Volume 281, number 1,2, 85-89 FEBS 09555 © 1991 Federation of European Biochemical Societies 00145793/91/\$3.50 ADONIS 00145793910002666

Cloning and sequence analysis of brain cDNA encoding a $Xenopus D_2$ dopamine receptor

Gerard J.M. Martens, Henri O.F. Molhuizen, Diet Gröneveld and Eric W. Roubos

Department of Animal Physiology, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

Received 28 January 1991

A D_1 dopamine receptor pharmacologically different from the mammalian D_2 receptor has previously been characterized in the amphibian Xenopus laevis. Here we report the cloning of a Xenopus D_2 receptor which revealed about 75% amino acid sequence identity with its mammalian counterpart and the presence of an additional 33 amino acid sequence in the 3rd cytoplasmic loop instead of the additional 29 residues in the large form of the mammalian D_2 receptor. All 7 predicted transmembrane domains are highly conserved between the Xenopus and mammalian D_2 receptors, as are the 1st and 2nd intracellular loop, the 1st and 3rd extracellular loop and the carboxy-terminal portion of the receptors. The amino-terminal portion, the 2nd extracellular loop and the middle portion of the 3rd intracellular loop of these receptors, however, differ considerably. Knowledge of the locations of these regions of conservation and divergence within the D_2 receptors of Xenopus and mammals will help to delineate portions of the receptor molecule that are functionally important. Interestingly, the 5-untranslated region of the Xenopus D_2 receptor mRNA contains 4 small open reading frames which may affect translational efficiency.

Dopamine receptor; cDNA sequence; Background adaptation; Xenapus brain

1. INTRODUCTION

The neurotransmitter dopamine regulates the activity of a number of vertebrate neural and endocrine cells. It is thought that disturbances of dopamine concentrations in the brain cause several neurological diseases [1,2]. Dopamine signalling is transduced by 2 pharmacologically different dopamine receptors, the D_1 receptor and the D_2 receptor [3,4]. Recent cloning of a rat D₂ dopamine receptor cDNA showed that this receptor belongs to the family of G-protein-coupled receptors [5]. The structures of the members of this family are characterized by the presence of a core of seven membrane-spanning domains which display significant homology between the family members [6]. Further characterization of D_2 receptor cDNAs and polymerase chain reaction (PCR) analysis of D₂ receptor expression revealed in human, bovine and rat the presence of a 2nd, larger form of the D₂ receptor [7-12]. This large form differs from the first-cloned rat D_2 receptor by an additional stretch of 29 amino acid residues located in the predicted 3rd cytoplasmic loop between transmembrane domains V and VI. The occurrence of the 2 molecular forms of the D₂ receptor is the result of an alternative splicing event, the functional significance of which is not clear.

In amphibians the dopamine receptor is likely to be involved in the regulation of the melanotrope cells of the intermediate pituitary gland during background adaptation of the animal [13]. Melanotrope cells of animals on a black background release α -melanocytestimulating hormone (α -MSH) which stimulates dispersion of pigment granules in skin melanophores [14]. In the amphibian Xenopus laevis dopaminergic neurons originating from hypothalamic nuclei innervate the melanotrope cells [15,16] and, in animals on a white background, dopamine receptor activation leads to an inhibition of the biosynthetic and secretory activity of the melanotrope cells [17]. This results in an inhibition of α -MSH release and thus in a bleaching of the animal. Specific D₂ dopamine receptor agonists and antagonists have been used to characterize the dopamine receptor present on the membrane of the Xenopus melanotrope cells as a D2-type of dopamine receptor which appears to be pharmacologically somewhat different from the mammalian D2 receptor [13]. The question arises whether the observed pharmacological differences are due to differences between the structures of the Xenopus and mammalian D_2 receptors. As a first step towards a resolution of this question, we used a rat D_2 dopamine receptor cDNA as a probe to isolate a cDNA clone encoding a Xenopus D₂. dopamine receptor.

2. MATERIALS AND METHODS

To determine the hybridization conditions for library screening,

Published by Elsevier Science Publishers B.V.

