925–930.

[86] P.E.M. Siegbahn, Water oxidation mechanism in photosystem II, including oxida-
tions, proton release pathways: O\O bond formation and O2 release, Biochim.
Biophys. Acta 1827 (2014) 1003–1019.

[87] E.M. Sproviero, J.A. Gascon, J.P. McEvoy, G.W. Brudvig, V.S. Batista, A model of the
oxygen-evolving center of photosystem II predicted by structural refinement
based on EXAFS simulations, J. Am. Chem. Soc. 130 (2008) 6728–6730.

[88] H. Suzuki, M. Sugiura, T. Noguchi, Monitoring water reactions during the S-state
cycle of the photosynthetic water-oxidizing center: detection of the DOD bending
vibrations by means of Fourier transform infrared spectroscopy, Biochemistry 47
(2008) 11024–11030.

[89] M.M. Najafpour, M. Abbasi Isaloo, Mechanism of water oxidation by nanolayered
manganese oxide: a step forward, RSC Adv. 4 (2014) 6375–6378.

http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0255
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0255
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0260
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0260
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0265
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0265
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0265
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0270
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0270
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0275
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0275
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0275
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0280
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0280
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0285
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0285
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0285
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0285
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0285
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0290
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0290
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0290
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0295
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0295
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0295
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0455
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0455
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0455
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0455
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0305
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0305
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0310
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0310
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0315
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0315
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0315
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0315
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0320
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0320
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0320
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0320
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0320
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0460
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0460
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0460
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0460
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0460
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0465
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0465
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0335
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0335
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0335
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0335
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0335
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0335
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0340
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0340
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0340
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0340
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0470
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0470
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0470
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0470
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0470
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0345
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0345
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0345
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0345
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0350
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0350
http://dx.doi.org/
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0355
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0355
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0355
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0360
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0360
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0365
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0365
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0370
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0370
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0370
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0480
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0480
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0480
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0480
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0375
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0375
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0380
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0380
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0380
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0380
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0380
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0385
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0385
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0385
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0390
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0390
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0390
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0390
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0395
http://refhub.elsevier.com/S0005-2728(14)00095-4/rf0395

	Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: From the water-oxidizing complex in photosystem II to nano-sized manganese oxides
	1. Introduction
	2. Flash-induced oxygen evolution pattern — the Joliot experiment and the Kok cycle
	3. Ion hydration/solvation
	4. Activation parameters
	5. Two and multinuclear metal complexes
	6. Mn-based metal complexes
	7. Water-oxidizing complex in photosystem II
	8. Mechanism of water oxidation by nano-layered Mn oxides: lessons from water exchange in a model compound
	9. Conclusions
	Acknowledgements
	References