Correspondence address: G.J.M. Martens, Department of Animal Physiology, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

Volume 281, number 1,2

Southern blot analysis of Xenopus blood cell genomic DNA was initially performed. On the basis of the results of this analysis a Xenopus brain cDNA library in the vector Agt11 (a generous gift of Drs K. Richter and G. Krell, Salzburg, Austria) was screened with replica nitrocellulose filters at 57°C in 6×SSC (1×SSC is 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0), 0.1% SDS, 40 mM sodium phosphate buffer (pH 7.0), 3× Denhardt's solution, 0.1% sodium pyrophosphate, 1 mM EDTA, 100 µg/ml salmon sperm DNA and 8% dextran sulphate. Washing of filters was performed at room temperature and at 57°C in 2×SSC, 0.1% SDS, 0.1% sodium pyrophosphate and 1 mM EDTA. Hybridization probes were a 1.3 kb KpnI-Bg/II fragment of rat D₂ receptor cDNA clone pGRB-2 and a 0.55 kb Kpn1-Pvull fragment of pGRB-2 (pGRB-2 is a nearly full-length cDNA clone of 2.4 kb generously provided by Dr O. Civelli, Portland, Oregon, USA) [5]. Probes were labelled with ³²P by nick translation or random priming according to standard procedures [18]. Phage plaques hybridizing with both probes were purified, λDNA was prepared and of the appropriate clones the cDNA was inserted into EcoRI-digested pUC18 DNA. DNA sequencing of both strands and with overlapping M13 mp18 and mp19 subclones was performed with the dideoxy chain termination method [19].

3. RESULTS AND DISCUSSION

3.1. The Xenopus D₂ dopamine receptor

A Xenopus brain cDNA library $(1.5 \times 10^6 \text{ clones})$ was screened under low-stringency hybridization conditions using as a probe a 1.3 kb DNA fragment of rat D₂ dopamine receptor cDNA clone pGRB-2 [5] which covers the nearly complete protein-coding region. This screening gave a total of 140 hybridization-positive signals, 10 of which represented strong positives. Upon rescreening with a 0.55 kb DNA fragment of pGRB-2 encoding the amino-terminal region of the rat D₂ receptor, Xenopus brain cDNA clone pHR1XD2 (length of insert 2.1 kb) was selected for further analysis. Fig. 1 shows the nucleotide sequence of pHR1XD2 cDNA which comprises 2068 bp. The longest open-reading frame (ORF) codes for a 442 amino acid protein (relative molecular mass M_r 49680). This protein lacks a signal sequence and it contains 7 putative transmembrane regions, a structural characteristic of G-proteincoupled receptors [20]. From the high degree of identity between the amino acid sequence of the pHR1XD2 protein and mammalian D_2 dopamine receptor structures (Fig. 2) we conclude that pHR1XD2 cDNA encodes a Xenopus D₂ dopamine receptor. This receptor corresponds to the large form of the D_2 dopamine receptor relative to the first-cloned rat D₂ receptor. Interestingly, the Xenopus D₂ receptor contains an additional 33 amino acid sequence in the predicted intracellular domain between transmembrane regions V and VI, whereas in the large form of the mammalian D_2 receptor only an additional 29 amino acids are present in this region. The occurrence of the 2 molecular forms of the mammalian D₂ receptors appears to be the result of alternative splicing, involving an exon of 87 bp in the human, bovine and rat genes [7-12]. In the Xenopus D₂ receptor gene a somewhat larger exon of 99 bp is expected to be involved. The fact that the region in the Xenopus D_2 receptor mRNA which corresponds to the mammalian splice site (GTG/ATTCTT, nucleotides 1279–1287, Fig. I) does not conform very well to the consensus sequence for splice donor sites $\binom{A}{A}G/GT_G^AGT$ [21] might explain why in Xenopus the exon-intron splicing event did not occur after 87 bp in this exon. The corresponding splice region within the mammalian D_2 receptor gene sequence $\binom{G}{A}TG/GTAAGT$ [7–9] conforms well to the consensus sequence.

3.2. The 5'-untranslated mRNA region

An unusual feature of the Xenopus D₂ receptor mRNA concerns the presence of an exceptionally long 5'-noncoding segment with 4 small ORFs, 3 of which are in-frame with the D₂ receptor-coding sequence (Fig. 1). The existence of these small ORFs means that the ORF encoding the Xenopus D₂ receptor protein starts at the 5th AUG codon. This is remarkable because translation of most eukaryotic mRNAs starts at the 1st AUG [22]. Whether the small ORFs are translated and, if so, what the functional role of the resulting peptides might be, remains to be established. It is of interest that the region which contains the mostdownstream small ORF (TATGGCTTGAAGAGCT, nucleotides 456-471, Fig. 1) is identical between Xenopus, human and rat D2 receptor mRNAs, whereas the remainder of the 5'-untranslated region is highly divergent between the 3 species (this region is not reported for the bovine receptor). Unfortunately, a full comparison between the Xenopus 5'-untranslated segment and the corresponding mammalian regions is not possible since all previously reported D₂ receptor cDNAs contain only relatively short 5'-noncoding regions. Only 5-10% of vertebrate mRNAs have upstream AUG codons; this set of mRNAs is apparently nonrandom in that many mRNAs encoded by protooncogenes, growth-control genes and receptor genes belong to it [23-25]. The role of long 5'-untranslated sequences with upstream AUG codons has not been clearly established in higher eukaryotes. In yeast, however, upstream AUGs repress the efficiency of translation initiation of the long downstream ORF, and thus a function for these sequences at the level of regulation of translation has been suggested [26,27]. The presence of the small upstream ORFs in the Xenopus D₂ receptor mRNA would seem to necessitate that the process of translation reinitiation must occur for D₂ receptor translation. The AUG codon of the 3rd small ORF lies in an excellent context for initiating translation (ACCAUGG, nucleotides 355--361, Fig. 1; consensus for strong eukaryotic translation initiation sequence is $^{A}_{G}$ NNAUGG, whereby N is mostly a C) [22]. The 3rd AUG will thus very likely function as a ribosome start site. Moreover, the AUG start codon of the D_2 receptor is in a rather unfavorable context (UUCAUGG). Therefore, the only reason why

Volume 281, number 1,2

ribosomes can still reach the initiation site of D_2 receptor translation for reading the real message seems to be that terminator codons occur in-frame with the AUG triplets of the small ORFs and that these terminators are upstream from the D_2 receptor AUG start codon. Apparently, the D_2 receptor starting AUG presents itself within a reasonably short distance such that

ribosomes remain attached to the mRNA to start up again. As an alternative to the above, the mRNA region containing the small ORFs could be spliced out in the mature functional D_2 receptor mRNA. If this turns out to be the case, we must have cloned an incompletely spliced RNA. Upstream AUG-containing mRNAs are often produced in several forms due to alternative splic-

T	<u> </u>	TCAC	AVCO	CYCN	GYY	ATTO	слті	CCTC	ACAC	GCCA	таст	GTTA	an ta	TCCT	ACAG	YCYJ	TACT	GATC	:VGC1	ሌላተተ	CON	Tere	CVCI	TTE	' <u>AA</u> TC	Tata	CONT	λCTC
'AC	CCN	ATT	'ANGC	****	CNV	YC40	ATTI	'AAGT	GVOV	wcc	тала	TTCA	ACCT	TTAT	AATT	GCAA	CTTI	GTCC	TCAC	C1 TT	geat	VCVV	GGAC	CAT	GNN	CTCT	стал	VCC)
TC	AVG4	ፕአአታ	GACC	AGCA	GTT	itcej	TCTA	CCCC	TCGC	TTCA	CTGI	AVYQ	CANT	ACTO	тата	TCTC	ATGG	GTCI	TAT	CCTT	<u>VIA</u> AC	1700	GYCC	TTC/	GAGO	6666	TAT	CATO
) at	Vab.	Pro	Gin	* A8n	Lau	Ser	Met	Tyr	10 Asn	Asp	Asp	Tle	Asn	* Nani	61y	Thr	* Asn	Gly	20 Thr	Ala .	Vā1	٨sp	Gin	Lys	Pro	His	Tyr	វនុង
NG -	GAT	CCC	CAG	VYG	CTG	TCC	ATG	TÀC	አእተ	GAT	GYL	ATT	WC	ለለተ	GGY	YCC	алт	GGλ	ACT	CCT	CTT	GAT	CVC	WG	CCT	CAT	TAC	አእተ
·¥'	Ala	Met	Leu	Leu	Thr	Leu	Leu	Val	40 Phe	Val	Ile	Val	Phe	Gly	Aan	Val	Lou	Val	50 Cys	Ile	Ala	Val	Ser	Arg	61u	Lys	Ala	Leu
T	GCC	ATG	CTC	CTT	ACT	CTT	CTT	GTA	TTT	GTC	ATC	GTC	TTT	GGC	AAT	ott	TTG	GTC	TCC	ATT	GCT	GTT	TCT	AGG	GVV	AAA	GCT	CTA
hr'	Thr	The	Aen	Tyr	Leu	Ile	Val	Ser	70 Leu	Ala	Val	Ala	Asp	Leu	Leu	Val	λla	Thr	Leu	Val	Met	Pro	Trp	Ala	Val	Tyr	Met	Glu
C	ACT	ACC	AAC	TAC	CTA	ATT	GIC	AGC	TIG	CC1.	GIG	GCA	GAT	ere	716	616	QCC.	ACA	110	010	ATG	cer	100	900	01.1	IAC	NIG	UAU
1	Gly	Glu	Trp	Arg	Phe	Ser	Arg	Ile	His	Cys	Asp	Ile	Phe	Val	Thr	Leu	hap	Val	Met	Met	Cys	Thr	Ala	Ser	Ile	Leu	ASG	Leu
		-	100	100		101	CUU	AIC.	100	101	ONT	VIC		ure	ACC		v		1 40		101	1.44					1.41.1	C IN
a	ILe ATC	Ser	Ile	Asp	Arg	Tyr	Thr	Ala	Val	Ala	Met	Pro	Met	Lau	Tyr	Asia	Thr	Arg	2775 TAL	Ser	SOF	LYB	Arg	Arg AGA	Val	Thr	Val	Met
				erit.	100			Gen	160									*	170									
er T	Val GTA	Val GTT	Trp	Val	Leu CTG	Ser	Phe	Ala GCA	Ile ATA	Ser	Cys	Pro	Leu	Leu CTG	Phe	GIY	Leu CTC	Asn AAC	Asn AAT	Thr ACA	Gly GGT	Ser TCC	LYS	Val	Cys TGC	Ile ATC	Ile ATT	Asp GAT
-	-	· .							190		:			-					200									
ο λ	Ala GCA	Phe TTT	Val GTC	Ile ATC	Tyr TAT	Ser TCC	Ser TCC	Ile ATC	Val GTT	Ser TCC	Phe TTC	Tyr TAT	Val GTT	Pro CCT	Phe TTT	Ile ATT	Val GTC	Thr	Leu CTA	Leu TIG	Val GTG	TYP TAT	Val GTT	G1π CλG	Ile ATT	Tyr Tat	Ile ATA	Val GTA
			1		-			·	220	_				:					230		_					<u> </u>		
G	Lys	CGC	Arg	Lys	Arg AGG	Val GTG	Asn AAC	Thr ACC	Lys	CGC	Asn AAT	Ser AGT	Arg CGT	G1y GGA	Val GTA	Ala GCA	Val GTA	GAT	Ala GCC	CAT	Lys	GAC	Lys _NAG	TGC	ACT	CAC	CCT	GIU
1	7.10		<u>.</u>			Dha			250	*			Dha	<u>.</u>					260			1		<u>(1)</u>	101.		C1.	Tue
G	AAG	CTA	TGT	TCT	GTA	TTT	GTA	AAG	TCC	AST	GGG	AGC	TTC	CCA	GCA	GAT	AAA	AAG	AAA	GTG	ATT	CTT	GTC	CAG	GAA	GCT	GGC	AAA
	610) Acr	Mat	61	Mot	c).	Mat	Mat	280	Sar	The	Sor	Pro	Pro	Glu	Lung	Thr	Lue	290 His	LVE	Sar	Ala	Ser	Pro	Asr	His	Asn	Glr
CA	GAG	GAT	ATG	GAA	ATG	GAG	ATG	ATG	TCA	AGC	ACA	TCT	CCA	cĉĞ	GAG	AAA	ACA	AAA	CAC	AAG	TCT	GCT	TCT	CCT	GAC	CAT	AAT	CAA
la	Val	Pro	Ala	Thr	Ser	Asn	Gln	Cvs	310 Lvs	* Asn	Ala	Ser	Leu	Thr	Ser	Pro	Val	Glu	320 Ser	Pro	Tyr	Lys	Ala	Glu	Lys	Asn	Gly	Hir
21	GTG	CCA	GCT	ACA	TCA	AAC	CAG	TGC	ĀĀĀ	AAT	GCC	AGC	CTA	ACT	TCA	CC.A	GTG	GAA	AGC	CCT	TAC	АЛА	GCT	GAA	AAG	AAT	GGÃ	CAI
: ys	Asp	Ser	Thr	Lys	Pro	Ala	Lys	Val	340 Phe	Glu	Ile	Gln	Ser	Met	Pro	Asn	Gly	Lys	350 Thr	Arg	Thr	Ser	Ile	Lys	Thr	Met	Ser	Lys
AA	GAC	AGT	ACA	AÃG	CCT	GCC	ААА	GTT	TTT	GAG	ATT	CAG	TCA	ATG	CCT	ALT	GGG	AAA	ACA	CGA	ACC	TCA	ATA	AAA	ACA	ATG	AGC	AAC
ys	Leu	Ser	Gln	His	Lys	G1u	Lys	Lys	370 Ala	Thr	Gln	Met	Leu	Ala	Ile	Val	Leu	Gly	380 Val	Phe	Ile	Ile	Сув	Trr	Leu	Pro	Phe	Phe
ĄG	CTT	TCA	CAA	CAT	AAG	GAA	AAG	AAA	GCI	ACA	CAA	ATG	TTA	GCT	ATT	GTA	CTG	GGT	GTT	TTT	' ATT	ATT	TGC	TGG	CP1	CCI	Tre	TTC
le	His	Ile	Leu	Asn	Met	His	Cys	Asn	400 Cys	Asn	Ile	Pro	Gln	Ala	Leu	Tyr	Ser	Ala	Phe	Thr	Trp	Leu	Gly	Tyr	Val	Asn	Ser	Ala
T.T.	CAC	ATA	CTA	. AA'I	AT	i, CA'I	TGC	. AA 1	430	AAC	AT'I	- CCA	CAG	GCC	: 14C	TAC	AGC	600		ACI	166		100	. 1A1	610	I AAC	AGI	GC)
511	Pro	11e		Tyr	Thr	Thr	Phe	AST	val Val	Glu	Phe	Arg	Lys	Ala	Phe	Ile	Lys	Ile ATT	Leu Crri	His	Cys	ENC) 	ACAL	GATT	GAAG	AAGG	: ATG(
:* 										. und								-,.,										

Fig. 1. Nucleotide sequence and deduced amino acid sequence of brain cDNA encoding a Xenopus D_2 dopamine receptor. The 4 small openreading frames in the 5'-untranslated mRNA region are underlined. Predicted transmembrane domains are overlined. The 99-bp/33-amino acid insertion sequence is boxed; the small isoform of the mammalian receptor lacks this sequence [7-12]. Asterisks indicate potential N-linked glycosylation sites [33].

Volume 281, number 1,2

ing [23], and it has been suggested that in protooncogene expression upstream AUG codons may be lost during the chromosomal rearrangements that accompany activation of some oncogenes [24]. In this respect it is interesting to note that a 5'-noncoding splice variant of the human D_2 receptor mRNA has recently been described [28]. Whether this finding implies that a critical regulatory step in D_2 receptor gene expression concerns the processing of stable, untranslatable premRNA to functional D_2 receptor mRNA or, alternatively, whether the translational machinery is forced to deal with the upstream AUG triplets, has to await further experimentation.

3.3. Comparison between Xenopus and mammalian D₂ dopamine receptors

The overall degree of amino acid sequence identity between the *Xenopus* and (the large forms of the) human, bovine and rat D_2 receptors is 75%, 75% and 74%, respectively, while on the nucleotide sequence level in the protein-coding regions the identity is 67%, 68% and 65%, respectively. The evolutionary span between these species is about 350 million years. No significant nucleotide sequence identity was found between the 5'-untranslated nor the 3'-untranslated regions of the D_2 receptor mRNAs of the 4 species, except for the short sequence in the 5'-untranslated region (see above). All predicted transmembrane domains are highly conserved as are the regions between domains I and II (first intracellular loop), II and III (first extracellular loop), III and IV (second intracellular loop), VI and VII (third extracellular loop), and the carboxy-terminal portion of the receptors. In contrast, the amino-terminal region as well as the 2nd extracellular loop between domains IV and V, and most of the 3rd cytoplasmic loop between domains V and VI display a low degree of sequence identity. Despite the low homology between the amino-terminal portions of the D_2 receptors, the 3 potential sites for N-linked glycosylation located in this region are present in all 4 species. In the 2nd extracellular loop and the 3rd intracellular loop, however, not all potential glycosylation sites are conserved (Fig. 2). Interestingly, the most conserved regions within the 3rd cytoplasmic loop, namely those flanking transmembrane domains V and VI, are believed to be involved in binding of the receptor to a G-protein, possibly in conjunction with the well-conserved 2nd cytoplasmic loop [29]. Except for the amino- and carboxy-terminal ends, most of the third cytoplasmic loop, including the region containing the site of deletion/insertion of the 33 amino acid residues (29 residues in the mammalian receptors), constitutes one of the least conserved regions of the D_2 receptor. This low degree of identity is pertinent to the question of whether the alternative splicing event is of functional significance (cf. [8]). Aspartates 80, 108 and 114 (numbering for mammalian receptors) and the regions surrounding these residues in transmembrane

	*	× +	•				
Xenopus: Human : Rat :	MDPONLSMYN MDPLNLSWYD MDPLNLSWYD	N TONN IOO 19 TONN IOO 19 TONN IOO 19	ICT-AVDOK ICSDGKADR ICSEGKADR	PHYNYYAM PHYNYYAT PHYNYYAM	LTLLVFVIVI LLTLLIAVIVI LLTLLIFIIVI	FGHVLVCIAVSI FGHVLVCMAVSI FGHVLVCMAVSI	REKALQTTTN REKALQTTTN REKALQTTTN
r						 1	
YLIVSLAV YLIVSLAV YLIVSLAV	ADLLVATLVM ADLLVATLVM ADLLVATLVM	PWAVYMEVVGEW PWVVYLEVVGEW PWVVYLEVVGEW	RFSRIHCDI KFSRIHCDI KFSRIHCDI	FVTLDVMM FVTLDVMM FVTLDVMM	CTASILNLCA CTASILNLCA CTASILNLCA	ISIDRYTAVAM ISIDRYTAVAM ISIDRYTAVAM	PMLYNTRYSS PMLYNTRYSS PMLYNTRYSS
	N				V		
KRRVTVMI Krrvtvmi Krrvtvmi	SVVWVLSFAI SIVWVLSFTI AIVWVLSFTI	SCPLLFGLNNTG SCPLLFGLNNAD	SKVCIIDNP ONECIIANP ONECIIANP	AFVIYSSI AFVVYSSI AFVVYSSI	VSFYVPFIVT VSFYVPFIVT VSFYVPFIVT	LLVY LLVY IKIYIVL	RKRRKRVNTK RRRKRVNTK RKRRKRVNTK
RINIS RIG V	• + A V D A HIRD KIC	THPEDVKLCSVF	* VKSNGSFPA	סאאאיין		EMEMMISSTSPP	हीर्फ़ीर म қ 5 A इंग्रि
RSSRAFRA RSSRAFRA	HLRAPLKGNC	тнрермкістун	KSNGSFPV	NRRRV	- EAARRAQEL - DAARRAQEL	EMEMLSSTSPP EMEMLSSTSPP	ERTRYSPIPP ERTRYSPIPP
DHNQ LAVF SHMQ LT LF SHMQ LT LF	АТ <u></u> ВИQСКЙАS PDPSннс PDPSннс	LTSPVESPYKAE LHSTPDSPAKPE LHSNPDSPAKPE	KNGHPK – DS KNGHAK – DH KNGHAKIVN	TKPAKVFE PKIAKIFE PRIAKFFE	IQSMPNGKTR IQTMPNGKTR IQTMPNGKTR	TSIKTMSKKKL TSIKTMSRKL TSIKTMSRRKI	SQHKEKKATQ SQQKEKKATQ SQQKEKKATQ
· •	<u>VI</u>		·	VII			
MLAIVLGV MLAIVLGV MLAIVLGV	/FIICWLPFFI /FIICWLPFFI /FIICWLPFFI	IHILNMHCNCNI THILNIKCOCNI THILNIKCOCNI	PQALYSAFT PPVLYSAFT PPVLYSAFT	WLGYVNSA WLGYVNSA WLGYVNSA	VNPIIYTTFN VNPIIYTTFN VNPIIYTTFN	VEFRKAFIKIL IEFRKAFLKIL IEFRKAFMKIL	нс нс

Fig. 2. Alignment of the amino acid sequences of Xenopus, human and (the small isoform of the) rat D₂ dopamine receptors. The one-letter amino acid notation is used. Gaps (-) have been introduced to achieve maximum identity. Residues identical among the receptor structures of the three species are boxed as are the residues identical between the Xenopus and human receptors in the insertion sequence. Predicted transmembrane domains I to VII are overlined. Asterisks indicate potential N-linked glycosylation sites [33]. The dot indicates a potential cAMP-dependent protein kinase phosphorylation site [34]. Triangles denote the ends of the insertion sequence of the mammalian receptor.

domains II and III are identical among the 4 species, which is in line with their proposed important role in binding of the cationic amine to the receptor [30]. Similarly, several serine and threonine residues in the 3rd cytoplasmic loop are well conserved; these residues could serve as sites for phosphorylation and they might therefore be involved in the regulation of D_2 receptor functioning [31]. The conservation of all cysteine residues might reflect the important role for these amino acids in establishing the tertiary structure of the D_2 receptor [32]. On the basis of our comparative analysis we conclude that the observed patterns of conservation and divergence of regions within the D_2 receptor protein will help to delineate the portions of the receptor molecule which are important for proper

receptor functioning. In Xenopus it appears that, through D_2 receptor triggering, dopamine regulates the activity of the melanotrope cells of the intermediate pituitary gland during the process of background adaptation of the animal [13]. Preliminary results of PCR analysis using primers directed against portions of the 3rd and 6th transmembrane domains of the Xenopus D_2 receptor have revealed that, as in mammals [5,8], the D_2 receptor is expressed in the Xenopus intermediate pituitary. Structure-function studies are in progress to examine the relationship between the structural differences described here and the previously reported [13] different pharmacological characteristics of the Xenopus and mammalian D_2 receptors.

Acknowledgements: This work was supported by the Netherlands. Organization for Scientific Research (NWO). We thank Dr O. Civelli for providing rat D_2 receptor cDNA clone pGRB-2 and Dr B.G. Jenks for critical reading of the manuscript.

REFERENCES

- Sceman, P., Ulpian, C., Bergeron, C., Riederer, P., Jellinger, K., Gabriel, E., Reynolds, G.P. and Tourtellotte, W.W. (1984) Science 225, 728-730.
- [2] Baldessarini, R.J. (1985) in: The Pharmacological Basis of Therapeutics (Gilman, A.G. et al. eds) Macmillan, New York, pp. 387-445.
- [3] Kebabian, J.W. and Calne, D.B. (1979) Nature 277, 93-96.
- [4] Creese, I., Sibley, D.R., Hamblin, M.W. and Leff, S.E. (1983) Ann. Rev. Neurosci. 6, 43-71.
- [5] Bunzow, J.R., Van Tol, H.H.M., Grandy, D.K., Albert, P., Salon, J., Christie, M., Machida, C.A., Neve, K.A. and Civelli, O. (1988) Nature 336, 783-787.

FEBS LETTERS

- [6] Dohlman, H.O., Caron, M.G. and Lefkowitz, R.J. (1987) Biochemistry 26, 2657-2664.
- [7] Grandy, D.K., Marchionni, M.A., Makam, H., Stofko, R.E., Alfano, M., Frothingham, L., Fischer, J.B., Burke-Howie, K.J., Bunzow, J.R., Server, A.C. and Civelli, O. (1989) Proc. Natl. Acad. Sci. USA 86, 9762-9766.
- [8] Dal Toso, R., Sommer, B., Ewert, M., Herb, A., Pritchett, D.B., Bach, A., Shivers, B.D. and Seeburg, P.H. (1989) EMBO J. 8, 4025-4034.
- [9] Scible, L.A., Hayes, G. and Shine, J. (1989) DNA 8, 683-689.
- [10] Giros, B., Sokoloff, P., Martres, M.-P., Riou, J.-F., Emorine, L.J. and Schwartz, J.-C. (1989) Nature 342, 923–926.
- [11] Monsma, F.J., MeVittle, L.D., Gerfen, C.R., Mahan, L.C. and Sibley, D.R. (1989) Nature 342, 926-929.
- [12] Chio, C.L., Hess, G.F., Graham, R.S. and Huff, R.M. (1990) Nature 343, 266-269.
- [13] Verburg-Van Kemenade, B.M.L., Jenks, B.G., Tonon, M.-C. and Vaudry, H. (1986) Neuroendoerinology 44, 446-456.
- [14] Bagnara, J.T. and Hadley, M.E. (1973) Chromatophores and Color Change: The Comparative Physiology of Animal Pigmentation, Prentic-Hall Inc., New Jersey.
- [15] Hopkins, C.R. (1970) Gen. Comp. Endocrinol. 16, 112-120.
- [16] Bower, A., Hadley, M.E. and Hruby, V.J. (1974) Science 184, 70-72.
- [17] Loh, Y.P., Myers, B., Wong, B., Parish, D.C., Lang, M. and Goldman, M.E. (1985) J. Biol. Chem. 260, 8956-8963.
- [18] Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- [19] Sanger, F., Nicklen, S. and Coulson, A.P. (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467.
- [20] Ross, E. (1989) Neuron 3, 141-152.
- [21] Mount, S. (1982) Nucleic Acids Res. 10, 459-472.
- [22] Kozak, M. (1987) Nucleic Acids Res. 15, 8125-8148.
- [23] Kozak, M. (1989) J. Cell Biol. 108, 229-241.
- [24] Marth, J.D., Overell, R.W., Meier, K.E., Krebs, E.G. and Perlmutter, R.M. (1988) Nature 332, 171-173.
- [25] Dixon, R.A.F., Kobilka, B.K., Strader, D.J., Benovic, J.L., Dohlman, H.G., Frielle, T., Bolanowski, M.A., Bennett, C.D., Rands, E., Diehl, R.E., Mumford, R.A., Slater, E.E., Sigal, I.S., Caron, M., Lefkowitz, R.J. and Strader, C.D. (1986) Nature 321, 75-79.
- [26] Hunt, T. (1985) Nature 316, 580-581.
- [27] Cigan, A.M. and Donahue, T.F. (1987) Gene 59, 1-18.
- [28] Robakis, N.K., Mohamadi, M., Fu, D.Y., Sambamurti, K. and Refolo, L.M. (1990) Nucleic Acids Res. 18, 1299.
- [29] Wong, S.K.-F., Parker, E.M. and Ross, E.M. (1990) J. Biol. Chem. 265, 6219-6224.
- [30] Strange, P.G. (1990) Trends Neurosci. 13, 373-378.
- [31] Sibley, D.R., Benovic, J.L., Caron, M.G. and Lefkowitz, R.J. (1987) Cell 48, 913-922.
- [32] Malbon, C.C., George, S.T. and Moxham, C.P. (1987) Trends Biochem. Sci. 12, 172-175.
- [33] Pless, D.D. and Lennarz, W.J. (1977) Proc. Natl. Acad. Sci. USA 74, 134-138.
- [34] Feramisco, J.R., Glass, D.B. and Krebs, E.G. (1980) J. Piol. Chem. 255, 4240-4245.